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1 Introduction

Agricultural production is complex and risky and weather is just one of several potential

causes of yield variability. Other determinants of variability include the quantity and quality

of inputs, the soil characteristics of farmed parcels, pest pressure, the inherent or learned abil-

ities of farmers, their situations, and the policy environment in which they operate (Hardaker

et al., 1997). In this paper we use parcel-level panel data from South Asia to measure the

different sources of variability in crop output and assess their relative importance. Determin-

ing just how large a role weather plays in explaining variability in yields is vital in designing

and implementing weather index insurance, an increasingly popular micro-level intervention

in developing countries. Recent randomized control trials in South Asia have found limited

farmer uptake of index insurance. Using a multilevel modeling approach and Bayesian es-

timation we find that a small but important fraction of parcel-level yield variability can be

attributed to weather. This may partly explain the low uptake of weather index insurance

by farmers.

The goal of weather index insurance is to assist farmers in managing covariate risk. In

developing country agriculture, covariate risk is particularly difficult to informally insure

against since, by its very nature, it affects neighboring households and limits the effec-

tiveness of traditional risk sharing mechanisms. Several early studies looked at the role of

weather risk on agricultural production in South Asia. Townsend (1994), in his study of risk

and insurance, found that household consumption moves with village-level consumption and

is not much affected by idiosyncratic shocks. What idiosyncratic risk exists is covered by

households via credit markets, gifts, and asset sales. Townsend (1994) concludes that house-

holds are able to insure against non-covariate risk but that covariate risk remains a problem.

Along similar lines, Rosenzweig and Binswanger (1993) focus on the role of weather risk on

production and asset portfolios. They find that village-level rainfall variables explains only a
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small proportion of household-level profit variability. But, similar to Townsend (1994), they

find households insure against non-covariate risk. Using the same ICRISAT data from vil-

lages in India, Townsend (1994) and Rosenzweig and Binswanger (1993) come to the same

conclusion, namely that weather risk plays only a small role in determining income vari-

ability. However, households are much less successful in insuring against covariate weather

risk than they are in insuring against non-covariate risk. This conclusion motivates recent

attempts to design and implement weather-based index insurance for poor farmers.

The apparent need for weather index insurance has been met by surprisingly little uptake

of the product, at least by farmers in India (Giné et al., 2008, 2012). There are many potential

barriers to uptake of insurance, including trust in the insurance company, household liquidity

constraints, and lack of financial literacy of household decision makers (Cole et al., 2013).

In addition to these consumer-centric explanations for low uptake, flaws in the product

itself may be a cause. Uninsured exposure to basis risk is a case in point. There are two

potential sources of basis risk. One is the loss caused by an event not measured by the

index. Low temperatures that retard crop growth or high winds that cause crop damage

when the insurance index is based on rainfall. Another potential source of basis risk is

low correlation between the index and covered losses. This can occur, for example, when

measurement stations are spatially distant from insured crops. A less common example is

potentially insured crops that are sufficiently resilient to the phenomena which forms the

basis for the insurance, such as when a drought-tolerant crop variety is covered by rainfall-

based insurance. These demand side considerations ought to be important when designing

weather index insurance to ensure barriers to household uptake are minimized.1

The most common type of weather index insurance in South Asia is rainfall insurance

1While household characteristics such as financial literacy are difficult to address in designing index
insurance, basis risk is not. The design of the insurance contract should attempt to minimize basis risk by
verifying that (1) the index measure is the primary driver of yield variability and (2) the index measure is
highly correlated with output loss. Chantarat et al. (2013) develop a regression based approach to minimize
basis risk for asset insurance in Kenya.
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(Barnett and Mahul, 2007; Giné et al., 2007; Akter et al., 2009). However, surprisingly little

empirical research has been conducted to confirm the underlying correlation between rainfall

variability and yield variability. Giné et al. (2012) claim “around 90% of variation in Indian

crop production levels is due to rainfall volatility.” They cite Parchure (2002) as a source

but Parchure’s actual assertion is that of crops lost for weather reasons, 90% of the losses

are due to rainfall variance. Barnett and Mahul (2007) claim “rainfall variability accounts

for more than 50% of the variability in crop yields” but fail to cite a source or provide

data. Even less data exist on the correlation between yield variance and other measures

of covariate risk, such as temperatures, wind speed, or the occurrence of natural disasters.

Finally, to our knowledge, no data exist on covariate risk’s share in explaining variance in

crop yield. Previous studies which have attempted such measurements were constrained by

data, econometric techniques, and computing power so that they were unable to net out

measurement error and fully describe the determinants of output variability (Rosenzweig

and Binswanger, 1993). We attempt to fill this research gap.

We examine the different sources of yield variance using a multilevel/hierarchical regres-

sion approach. This allows us to control for inputs at the parcel-level and also isolate the

amount of yield variance due to parcel-level effects, household-level effects, and seasonal

effects. Using Bayesian methods, we draw the underlying distribution of the random error

term corresponding to different sources of risk. Bayesian methods are particularly useful be-

cause the underlying distribution for seasonal variability is highly skewed and non-normal.

Overall, we find very low correlation between weather and yield variability in the data. And

considering all sources of yield variance, variance due to weather is found to play a small

role.

However, our results should not be interpreted as arguing that smallholder farmers do not

need weather insurance. Rather, what they need is better insurance. The the skewness in the

posterior distribution for weather variability highlights the need for access to affordable risk-
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management tools. In other words, despite the low explanatory power of seasonal variations

in yield variability, our results still suggest that extreme weather events, while rare, are

nevertheless potentially costly. We provide a brief quantitative assessment of index insurance

contracts currently offered for sale in village South Asia by the insurance company ICICI

Lombard. We conclude that these contracts are overpriced. This underscores that farmers

may rationally prefer to focus their risk management choices on minimizing other sources of

risk instead of purchasing weather index insurance, as currently marketed.

