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Abstract 

The Neoclassical theory of production establishes a dual relationship between the profit value 

function of a competitive firm and its underlying production technology. This relationship, 

commonly referred to as duality theory, has been widely used in empirical work to estimate 

production parameters without the requirement of explicitly specifying the technology. We 

analyze the ability of this approach to recover the underlying production parameters. We 

compute the data generating process by Monte Carlo simulations such that the true technology 

parameters are known. Employing widely used datasets, we calibrate the data generating process 

to yield a dataset featuring important characteristics of U.S. agriculture. We compare the 

estimated production parameters with the true (and known) parameters by means of the identities 

between the Hessians of the production and profit functions. We conclude that, when the dataset 

bears minimum sources of noise, duality theory is able to recover the true parameters with 

reasonable accuracy. Also, that when it is employed in time series coming from an aggregation 

of technologically heterogeneous firms, the parameters recovered are close to the firm at the 

median of the distribution. The proposed calibration sets the basis for analyzing the performance 

of duality theory approaches when datasets used by practitioners are subject to other observed 

and unobserved sources of noise. 

 

 

 

Keywords: duality theory, firm’s heterogeneity, data aggregation, Monte Carlo simulations, 

elasticities. 

mailto:frosas@uni.ort.edu.uy
mailto:shlence@iastate.edu


 

 

I. Introduction 

The Neoclassical theory of production establishes that a competitive firm’s optimization problem 

is characterized by a dual relationship between the value function (profit, cost, or revenue 

function) and the underlying production function (e.g., Mas-Colell 1995). This implies that a 

given functional form of the production function determines a specific form of the profit, cost, or 

revenue function. Alternatively, for a given functional form used to approximate the firm’s value 

function, there exists an underlying production function wherein the value function parameters 

appear in a specific way.  

This dual relationship has been widely used in empirical work as a tool to estimate 

production parameters without explicitly specifying the technology. Shumway (1995) and Fox 

and Kivanda (1994) list more than one hundred applications of duality theory in nine agricultural 

economics journals. Typically, empirical studies consist of 

i. Approximating the value function (profit, cost, or revenue function) by a parametric 

functional form. 

ii. Deriving a set of input demand and output supply equations by applying Shephard’s 

lemma or Hotelling’s lemma. 

iii. Using econometric methods to jointly estimate the parameters of the system described in 

(ii). In some instances, value function parameters are estimated together with those of the input 

and output supply system.  

iv. Using estimated parameters from (iii) to draw conclusions about substitution elasticities, 

price elasticities, and/or returns to scale. 

Conclusions from duality applications may be influenced by the choice of specific functional 

forms. As a result, a large number of studies intend to test the validity of duality theory and focus 



 

 

on investigating the most preferable (flexible) functional forms (FFF) for empirical purposes 

(Guilkey, Lovell and Sickles, 1983; Dixon, Garcia and Anderson, 1987; Thompson and 

Langworthy, 1989). These studies assume the basic tenets underlying duality theory, including 

perfect competition, profit maximizing behavior, and certainty. Therefore, these studies only 

consider empirical deviations from duality theory stemming from the choice of functional form. 

However, the data generating process (DGP) used to recover the production parameters in this 

type of analysis is free from problems commonly encountered in data available to practitioners. 

As a result, these studies provide little guidance regarding how well duality theory applies to 

empirical analysis of real world data.  

Early attempts to test the validity of duality theory in practice include Burgess (1975), 

Appelbaum (1978), and Lusk et al. (2002). With the exception of Lusk et al. (2002), they fail to 

identify the source of the discrepancy between conclusions from the primal and dual approaches. 

Two are the reasons. They use real-world data with unknown production parameters, and 

furthermore, they use non-dual functional forms.  

This study has three main objectives. First, we aim at showing the steps used to generate a 

dataset by Monte Carlo simulations that replicates important features of U.S. agriculture. The 

dataset is a panel of price and quantity variables coming from firms with heterogeneous 

technology, but is free from any other source of noise. 