To tie our results as closely as possible to the issue of weather risk in agricultural pro-

duction, we use the ICRISAT household survey data from the same Indian villages studied

by Townsend (1994) and Rosenzweig and Binswanger (1993). However, we use an expanded

panel dataset covering both India and Bangladesh. We use a fairly short panel of eight crop-

ping seasons in our analysis. This short horizon has both advantages and disadvantages. The

primary benefit is that over such a short time frame parcel and household characteristics

are unlikely to have changed. By controlling for parcel and household effects, along with

parcel-level inputs, we can measure the variance in crop output resulting from covariate risk.

The primary liability of our dataset is that the two and a half years of production that we ob-

serve does not contain any large-scale weather related natural disasters, such as catastrophic

drought or flooding. This likely means that the degree of correlation we measure between

weather and yield variability is an underestimate of the true correlation. Nevertheless, our

analysis sheds new empirical light on the potential value of weather insurance during typical

production periods.

By using a multilevel approach to measuring the roles of idiosyncratic and covariate risk

in agricultural production in village South Asia we contribute to three separate streams of

literature. The first is the literature focused on production risk and insurance in the devel-

oping world. This literature is large and growing. Our aim is to connect to two strands of

this literature. The first (Townsend, 1994; Rosenzweig and Binswanger, 1993; Rosenzweig
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and Wolpin, 1993; Giné and Yang, 2009) has focused on the theoretical and empirical rela-

tionship between production, risk, and insurance. The second (Barnett and Mahul, 2007;

Giné et al., 2007; Skees et al., 2007; Giné et al., 2008; Akter et al., 2009; Gaurav et al., 2011;

Clarke et al., 2012; Cole et al., 2013; Clarke et al., 2012) focuses on interventions to help

insure production against risk.

Our second contribution is to the nascent economics literature that applies multilevel

models to household data. Although we introduce no new methods, per se, in the paper, we

do contribute a methodological innovation by expanding the use, understanding, and adapt-

ability of multilevel modeling, Bayesian inference, and Gibbs sampling, all in the context of

household data.

The third body of literature to which we contribute is the empirical estimation of produc-

tion functions. Until recently it has been computationally difficult to estimate production

functions with multiple nested levels of data. While panel data random effects methods are

equivalent to a multilevel model with a single level, few alternatives exist for models with a

high number of nested levels. Production data are often collected at the farm or factory level,

which suggests at minimum a two level model. Adding additional levels to account for and

distinguish among temporal and/or spatial variation can provide more efficient estimation

of production. We contribute to this strand of literature by comparing production functions

parameter estimates obtained by standard ordinary least squares and multilevel regression.

2 Data

To conduct our empirical analysis, we use household data from villages in India and Bangladesh.

These data were collected as part of the Village Level Studies/Village Dynamics Study of

South Asia (VDSA, 2013). The data set combines high and low frequency household data

from 12 Bangladeshi villages and 30 Indian villages. The Indian villages include the three
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studied by Townsend (1994) and the ten studied by Rosenzweig and Binswanger (1993).

However, while much of the previous work has relied on the low frequency data, we utilize a

newly available high frequency data set. These data include monthly household observations

on input purchases, labor expenditure for on-farm activities, and crop yields. The added

value of high frequency data is that, with multiple crops on multiple parcels for multiple

seasons in a single year, we can glean much more detailed and accurate farm production

data than afforded by the low frequency data.

We utilize monthly parcel-level data aggregated to the seasonal level. We focus solely on

rice production, which accounts for 67 percent of all parcel-level observations. This leaves us

with 9,462 observations from 4,407 unique parcels from 910 distinct households across eight

seasons. We exploit this nested data structure in our empirical analysis.

While Bangladesh accounts for the majority of observations, the number of parcels and

households are fairly evenly divided: of 4,407 unique parcels, 2,626 are in Bangladesh and

1,781 are in India. Among the 910 households in our dataset, 399 come from Bangladesh and

511 come from India. Despite accounting for only 30 percent of villages in the survey, our

focus on rice production means that 75 percent of total observations are from Bangladesh.

Compared to those in India, household in Bangladesh grow rice in more seasons.

Statistics describing these data are presented in Table 1. Average yield of rice is 3,874

kilograms per hectare. On average, yields in Bangladesh (4,122 kg/ha) are higher than those

in India (3150 kg/ha). Bangladesh’s higher yields are generally due to more intensive use of

inputs. Bangladeshi households use more fertilizer, irrigation, mechanized machinery, and

pesticide than their Indian counterparts. Indian households use more labor, on average,

than Bangladeshi households. On average, parcels are much smaller in Bangladesh (0.098

ha) than in India (0.259 ha).
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3 Empirical Strategy

3.1 Ordinary Least Squares

We begin by estimating a simple linear regression for yield. Let yit denote the log of yield

for parcel i at time t. We estimate

yit = Xitβ + εit (1)

where Xit is a matrix of data (including a constant), β is a vector of coefficients to be

estimated, and εit is an error term which we assume is i.i.d. N(0, σ2
ε ). While this specification

allows us to estimate the impact of parcel-level inputs on yield at each point in time, it does

not control for variation in parcel yields across time. To gain a sense of how seasonal

changes in weather impact yields and the marginal value of inputs, we estimate a random

effects model,

yit = Xitβ + st + εit (2)

where st is i.i.d. N(s̄, σ2
s). This random effects or error component model takes into account

that variation in yield is determined by parcel and time specific inputs Xit,
2 a time-specific

term st, and the idiosyncratic error term, εit. This specification allows us to focus on time

specific means instead of an overall mean (the constant term), which makes sense since yields

may differ across seasons.

We note several drawbacks associated with this linear estimation of the production func-

tion. First is that we are unable to estimate the role of weather in determining variations in

yields. Equation (2) produces estimates of how each season affects yields. But this informa-

tion does not allow for comparison of the effects of weather on yield relative to other inputs,

2In this specification the data matrix Xit no longer includes a constant term.
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but only the role of weather in determining each season’s yield. A second drawback is that

OLS limits our ability to control for additional clustered effects, such a parcel or household-

level effects. While changes in season clearly impact the effectiveness of parcel-level inputs,

equally relevant effects may exist at the parcel or household-level. Some households may be

more efficient in their application of labor compared to others, while some parcels may be of

better quality, resulting in less need for fertilizer. And even if it were computationally feasi-

ble to estimate time-specific, household-specific, and parcel-specific parameters using OLS,

such grouped data would violate the assumption of independence for all data (Corrado and

Fingleton, 2012). A final drawback, and perhaps the most important, is that OLS assumes

the time-specific term is normally distributed. While in many applications this assumption is

appropriate, we should not expect weather events to be normally distributed. If time-specific

effects have a highly skewed distribution, OLS will produce biased parameter estimates.

3.2 The Multilevel Model

A multilevel or hierarchical modeling approach addresses the first two drawbacks associated

with the standard linear approach to estimation. First, multilevel models offer a natural

way to assess the role of changes in weather on variation in yields by explicitly modeling

the variance and not just the mean of the data. Such models allow us to estimate the share

in total variance attributed to variability in each group. In our case, a multilevel approach

also allows us to disaggregate total variance into its sources, so as to measure the relative

contribution of seasonality and weather risk in production. Second, a multilevel approach

allows us to incorporate random intercepts for each grouping of the data without adding to

the computational burden and without violating independence assumptions.

Gelman and Hill (2007) provide an introduction to multilevel analysis. We start with a

simple two level model in which parcels are grouped within seasons. Let yit denote the log

of yield for individual parcel i coming from group t. We estimate
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yit = Xitβ + αt + εit (3)

where Xit (with a constant), β, and εit are as previously defined and αt is modeled by a

group level regression

αt = µt + νt. (4)

Here the group level intercepts are functions of a group mean, µt, and an error term, νt which

is assumed to be i.i.d. N(0, σ2
ν). This specification allows us to estimate the individual as

well as the group level error term and calculate each level’s share of the total variance. This

calculation, called the intraclass correlation coefficient (ρ), is similar to the proportion of

explained variance in OLS regression, and is calculated as:

ρ =
σ2
ν

σ2
ν + σ2

ε

. (5)

As a matter of practicality there is little difference between equation (2) and equation (3).

However, the value of a multilevel model becomes obvious as we seek to add additional levels.3

In our parcel-level panel data analysis we can view each observation, n, as coming from a

parcel group i; each parcel group as being nested within a household, h; and each household

3The model represented by equations (6a)-(6d) can be summarized as a single model with a matrix β,
an intercept term µt, and a special noise structure which is a sum of independent noise terms with a nested
dependence on indexes. Considered as a single noise term depending on νiht, this noise structure would have
a covariance matrix which is the superposition of triangular structures. We find representation of the model
by multiple equations to be more intuitive.
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as observed within a time group, t. We can write the multilevel model as:

Level 1 : yniht = Xnihtβ + αiht + εniht (6a)

Level 2 : αiht = αht + νiht (6b)

Level 3 : αht = αt + νht (6c)

Level 4 : αt = µt + νt. (6d)

Level 1 of the model estimates the log of yield as a function of inputs applied by household j

to that specific parcel i at the given time t. Each n observation comes from a parcel cluster

i which we assign a unique intercept, αiht. This parcel-level intercept allows the relationship

between inputs and yield to vary across parcels depending on parcel-level characteristics.

While many parcel-level characteristics, such as soil color, may be observable, many other

parcel-level characteristics are difficult to measure or costly to observe and thus remain

unobserved to the econometrician. Such characteristics include soil micro-nutrients, grade,

and aeration or composition. By including a unique intercept term for each parcel we can

control for these parcel-level characteristics.

Level 2 of the model groups parcels within households. Here parcel intercepts, αiht, are

a function of household characteristics, αht, and a random disturbance term, νiht. The

household-level intercept allows variation in parcel-level production to be dependent on

household characteristics. In most production regressions there is an attempt to control

for unobserved household ability through proxy variables such as age or education. Our

multilevel approach allows us to control for any unobserved household-level characteristic by

assigning each household a unique intercept term without the need to rely on proxies.

Level 3 of the model groups households within time. Here household-level intercepts, αht,

are a function of time, αt, and a random disturbance term, νht. The time-level intercept al-
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lows variation in household-level efficiency to depend on seasonality. While household ability

is often viewed as time invariant, in fact it can be viewed as time dependent. Households

may increase in ability through education or experience. Additionally, household ability may

be diminished or enhanced by changes in weather. Households with experience in dealing

with drought conditions may find their ability diminished by flooding or cyclones. A priori,

there is no reason to assume that seasonality or changes in weather have a monotonic effect

on household characteristics. By allowing household-level intercepts to vary across time, we

are relaxing the assumption that household characteristics are either time invariant or vary

monotonically.

Level 4 of the model defines time-level intercepts as a function of a season mean, µt, and

an error term, νt, as previously discussed. At all levels of the model the random disturbance

terms, ν are assumed to be i.i.d. with mean zero and variance σ2
ν .

We can verify if the normality assumption is reasonable by drawing profile zeta plots for

each parameter, including the disturbance terms. Profile zeta plots are a way to visualize

the sensitivity of the model fit to changes in values of particular parameters. While these

plots are not the same as drawing the underlying distribution of an estimator, they represent

a similar idea and can be interpreted as representing the underlying distribution. First, we

estimate the model in equations (6a)-(6d). Then we hold a single parameter fixed and vary

the other parameters, assessing the fit of each new iteration compared to the globally optimal

fit. Our comparison statistic is the likelihood ratio test. We then apply a signed square root

transformation to the LR statistic and plot the absolute value of the resulting function, |ζ|,

in comparison to the estimated parameter values. The zeta profile plots resulting from the

model fit to equations (6a-d) are presented in Figure 1. Parameters with underlying normal

distributions will have straight line zeta profile plots. When this is the case these parameters

provide a good approximation to the normal distribution and standard confidence intervals

can be used for inference. When zeta profile plot lines are not straight, the normal distri-
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bution is a poor approximation of the underlying distribution. For parameter estimates on

data, a non-normal distribution simply requires an adjustment of the relevant test statistics.