Second, we take the simulated dataset and aggregate over firms to construct a time series to 

be used in estimation. The majority of studies applying duality theory use country-, state- or 

county-level data as if it belonged to a single firm; however, such a firm does not exist. The 

objective is to answer the following question: Whose production parameters are recovered when 

pooling together production data from several heterogeneous firms? We aim to identify the 



 

 

consequences of the widespread estimation practice which assumes a “representative” firm in 

lieu of several heterogeneous firms. 

Third, we use the generated data to test the ability of the duality theory approach to recover 

underlying production parameters from a time-series dataset that bears the minimum possible 

noise. This, by no means, is a trivial exercise, given the degree of complexity of the DGP. But 

more importantly, it is relevant because it sets a solid base for a whole array of future studies 

intended to analyze the empirical properties of the dual approach as the datasets used by 

practitioners are noisier and resemble more those found in empirical research. From the starting 

point we set up here, various sources of observable and unobservable noise can be added to the 

data before proceeding to estimation. Some of them are the following: (i) optimization under 

uncertainty; (ii) prediction errors in prices and quantities of variable netputs; (iii) omitted 

variable netputs; (iv) output and input data aggregation; (v) measurement errors in the observed 

variables; and (vi) endogenous output and input prices. Noise is calibrated to represent features 

of typical datasets encountered in practice. Because the noise prevents duality theory from 

holding exactly, true production parameters may not be recovered with enough precision, and the 

estimated elasticities measurements may be more inaccurate than expected. 

As stated above, these issues have not been addressed in previous studies. As a result, future 

work in this direction constitutes relevant contributions to the literature.  

In this study, we generate datasets with characteristics comparable to those encountered in 

widely used datasets, such as the one constructed and maintained by Eldon Ball for U.S. 

input/output price and quantities (USDA-ERS), the USDA Agricultural Resource Management 

Survey database (USDA-ARMS), the U.S. Agricultural Census database (USDA-NASS), and the 

Chicago Mercantile Exchange (CME) future prices database. We chose the first dataset because 



 

 

it is publicly available and it has been used for applications of duality theory in several widely 

cited papers (Ball 1985; Ball 1988; Baffes and Vasavada 1989; Shumway and Lim 1993; 

Chambers and Pope 1994). The remaining three datasets are data sources which provide useful 

information for calibrating cross-sectional parameters. We seek to calibrate parameters and noise 

levels directly observed (e.g., price variability and length of time series) and also unobserved 

(e.g., firm heterogeneity). These three datasets provide useful information to calibrate model 

parameters. We adopt the criteria of calibrating parameter values to favor recovery of true 

production parameters, especially for those that are unobservable.1  

Since we are not interested in testing different functional forms, for convenience we use a 

quadratic production function to generate a “true” production dataset, or input and output 

quantities, using Monte Carlo simulations. Key advantages of the quadratic production function 

for present purposes include (i) being a self-dual FFF, and (ii) having second derivatives 

dependent only on parameters and not variables, which greatly facilitates the analysis. We obtain 

the set of input and output quantities by assuming profit maximization, conditional on randomly 

generated prices. 

We set up the profit function and derive the system of input demands and output supplies, to 

then econometrically estimate its parameters and compare them with the true (and known) 

production parameters. Comparisons are performed using Hessian identities between production 

                                                

1  In this study, we generate a panel data of observations across firms and over time. We focus here on the 

properties of duality theory applications using time series data. The analysis of applications with cross-sectional data 

is as relevant as the one pursued here, but we leave it for future research. The properties of duality theory using 

panel data can be studied with the data generated, but they are less frequent in the literature because such datasets 

are not as readily available.  



 

 

and restricted profit functions (Lau 1976), which are straightforward under the advocated 

quadratic specification. 

II. Model of a Single Firm 

Consider a producer who chooses the level of netputs2 to maximize profits. The producer’s 

problem can be described as follows: 

 𝑚𝑎𝑥[𝒚,𝑦0]{𝒑
′𝒚 + 𝑦0} (1) 

where 𝒚 is a choice vector of 𝑛  variable netput quantities, 𝒑 is a vector of 𝑛  variable netput 

prices normalized by 𝑝0  or the price of the numeraire commodity 𝑦0 . The augmented vector 

[𝑦0, 𝒚
′, 𝑲′] is referred to as the production plan of the production possibilities set S which is a 

subset of 𝑅1+𝑛+𝑚, with 𝑚 equal to the number of quasi-fixed netputs (denoted as the vector 𝑲) 

that constrain the production possibilities set.3 

Jorgenson and Lau (1974) showed existence of a one-to-one correspondence between the set 

S (with properties described in footnote 3) and a production function 𝐺 defined as: 

 
𝐺(𝒚,𝑲) = −𝑚𝑎𝑥 {𝑦0/ [𝑦0, 𝒚

′, 𝑲′] ∈ 𝑆} 
(2) 

We follow the convention that 𝑚𝑎𝑥{∅} = −∞, where {∅} is defined as the empty set, such 

that the value of the production function is positive infinity if a production plan is not feasible.4 

                                                

2  We use the standard definition of netput, where a positive value represents a net output and a negative value 

represents a net input. 
3  The properties of the set S include: i) the origin belongs to S; ii) S is closed; iii) S is convex; iv) S is 

monotonic with respect to 𝑦0; and v) non-producibility with respect to at least one variable input, which implies at 

least one commodity is freely disposable and can only be a net input in the production process (a primary factor of 

production).  
4  The properties of the production function 𝐺 are: i) the domain is a convex set of 𝑅𝑛+𝑚 that contains the 

origin; ii) the value of 𝐺 at the origin, say 𝐺(0), is non-positive; iii) 𝐺 is bounded; iv) 𝐺 is closed; and v) 𝐺 is 

convex in {𝒚,𝑲} . Convexity is required because of the convention used in Lau (1974) that 𝑦0 = −𝐺(𝒚,𝑲). 



 

 

The set of quasi-fixed netputs that constrains the set S also constrains the production function 𝐺. 

The maximization problem can be rewritten as:  

 𝑚𝑎𝑥[𝐲]{𝒑
′𝒚 − 𝐺(𝒚,𝑲)} (3) 

The solution to problem (3) is a set of netput demand equations 𝒚∗(𝒑,𝑲) and a restricted profit 

function 𝜋𝑅(𝒑, 𝑲) which are dependent on the vector of normalized netput prices and the vector 

of quasi-fixed netputs. 

Lau (1976) derived the relationships between the Hessian of the production function 𝐺(𝒚,𝑲) 

and the Hessian of the restricted profit function 𝜋𝑅(𝒑,𝑲) under the assumption of convexity and 

twice continuous differentiability of both functions. Omitting the arguments of each function to 

simplify notation, the identities are as follows: 

 

[
 
 
 
 
𝜕2𝜋𝑅

𝜕𝒑2

𝜕2𝜋𝑅

𝜕𝒑𝜕𝑲

𝜕2𝜋𝑅

𝜕𝑲𝜕𝒑

𝜕2𝜋𝑅

𝜕𝑲2 ]
 
 
 
 

≡ [
𝐵11 𝐵12

𝐵21 𝐵22
] 

𝐵11 = [
𝜕2𝐺

𝜕𝒚2
]

−1

 

𝐵12 = (𝐵21)′ = −[
𝜕2𝐺

𝜕𝒚2
]

−1

[
𝜕2𝐺

𝜕𝒚𝜕𝑲
] 

𝐵22 = −[
𝜕2𝐺

𝜕𝑲2
] − [

𝜕2𝐺

𝜕𝑲𝜕𝒚
]𝐵11 [

𝜕2𝐺

𝜕𝒚𝜕𝑲
] 

(4) 

By defining, in a similar fashion, the production function Hessian sub-matrices as  𝐴𝑖𝑗 , the 

identities can be rewritten in the following more compact form: 

  
[
𝐵11 𝐵12

𝐵21 𝐵22
] = [

[𝐴11]
−1 −[𝐴11]

−1[𝐴12]

−[𝐴21][𝐴11]
−1 −[𝐴22] − [𝐴21][𝐴11]

−1[𝐴12]
] (5) 



 

 

The Hessian relationships allow us to “transform” the estimated parameters of the restricted 

profit function into parameters of the underlying production function, and then compare these 

transformed parameters with the true parameters of the production function. The Hessian of the 

restricted profit function contains the information necessary to calculate the matrix of input 

demand and output supply elasticities with respect to own and cross prices, and with respect to 

quantities of quasi-fixed netputs. Ultimately, the Hessian identities allow us to conclude how 

precisely we estimate demand and supply elasticities.  