But, if the underlying distributions of our disturbance parameters are non-normal, we are

faced with a violation of the normality assumptions of the error term. In Figure 1, zeta

profile plots for the parcel and household disturbance terms, along with the idiosyncratic

error term, represent good approximations of normality. However, the zeta profile plot for

the disturbance term at the time level, νt, is highly skewed. Thus, we cannot assume that

νt is distributed N(0, σ2
νt). Since we do not, a priori, know the density of νt, maximum

likelihood methods cannot be used to estimate our model.

3.3 Bayesian Estimation of the Multilevel Model

While multilevel models address the first two drawbacks of OLS estimation, they still rely

on the potentially unsupported assumption of normality of the error term at each level. We

address this drawback to classical estimation of multilevel models by adopting a Bayesian

framework and using Markov Chain Monte Carlo (MCMC) methods to obtain posterior esti-

mates. For estimation of posterior distributions we use the Gibbs sampler, which iteratively

constructs a sequence of samples from the univariate random values of each response vari-

able, and of each model’s parameters, conditional on all other parameters and variables. This

method allows us to compute all features of the marginal and joint distributions because the

marginal samples are iteratively fed back into the conditional posterior densities of all other

parameters and variables for each sampling. This allows us to calculate unbiased point esti-

mates and confidence intervals for all variables without recourse to normality assumptions,

and indeed, these empirical data-driven estimations of some of the posterior densities will

show non-normal characteristics.

Hanmaker and Klugkist (2011) provide an introduction to Bayesian estimation of multi-

level models while Cameron and Trivedi (2005) provide a more detailed, and more technical,
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presentation. In this section, we first define the Bayesian estimator using the simple example

of a two level hierarchical model. We then provide parameter definitions for our multilevel

model first defined in equations (6a)-(6d).

For a general two level model, let ykm be a unique observation k = 1, ..., K from the group

m = 1, ...,M . Within each group, m, the data are distributed according to a particular

distribution G with parameter γ such that ykm ∼ G(γm). We then assume that parameter

γm comes from a distribution L with parameter λ such that γm ∼ L(λ). Finally, we assign

a distribution to the hyperparameter λ so that λ ∼ Q(a, b). Given this setup, we can obtain

the joint posterior distribution of all unknown parameters using Bayes’ theorem:

p(λ, γ|y) ∝ p(y|γ, λ)p(γ|λ)p(λ) (7)

where y = (y11, ..., y1K , ..., yM1, ..., yMK) is all the data, γ = (γ1, ..., γM) is the group level

parameter, and λ is the population parameter. The density of the data is obtained through

p(y|γ, λ) =
M∏
m=1

K∏
k=1

p(ykm|γm, λ). (8)

This is an independence assumption, and the individual density, p(ykm|γm, λ), is assumed to

be known. If this is the case, the prior for the group level effect is

p(γ|λ) =
M∏
m=1

p(γm|λ). (9)

From the joint posterior distribution we can derive the conditional posterior distributions.

We can now apply our simple example of the Bayesian estimator to the multilevel model
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given in equations (6a)-(6d). We redefine the model in probability terms:

Level 1 : yniht ∼ N
(
Xnihtβ + αiht, σ

2
)

(10a)

Level 2 : αiht ∼ N
(
αht, τ

2
i

)
(10b)

Level 3 : αht ∼ N
(
αt, τ

2
h

)
(10c)

Level 4 : αt ∼ N(µt, τ
2
t ). (10d)

We next define the hyperpriors, or the prior distributions of the hyperparameters, of the

model:

Hyperpriors : µt ∼ N
(
a, b2

)
τ 2t ∼ IG (dt, gt)

τ 2h ∼ IG (dh, gt) (11)

τ 2i ∼ IG (di, gi)

σ2 ∼ IG (q, r) .

We select values for the distributions to ensure that priors are uninformative. We then use a

burn-in period of 50,000 iterations and an additional 50,000 iterations to ensure convergence.

4 Econometric Results

We present the results from a large complement of regressions in Table 2. Models 1 and 2

are classical OLS regressions. Models 3-7a are multilevel models. All models are estimated

using the log of yield as the dependent variable and logged value of inputs and independent
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variables. Hence, point estimates can be read directly as elasticities.4

We estimate the OLS regressions with complete pooling (Model 1) and with time-varying

random effects (Model 2). Model 3 is multilevel model with covariates and data clustered at

the season-level and is included for comparison with Model 2. Results from the first three

models point to a fairly robust set of basic production patterns in the data. These include (i)

positive and significant production relationships between yield and measured inputs (labor,

fertilizer, mechanization and pesticides); (ii) modest increasing returns to labor use, and

overall increasing returns to scale; and (iii) strong seasonal patterns in yields. To facilitate the

construction of our measures of variance decomposition and intraclass correlation coefficients

(ICC), we also include results from four additional multilevel models. Model 4a contains no

covariates and uses data clustered at the season-level; Model 5a contains no covariates and

uses data clustered at the season and parcel-level; Model 6a contains no covariates and uses

data clustered at the season, parcel, and household-level; and Model 7a contains covariates

and uses data clustered at the season, parcel, and household-level.

Table 3 reports the residuals (panel A), ICCs (panel B) and variance shares (panel C) for

Models 4a-7a. These statistics establish the key findings that inform our insights into the

potential role of weather index insurance. We focus attention on panel C of Table 3, which

compactly summarizes the model results expressed in the upper panels of the table. Reading

across the columns of the table provides insights into the additional explanatory information

that is provided by adding new hierarchical levels to the regression. Reading down the

rows of the table allows us to assess the decomposition of variance and, by extension, the

relative importance of each level in explaining overall variance in yields. So, for example,

in a model with no covariates and using data clustered at the season-level only (Model 4a)

we find that 12 percent of variance occurs across season, and 88 percent is left unexplained.