To make this problem operational, we assume a quadratic FFF for the production function 

𝐺(𝒚𝑓𝑡 , 𝑲𝑓𝑡; 𝜶𝑓):  

 
𝐺(. ) = 𝒚𝑓𝑡

′ 𝐴1𝑓 + 𝑲𝑓𝑡
′  𝐴2𝑓 +

𝟏

𝟐
 𝒚𝑓𝑡

′ 𝐴11𝑓𝒚𝑓𝑡 + 𝒚𝑓𝑡
′ 𝐴12𝑓𝑲𝑓𝑡 + 𝑲𝑓𝑡

′ 𝐴22𝑓𝑲𝑓𝑡 − 𝜓𝑓𝑡  (6) 

where 𝐴1𝑓 and 𝐴2𝑓 are (𝑛 × 1) and (𝑚 × 1) vectors of 𝛼𝑖,𝑓  coefficients, 𝐴11𝑓  is a symmetric and 

nonsingular (𝑛 × 𝑛) matrix, and 𝐴12𝑓  and 𝐴22𝑓  are (𝑛 × 𝑚) and (𝑚 × 𝑚) matrices of firm 𝑓. 

Submatrices  𝐴11𝑓 ,  𝐴12𝑓  and 𝐴22𝑓  form a symmetric and positive semi-definite ((𝑛 + 𝑚) ×

(𝑛 + 𝑚)) matrix 𝐴𝑓 of 𝛼𝑖𝑗,𝑓 coefficients.5 We collectively denote all 𝛼𝑖,𝑓 and 𝛼𝑖𝑗,𝑓 coefficients as 

𝜶𝑓.  

The quadratic functional form is selected for three reasons. First, it is self-dual—the 

functional form of the constrained or unconstrained profit function consistent with this 

production function is also quadratic. This favors recovery of the true production parameters 

because the estimation is free from errors arising from functional form specification. Second, the 

Hessian matrices of both the production and profit functions are only functions of parameters; 

                                                

5  Positive semi-definiteness is required because of the convention used in Lau (1976) that 𝑦0 = −𝐺(𝒚,𝑲). 



 

 

this proves to be useful because the comparison of the profit and production function Hessians 

does not depend on the set of model variables at which Hessians are evaluated. Third, the 

normalized quadratic profit function is widely used in empirical analysis (Schuring, Huffman 

and Fan 2011; Arnade and Kelch 2007; Lusk et al. 2002; Lim and Shumway 1993; Huffman and 

Evenson 1989; Thompson and Langworthy 1989). 

III. Simulation of panel data 

The data generation process (DGP) considers variability of prices and quantities over time 

within three regions composed of heterogeneous firms. Heterogeneity across regions is assumed 

to be higher than heterogeneity of firms within each region. The DGP consists of generating a 

panel of 𝐹 = 10,000 farms, in 𝑅 = 3 regions, 𝑇 = 50 years (𝑅 × 𝐹 × 𝑇 = 1.5 million) for each 

variable of the vector [𝒚𝑓𝑡, 𝒑𝑓𝑡, 𝑲𝑓𝑡; 𝒂𝑓
∗], where 𝑓 and 𝑡  index firms and time periods (years) 

respectively,6 conditional on the true (*) value of the production parameters set 𝒂𝑓
∗ .  

The vector 𝒂𝑓
∗  does not depend on time, which implies the assumption that technology 

remains unchanged from period one through 𝑇. This assumption favors the recovery of true 

production parameters because the estimation is free from misspecification that may arise from 

the evolution of technology over time. This is equivalent to postulating a specific form of netput 

technological change and proceed to estimation by exactly specifying its form as if the 

econometrician knew it with certainty. A different model specification of the mentioned 

technical change would only add noise in the estimation process. The study of productivity 

                                                

6  The simulated panel corresponds to roughly about one-fifth of the quantity of farms in a given state of the 

Corn Belt, Lake States and Northern Plains regions in the U.S. (Corn Belt states: IA, IL, IN, MO, OH; Lake States: 

MI, MN, WI; and Northern Plains states: KS, ND, NE, SD). State-level time-series datasets with information on 

prices and quantities of agricultural outputs and inputs are available for no more than 50 years in the U.S. 