4Also included, but not reported in Table 2 is an indicator variable to control for differences in production
between countries.
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Adding a household-level (Model 5a) re-attributes the variance such that 20 percent consists

of between-household variance. Eight percent is between-season variance, and 72 percent

remains unexplained. Adding a parcel-level to the model (Model 6a) results in 42 percent

of variance being attributed to between-parcel differences, 15 percent being attributed to

between-households differences, and 7 percent being attributed to between-season differences;

37 percent remains unexplained. Finally, Model 7a measures the share of yield variability

accorded to each level while controlling for time-specific parcel-level inputs. In this, our

most complete specification of the production function, 26 percent of variance comes from

between-parcel differences, 25 percent comes from between-households differences, and 3

percent is attributed to between-season differences; 46 percent remains unexplained. These

basic patterns highlight the relatively small importance of between-season yield variance

compared with between-household or between-parcel yield variance.5

We present mean point estimates based on a parallel set of full Bayesian posterior density

estimates for the four multilevel regressions in Table 4. Model 4b omits covariates and uses

data clustered at the season-level; Model 5b contains no covariates and uses data clustered

at the season and parcel-level and Model 6b contains no covariates and uses data clustered

at the season, parcel, and household-level. Model 7b contains covariates and uses data clus-

tered at the season, parcel, and household-level. The Bayesian estimation of the production

function with a full set of covariates (Model 7b) generates point estimates that are virtually

indistinguishable from those of the OLS and non-Bayesian multilevel regressions. As in the

case of the fully specified non-Bayesian multilevel regression (Model 7a in Table 2), only the

point estimate for irrigation is negative.

In general, the non-normality of the error term means that the classical and multilevel

5Note that the share of variance that remains unexplained is not the appropriate measure of model fit. The
reported residuals in Panel A of Table 3 lists the size of the residual or noise term in the regression, which is
always decreasing as we add complexity to the model. Additionally, the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) reported in Table 2 provides a measure of model fit. In both the
AIC and BIC, lower values correspond to better model fit.
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regression models are misspecified and we would expected point estimates from these mod-

els to be biased. However, in our application, only the seasonal noise term is not normally

distributed. Furthermore, seasonal variance makes up only a small share of total variance.

Thus, bias in the point estimates introduced through model misspecification is mitigated by

the small impact our skewed noise term has in the total estimation procedure. We highlight

that this is an artifact of the current application and data. If intra-seasonal variation ac-

counted for more of the total variance we would expect a larger bias in our point estimates

using classical regression techniques.

In parallel to Table 3, Table 5 reports the residuals (panel A), ICCs (panel B) and vari-

ance shares (panel C) for the Bayesian regressions reported in Table 4. These statistics

confirm in general the findings from before and provide a strong test of the robustness of

those results. We again focus attention on Panel C, where patterns are nearly identical to

those reported in Table 3. In a model with no covariates and using data clustered at the

season-level only (Model 4b) we find that 18 percent of variance occurs across seasons, and 82

percent is left unexplained. Adding a household-level (Model 5b) re-attributes the variance

such that 19 percent consists of between-household variance, 13 percent is between-season

variance, and 68 percent remains unexplained. Adding a parcel-level (Model 6b) results

in 41 percent of variance being attributed to between-parcel differences, 14 percent being

attributed to between-households differences and 10 percent being attributed to between

season differences; 35 percent remains unexplained. Finally, although not strictly compa-

rable to the previous models due to the inclusion of household and parcel-level covariates,

Model 7b indicates that only 7 percent of the total variance can be explained by season, com-

pared with 25 percent and 24 percent for parcel and household. Again we attribute a small

role to between-season yield variance compared with between-household and between-parcel

yield variance. A notable difference between the estimated residuals from the classical and

Bayesian regressions are that the MLE estimation consistently underestimates the significant
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role seasonal effects play in yield variance. So, while the skewness of the seasonal residual

does not have a pronounced effect on point estimates (due to the small size of the residual),

estimation of that relative size of the seasonal residual consistently differs across estimation

techniques.

Figure 2 reports distribution profiles based on Model 7b for the associated parcel-level,

household-level, time-level, and unexplained variance. These histograms are drawn from the

posterior distributions estimated using the Gibbs sampler. Posterior distributions for the

household-level, parcel-level, and unexplained variance are all close approximations to the

normal distribution. However, the posterior distribution of the time/season variance term is

highly skewed. We can draw several conclusions from this graph. First, τ 2t is not normally

distributed, violating the normality assumption in OLS and multilevel regression. Second,

normal confidence interval calculation will be inaccurate. Third, the long right hand side

tail in the distribution indicates that there is a small but positive probability of extreme

between-season variation. While our mean estimate for the share of yield variance due to

weather is small, this estimate does not account for the small but positive probability of

large yield variance due to extreme weather events. Thus, our mean estimate of seasonal

variance explaining less than 10 percent of total variance is most likely an underestimate.

5 Actuarial Values of Rainfall-Index Insurance Risk

The likely importance of extreme and infrequent weather events in yield variability, evidenced

by the aforementioned skewness in the posterior distribution of τ 2t , highlights the need for

smallholder farmers to have access to affordable risk-management tools. In other words,

despite the low explanatory power of seasonal variations in yield variability, our data still

suggest that potential insurance purchasers need to consider weather risk, since extreme

weather events, while rare, are nevertheless potentially costly over the long run. This motives
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us to ask whether tools for managing this type of risk are adequately accessible. We finish

this paper with a brief quantitative assessment which suggests that rainfall index insurance,

as currently marketed in village South Asia, may be overpriced.

Our parcel-level panel data are not adapted to measuring the severity of weather events.