 

 

changes over time, their measurement, and their effects on the recovery of true production 

parameters is a relevant research topic which is beyond the scope of this paper and is left for 

future research. 

To analyze the empirical properties of duality theory, we generate a dataset using Monte 

Carlo simulations with the objective of illustrating the ability of duality to recover true 

production parameters when data is free from common problems, and to show the implications 

on parameters recovery when data is aggregated across firms with heterogeneous technology.  

Figure 1 shows the data simulation process. We start by creating the variables conditioning 

the firm’s decisions problem in (3). First, we generate the set of true production parameters 𝒂𝑓
∗  

and the quasi-fixed netputs  𝑲𝑓𝑡
∗ . Second, conditioning on these values, we draw variable netput 

prices  𝒑𝑓𝑡
∗∗ . Data generation of 𝒂𝑓

∗ , 𝑲𝑓𝑡
∗ , and  𝒑𝑓𝑡

∗∗  are explained in sections III.A through III.C. 

Third, we solve a profit maximization problem to obtain the variable netput quantities  𝒚𝑓𝑡
∗∗  

(section III.D). This study focuses on time-series estimation and therefore we aggregate variables 

across heterogeneous firms before proceeding to estimation (section III.E). The result is a set of 

estimated production parameters denoted as 𝒂̌𝒇 .  

Figure 1. DGP of dataset used for estimation. 

 

max EstimationTime series 

data



 

 

A. Random generation of true production parameters: 𝒂𝒇
∗  

The value of 𝒂𝑓
∗  characterizes the firm’s technology and is unobserved, making its simulation 

more challenging. From (6), 𝒂𝑓
∗  consists of the submatrices  𝐴1𝑓,  𝐴2𝑓, and  𝐴𝑓 (formed in turn 

by 𝐴11𝑓 ,  𝐴12𝑓  and 𝐴22𝑓 ). As we mentioned above, firm heterogeneity exists both within and 

across regions, such that technology is more similar between firms in the same region than across 

regions. Hence, we select values of the elements of 𝜶  for a “generic” firm such that the 

symmetric ((𝑛 + 𝑚) × (𝑛 + 𝑚)) matrix 𝐴 is positive-semidefinite. To induce variation across 

regions we obtain “regional” 𝜶𝒓 sets as deviations from 𝜶. Then, firm heterogeneity within a 

region comes from generating parameters in the firm-specific set 𝜶𝒇 as deviations from their 

corresponding regional 𝜶𝒓. To assure the matrix 𝐴𝑓 and its inverse are positive-semidefinite we 

draw the entries of the upper triangular matrix 𝐶𝑓, the Cholesky decomposition of matrix (𝐴𝑓)
−1

, 

such that the latter is formed as the matrix product 𝐶𝑓
′𝐶𝑓. 

The size, dispersion, and skewness of the elements in 𝜶𝑓 determine the size, dispersion, and 

skewness of the netput quantity variables, 𝒚𝑓𝑡
∗ , according to the first-order conditions (FOCs) of 

the firm’s optimization problem. Therefore, these elements must be calibrated so as to yield a 

realistic distribution of quantities produced and used. We rely on the 2002 U.S. Agricultural 

Census (USDA-NASS), the USDA Agricultural Resource Management Survey databases 

(USDA-ARMS), and weather data from PRISM at Oregon State University to accomplish this 

objective (see Appendix for further details). 

We calibrate the skewness of the firm-specific deviations from “regional” 𝜶𝒓 by fitting a 

standard beta distribution to the county-level data of the Census variable “Total sales, Value of 

sales, number of farms” which serves as a proxy for firm size. The shape parameters are 



 

 

estimated by maximum likelihood, yielding a positive skewed distribution. This is consistent 

with the higher proportion of small firms observed in each region.  

The size of the elements in 𝒂𝒇 is tackled by inducing positive rank correlation among the beta 

random shocks, such that a firm producing high levels of output is more likely to use greater 

amounts of inputs.  

Finally, to calibrate the unobserved dispersion of 𝜶𝒇 from 𝜶𝒓, we assume that observed yield 

dispersion in a region is a function of unobserved technology heterogeneity and observed 

random weather shocks. If all firms used the same technology, the observed yield variability 

would come only from weather shocks. At the other extreme, where all firms differ but no 

weather shocks occur, all yield dispersion comes from heterogeneity across firms. Most likely 

the reality is somewhere between the two extremes. We intend to calculate the portion of yield 

variation attributable to heterogeneity across firms. To this end, we use a panel of firm-specific 

crop yields from USDA-ARMS database and county-specific weather data (growing season 

precipitation and temperature) from PRISM over five years, and estimate a fixed-effects model. 

Yields are specified as a function of a county-specific constant (the fixed effect) representing 

the average county’s technology and cumulative precipitation and average temperature over the 

growing season, assuming the constant is correlated with the weather variables. The objective is 

to isolate the between effects, or the variation in yields across counties not attributable to 

weather, from the within effects or the variation in yields within a county over time. Firm-level 

yields are specified as follows: 

 𝑦𝑓𝑡 = 𝑏0𝑐 + 𝑏1𝑊1𝑐𝑡 + 𝑏2𝑊2𝑐𝑡 + 𝑏3𝐷1𝑡 + ⋯+ 𝑏6𝐷4𝑡 + 𝜖1𝑓𝑡  (7) 

where 𝑐 , 𝑓  and 𝑡  index counties, firms, and time respectively. Variables 𝑊1  and 𝑊2  are 

precipitation and temperature, respectively, for the county, and 𝐷1 through 𝐷4 are year dummy 



 

 

variables (2001 through 2004 respectively, with year 2000 as the base). The parameter 𝑏0𝑐  

represents county-level technology and is the focus of our interest. Because we presume it to be 

correlated with weather variables, we estimate a fixed-effects model where parameters 𝑏1 

through 𝑏6 are estimated by demeaning the data (means taken for each county and over time), 

resulting in the following model (Greene 2003): 

 𝑦̈𝑓 = 𝑏1𝑊̈1𝑐 + 𝑏2𝑊̈2𝑐 + 𝑏3𝐷̈1 + ⋯ + 𝑏6𝐷̈4 + 𝜖2𝑓  (8) 

with “   ̈” indicating demeaned variables, estimated by OLS. The county-specific parameter 𝑏0𝑐  is 

then recovered by calculating the following equation: 

 𝑏̌0𝑐 = 𝑦̅𝑐 − 𝑏̂1𝑊̅1𝑐 − 𝑏̂2𝑊̅2𝑐 − 𝑏̂3𝐷̅1 − ⋯− 𝑏̂6𝐷̅4 (9) 

where the “    ̅ ” indicates means over time (used in demeaning the model) and the “     ̂  ” 

indicates the point estimate of the parameters. Table 1 provides estimation results. 

Table 1. Parameter estimates of fixed effects model, equation (8), to calibrate production 
function parameter variation, and realized weather shocks on netput quantities.  

Dependent 

variable: 𝑦̈𝑓 
Region 1 Region 2 Region 3 

Explanatory 

variables 
Parameter estimates: 𝒃𝒊, 𝒊 = 𝟏, … , 𝟔 

Precipitation: 𝑊̈1𝑐  

-0.0002 0.0040 0.0019 

(0.0008) (0.0007) (0.0014) 

Temperature: 𝑊̈2𝑐  

-0.3202 -0.0408 0.0028 

(0.0322) (0.0229) (0.0359) 

Year 2001: 𝐷̈1 

5.7192 -12.5194 4.7602 

(7.2434) (2.0513) (3.0744) 

Year 2002: 𝐷̈2 

-17.5728 0.2315 -7.8958 

(5.1586) (1.6542) (3.2074) 



 

 

Year 2003: 𝐷̈3 

-17.5792 2.7325 -2.5457 

(4.1648) (1.8828) (2.7899) 

Year 2004: 𝐷̈4 

8.7423 1.6293 27.9887 

(4.1253) (1.8068) (4.1110) 

Firm heterogeneity 

contribution to yield 

variation: CV(𝑏̌0𝑐) 
0.0578 0.1702 0.4276 

Weather variables 

contribution to yield 

variation (CV) 
0.0726 0.1263 0.4040 

Variable 𝑦𝑓 denotes demeaned farm-specific crop yields. Accent character “ ∙∙ ” represent a demeaned variable. 