In order to estimate the actuarial cost of these events, we rely on rain-index insurance

contracts which ICICI Lombard offers in the region and which form the basis for the analysis

conducted by Cole et al. (2013). These contracts are district-dependent, and are the sum

of three individual contracts in the three successive phases of the monsoon season. The

start and finish dates defining each of the three phases are determined for each village for

each year, as a function of the daily evolution of rainfall for the village’s corresponding

weather station.6 In Phases I and II, corresponding to planting and heading, a drought

risk exists, while in Phase III, corresponding to harvest, the risk is from excess rain.7 In

Phase I and II the contract pays zero Indian Rupee (Rs.) if the cumulative rainfall exceeds

a certain “strike” value s. It then pays a number of Rs. which decreases linearly with the

cumulative rainfall in that phase, and if this rainfall amount reaches down to or beyond a

certain low “exit” number e, the contract pays 1000 Rs. The contract is structured so as to

have a piecewise linear continuous payout. Consequently, the slope of the linear part of the

contract function, between the rainfall values of s and e, is equal to the negative number

1000/(e− s).8 In Phase III, the contract is structured in an opposite way: the payout equals

zero for cumulative rainfall below the strike value s, it equals 1000 Rs. above the exist value

6Specifically, Phase I begins on the day when accumulated rainfall since the traditional monsoon start
date exceeds 50mm. In Eastern and Central India, monsoon start date is generally considered 1 June, so
Phase I begins for a village when accumulated rainfall since 1 June exceeds 50mm. In Western India monsoon
start date is figured as 1 July. If accumulated rainfall in the first month fails to exceed 50mm, then the first
phase automatically begins on the first of the next month (1 July in E. and C. India and 1 August in W.
India).

7Phase I and II are each 35 days in length. Phase II begins the day after the close of Phase I. Phase III
begins the day after the close of Phase II. In contrast to the first two phases, Phase III lasts for 45 days:
World Bank (2011).

8Note that, presumably because of a typographical error, this “payout slope” is reported incorrectly as
being constant over all districts in Table 1 of Cole et al. (2013).
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e, and it grows linearly with positive slope 1000/(e − s) for cumulative rainfall between s

and e. The linear portion of the contract structure means that its actuarial value will be a

bona fide quantitative measure of the severity of drought and/or flood risk. This would not

be the case if the contract paid only either zero or a fixed lump sum, since in that case, the

actuarial value would only measure the probability of a payout, not drought/flood severity.

We utilize daily rainfall data from 16 of the VDSA villages selected to provide a wide

geographic distribution of Indian States with tropical wet-and-dry and humid subtropical

climates from Andhra Pradesh to Bihar for the years 2010 and 2011.9 Our method of

calculating the actuarial value of the payouts differs from that used in previous studies of the

same contracts. Cole et al. (2013) provide a straightforward and representative explanation

of the standard method of calculation. They utilize 36 years of rainfall data from five villages

in Andhra Pradesh and 38 years of rainfall data from three villages in Gujarat to calculate

values for each of the three contract phases. We instead use two years of rainfall data to

determine rainfall in each of the three phases in 16 villages. Because of the wide geographic

distribution, this averaging encompasses a number of differing weather conditions, which

can be considered as a proxy for following a specific village over a long period of time, and

ensures that a sufficient number of extreme weather events are included, a particularly useful

feature in this region where droughts are sporadic. Additionally, we believe that the shorter

time horizon utilized in our calculation more closely approximates the decision horizon for

smallholder farmers in South Asia. Given that the average age of the head of household

in our data is 49 years, rainfall information from 38 years ago is not likely to figure into

insurance purchase decisions.

Using this shorter time horizon combined with wider geographic diversity, we calculate an

estimate of the actuarial value of the payouts for the 3-phase contract by averaging payouts

9The rainfall data is part of the VDSA collection process. It is ostensibly collected in every village on a
daily basis, although several villages have numerous missing data.
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over all 84 village-year-phase combinations. To illustrate the effect of how different strike

and exit values effect the insurance contract’s value, we repeat the calculation for three of

the contracts reported in Cole et al. (2013), with low, medium, and high payout structures,

and report on the payouts’ actuarial values and payout probabilities. The results from this

analysis are given in Table 6.

Under the most generous payout structure (“high payout”), the probability of payout

is just under 12 percent. This represents, on average, little more than one payout in one

phase over a three-year period. Judging by the examples of contracts reported in Cole et al.

(2013), it is more likely that smallholders would be offered contracts in the medium payout

range, where payout probability is just over 7 percent. Farmers who do not look ahead

more than three years in planning their activities would presumably find little incentive to

purchase insurance where, on average, this 7 percent figure means they would be as likely

as not to see no payout within their planning horizon. The payout probability in the case

of low-payout contract is even more extreme: 3.6 percent. We suspect that in the villages

we consider, only the high payout contract would likely be of interest to farmers, and then

only if they perceived its premium as close to fair. Table 6 reports those actuarially fair

premiums.

Cole et al. (2013) also report expected payouts as percentages of true premiums paid to

the ICICI Lombard insurance company for two villages in Andhra Pradesh in 2006. These

numbers are equivalent to saying that the premium is computed by multiplying the actuar-

ially fair premium by a loading factor, 1 + λ, via the formula:

1 + λ =
paid price

actuarially fair price
. (12)

Thus λ is a proportional transaction cost which, in principle, reflects the cost to the company

for doing business. The two loading factors computed from reported premiums, λ = 2.00
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and λ = 1.34, are very large if one compares with other weather insurance markets: a typical

value of λ in the US and other countries is between 0.1 and 0.2. For instance, Giné and

Yang (2009) use a value of λ = 0.175, while the Poverty Global Practice Group at the World

Bank reports values in the US, Burkina Faso, and Senegal of λ = 0.10 (de Nicola, 2015).

While it may not be possible for insurers to offer contracts with such low values of λ in India

and Bangladesh, our actuarially fair value for the high-payout contract, 217.8 Rs., can be

compared to the prices quoted by ICICI Lombard in Cole et al. (2013), which range between

260 and 340 Rs. A premium of 300 Rs. for the high-payout contract would thus represent a

loading factor of λ = 0.38, a significantly higher value than those practiced in other regions,

but still much lower than those inferred from the two villages reported in Cole et al. (2013).

Such excessive loading factors appear to be a key element in preventing farmers in village

South Asia from accessing insurance as a risk-management resource, and further explains

the low uptake rate of rainfall-index insurance.

In addition to this pricing problem, a finer look at the payout probabilities per phase in

our data indicate that in Phase III, there is essentially no chance of any payout, except for

one payout event in the most generous payout structure. Because of the limited data, this is

difficult to interpret, but could be an indication that the Phase-III portions of the contracts

are not adapted to the farmers’ needs.

6 Conclusion

Uptake of weather index insurance has been low in many low-income settings, including

South Asia. Despite long standing evidence that households in rural South Asia are unable

to fully insure covariate risk (Townsend, 1994; Rosenzweig and Binswanger, 1993), few studies

have attempted to measure the role variance in weather plays in determining variability of

crop output. In this paper we addressed this research gap using agricultural production
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data covering more than 4,000 parcels in India and Bangladesh. We examined the different

causes of yield variance using a multilevel/hierarchical regression approach. This allowed

us to control for inputs at the parcel-level and also isolate the amount of yield variability

due to parcel-level effects, household-level effects, and seasonal effects. We adopt a Bayesian

estimation approach to accommodate for the highly skewed distribution of the seasonal

disturbance term. Overall, we find a low level of correlation between weather and yield

variance, compared to other sources of variability. This suggests that farmers may rationally

prefer to focus their risk management choices on minimizing other sources of risk instead of

purchasing weather index insurance.

Although there are many potential impediments to insurance uptake, this research pro-

vides evidence for an obvious but until now overlooked explanation: insurance contracts are

overpriced from the perspective of the farming household. Product design and ratemaking of

index insurance in South Asia has generally taken a long view, utilizing rainfall data as far

back as four decades to calculate actuarial rates (Parchure, 2002; Giné et al., 2007; Clarke

et al., 2012). From the perspective of the insurance company, such a long time horizon is

helpful to rely on the company’s longevity to manage risk. However, risk diversification can

also rely on geographic distribution. Moreover, given that the average age of the head of

household in our data, rainfall information from when a household head was a child is not

likely to figure into insurance purchase decisions. Taking a short-term perspective, we calcu-

lated actuarial value of payouts using rainfall data from recent seasons. We find that loading

factors on these contracts are highly excessive and that this pricing problem provides little

incentive for smallholder farmers to purchase insurance. These results suggest that micro-

insurance markets hold promise for improving household risk management only to the extent

that products are able to adapt to the planning horizons of potential purchasers.
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Table 1: Descriptive Statistics

Total Bangladesh India

yield (kg/ha) 3874 4122 3150
(2145) (1971) (2450)

labor (hrs/ha) 998.8 975.7 1066
(639.4) (442.5) (1013)

fertilizer (kg/ha) 314.2 341.4 234.8
(252.1) (250.0) (241.3)

irrigation (liter/ha) 25.66 34.34 0.225
(74.18) (84.12) (5.12)

mechanization (Rs/ha) 5631 5832 5039
(4662) (3886) (6382)

pesticide (Rs/ha) 429.9 529.4 138.4
(692.5) (736.5) (425.9)

parcel area (ha) 0.139 0.098 0.259
(0.180) (0.070) (0.307)

rainfall (mm) 543.6 712.8 305.9
(258.0) (157.8) (168.8)

number of observations 9462 7054 2408
number of parcels 4407 2626 1781
number of households 910 399 511

Table displays means of data with standard deviations in paren-
thesis. For inputs in value terms, we have converted Bangladeshi
Taka (BDT) to Indian Rupee (Rs) using exchange rates at the
start of the relevant monsoon season (1 BDT = 0.6744 Rs in
2010 and 0.5995 Rs in 2011). Rainfall is the sum of rainfall over
the 70 days corresponding to phase 1 and phase 2 of rainfall index
insurance contracts offered by ICICI Lombard.
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Table 2: Results of Classical Estimation of Production Function

OLS Multilevel Model

(1) (2) (3a) (4a) (5a) (6a) (7a)

log labor 1.235∗∗∗ 1.248∗∗∗ 1.246∗∗∗ 1.438∗∗∗

(0.031) (0.032) (0.032) (0.035)
log fertilizer 0.279∗∗∗ 0.278∗∗∗ 0.279∗∗∗ 0.348∗∗∗

(0.013) (0.013) (0.013) (0.015)
log irrigation −0.012 −0.016∗ −0.014 −0.046∗∗∗

(0.008) (0.009) (0.009) (0.010)
log mechanization 0.048∗∗∗ 0.050∗∗∗ 0.050∗∗∗ 0.053∗∗∗

(0.008) (0.008) (0.008) (0.009)
log pesticides 0.014∗∗∗ 0.013∗∗ 0.013∗∗ 0.036∗∗∗

(0.005) (0.005) (0.005) (0.006)
constant 1.635∗∗∗ 1.716∗∗∗ 3.707∗∗∗ 4.868∗∗∗ 4.827∗∗∗ 3.149∗∗∗

(0.218) (0.229) (0.497) (0.131) (0.136) (0.119)

parcel 1.210 0.792
household 0.783 0.719 0.773
season 0.062 0.592 0.496 0.483 0.259
unexplained 1.384 1.605 1.483 1.135 1.044

Observations 9,462 9,462 9,462 9,462 9,462 9,462 9,462
R2 0.341 0.970
Log Likelihood -16,527 -17,922 -17,668 -17,466 -15,980
Akaike Inf. Crit. 33,072 35,851 35,344 34,943 31,982
Bayesian Inf. Crit. 33,136 35,873 35,373 34,979 32,061

Note: All specifications include a statistically significant country indicator as a control. Columns (1) and (2) are classical OLS regressions without accounting
for the multilevel structure of the data. Column (2) includes eight jointly significant season indicators as control variables. Columns (3a)-(7a) are multilevel
models. Column (3a) is multilevel model with covariates and data clustered at the season-level. Columns (2), which includes season dummy variables,
and (3a), which includes season-level clustering, are functionally equivalent to each other. Column (4a) contains no covariates and data clustered at the
season-level. Column (5a) contains no covariates and data clustered at season and household-level. Column (6a) contains no covariates and data clustered at
the season, household, and parcel-levels. Column (7a) contains covariates and data clustered at the season, household, and parcel-levels. Standard errors are
reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01)
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Table 3: Residuals, ICCs, Variance Shares from Multilevel Model

Multilevel Model

(4a) (5a) (6a) (7a)

Panel A
Estimated Residuals

parcel 1.21 0.79
household 0.78 0.72 0.77
season 0.59 0.50 0.48 0.26
residual 1.61 1.48 1.14 1.04

Panel B
Intraclass Correlation Coefficients

parcel 0.42 0.26
household 0.20 0.57 0.51
season 0.12 0.28 0.63 0.54

Panel C
Shares of Variance From Each Level

parcel 42% 26%
household 20% 15% 25%
season 12% 08% 07% 03%
unexplained 88% 72% 37% 46%

Note: Residuals in Panel A come from estimation of
models in corresponding columns in Table 2. Residuals
at each level correspond to σν , or the explained portion
of the total residual, while σε is the unexplained portion
of the total residual. Intraclass correlation coefficients
in Panel B are calculated using the formula: ρ =

σ2
ν

σ2
ν+σ

2
ε
.

Panel C decomposes the ICC into percent of variance
accorded to each level.

29



Table 4: Results from Bayesian Estimation of Production Function

Bayesian Estimates

(4b) (5b) (6b) (7b)

log labor 1.433∗∗∗

(0.039)
log fertilizer 0.348∗∗∗

(0.016)
log irrigation −0.048∗∗∗

(0.010)
log mechanization 0.052∗∗∗

(0.010)
log pesticide 0.035∗∗∗

(0.006)
constant 3.878∗∗∗ 2.847∗∗∗ 3.797∗∗∗ 3.506∗∗∗

(1.667) (1.023) (1.456) (0.261)

αht (parcel) 2.160 1.609
(0.119) (0.110)

αt (household) 3.112 2.811 1.992
(1.971) (1.326) (0.95)

µt (season) 4.056 1.821 0.954 1.859
(1.690) (1.301) (0.712) (0.51)

τ 2i (parcel) 1.229 0.792
(0.021) (0.036)

τ 2h (household) 0.784 0.723 0.773
(0.038) (0.025) (0.034)

τ 2t (season) 0.763 0.640 0.601 0.413
(0.331) (0.241) (0.240) (0.159)

σ2 (unexplained) 1.605 1.484 1.144 1.041
(0.012) (0.011) (0.013) (0.015)

Obs 9,462 9,462 9,462 9,462
DIC 35,675 34,865 27,119 25,893

Note: Results are Bayesian estimates of the multilevel models. Column (4b) contains no
covariates and data clustered at the season-level. Column (5b) contains no covariates and data
clustered at season and parcel-level. Column (6b) contains no covariates and data clustered at
the season, parcel, and household-level. Column (7b) contains covariates and data clustered
at the season, parcel, and household-level. Models were estimated using 4 chains, a burn-in
of 50,000 iterations, and an additional 50,000 iterations for estimation. Standard errors are
reported in parentheses (∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01)
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Table 5: Residuals, ICCs, Variance Shares from Bayesian Estimation

Bayesian Estimates

(4b) (5b) (6b) (7b)

Panel A
Estimated Residuals

parcel 1.23 0.79
household 0.78 0.72 0.77
season 0.76 0.64 0.60 0.41
residual 1.61 1.48 1.14 1.04

Panel B
Intraclass Correlation Coefficients

parcel 0.41 0.25
household 0.19 0.55 0.49
season 0.18 0.32 0.65 0.56

Panel C
Shares of Variance From Each Level

parcel 41% 25%
household 19% 14% 24%
season 18% 13% 10% 07%
unexplained 82% 68% 35% 44%

Note: Residuals in Panel A come from estimation of
models in corresponding columns in Table 4. Residuals
at each level correspond to σν , or the explained portion
of the total residual, while σε is the unexplained portion
of the total residual. Intraclass correlation coefficients
in Panel B are calculated using the formula: ρ =

σ2
ν

σ2
ν+σ

2
ε
.

Panel C decomposes the ICC into percent of variance
accorded to each level.
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Table 6: Actuarial Values and Payout Probabilities

Contract Structure Summary Statistics
Actuarially Fair Probability

Strike Exit Max Payout Premium of Payout

Panel A
High-Payout Contract Structure

Phase I 70 10 1000
217.8 0.119Phase II 80 10 1000

Phase III 375 450 1000

Panel B
Medium-Payout Contract Structure

Phase I 50 5 1000
128.2 0.071Phase II 60 5 1000

Phase III 560 670 1000

Panel C
Low-Payout Contract Structure

Phase I 25 0 1000
79.7 0.036Phase II 25 0 1000

Phase III 500 580 1000
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Figure 1: Zeta Profile Plots for Multilevel Model

Note: Xlnme = log mech; Xlnpe = log pest; XCountry = country; Xlnl = log labor; Xlnfe = log fert; Xlni = log irrig, σ1 = parcel-level
disturbance term; σ2 = household-level disturbance term; σ3 = time-level disturbance term; σ = idiosyncratic error term.
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Figure 2: Histograms of Level Variance from Bayesian Estimation

Note: Histograms drawn from posterior distributions
of variance terms estimated from model (7b) reported

in Table 4.
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