Standard errors in parenthesis. 

 

Finally, the coefficient of variation of 𝑏̌0𝑐 , representing variation across counties, serves to 

calibrate the unobserved dispersion of the production parameters 𝒂𝒇 around the regional mean 𝒂𝒓 

that are not attributable to weather changes.7 Note that this coefficient of variation does not 

represent the estimation standard error of the parameter but the variation across counties of the 

fitted production coefficients. 

B.  Random generation of quasi-fixed netput quantities: 𝑲𝑓𝑡
∗   

We obtain the vector  𝑲𝑓
∗  of quasi-fixed netputs by drawing 𝑅 × 𝐹 beta distributed random 

deviates. The beta distribution is chosen because it can mimic the different levels of skewness 

observed in the distribution of these variables at the firm level. Because we choose to represent 

farm size as the quasi-fixed netput, we use the 2002 U.S. Agricultural Census variable “Farms & 

                                                

7  We calibrate the production parameter variation equal to variation between counties as opposed to between 

firms. Firstly, we do not have firm-specific weather data to calculate the between firms effects. Secondly, the county 

(and more aggregated) data is likely to have a smaller variation than at the firm level in a given region, favoring 

parameter recovery. 



 

 

land in farms, approximate land area” to calibrate the parameters of the beta distribution for each 

region.8 This shows a relative abundance of small-sized farms, implying a positively skewed 

standard beta distribution. Region-specific distributions include:  𝑲𝑓,𝑟=1
∗  ~ Beta(0.5679, 6.9707); 

 𝑲𝑓,𝑟=2
∗  ~ Beta(0.6026,9.0446); and  𝑲𝑓,𝑟=3

∗  ~ Beta(0.4929, 2.9624).  

Because both  𝑲𝑓
∗  and 𝐴𝑓 determine size of netput quantities, we generate the vector of quasi-

fixed netputs imposing positive correlation with the production function parameters. We use the 

method in Iman and Conover (1982) to impose rank correlation. 

Next, we generate time variation in each firm’s quasi-fixed netput quantity by means of a 

multiplicative and independent shock centered at one and uniformly distributed. That is,  𝑲𝑓𝑡
∗ =

 𝑲𝑓
∗𝜖𝑓𝑡, where 𝜖𝑓𝑡 ~ Uniform[0.90, 1.10]. The narrow interval implies low variation in firm size 

over time, which is meant to represent the observed low dispersion over time of aggregate 

agricultural area in a region.9  

C.  Random generation of variable netput prices:  𝒑𝒇𝒕
∗∗ 

We generate a set of firm-specific exogenous prices for each region. Exogeneity is with 

respect to the aggregated netput quantity produced. While we acknowledge the existence of price 

endogeneity, we generate them exogenously in order to have a dataset with minimal sources of 

noise. 

We begin by simulating “national” netput prices to match the properties (mean, standard 

deviation, and serial autocorrelation) of those found in a time series of futures crop prices from 

                                                

8  It is common practice to include land as a quasi-fixed output. 
9  This creates, for each time period, a distribution of quasi-fixed netput quantities for each firm that is not 

necessarily the regional Beta (it is Beta with other parameters), but still maintains the required skewed shape due to 

the lower dispersion of firm size over time. 



 

 

the CME and of input prices from Eldon Ball’s (USDA-ERS) dataset. We assume firms base 

their production decisions on futures output prices and current input prices.  

We model netput prices as lognormally distributed and behaving according to an AR(1) 

processes: 

 𝑙𝑜𝑔(𝑝𝑛𝑡) = 𝜃𝑛0 + 𝜃𝑛1 𝑙𝑜𝑔(𝑝𝑛,𝑡−1) + 𝜁𝑛 (10) 

where “𝑛” indexes netputs and 𝜁𝑛  is an error term distributed N(0, 𝜎𝜁𝑛

2 ). Parameters 𝜃𝑛  are 

estimated by OLS regressions. Table 2 shows results for each of the 𝑛 regressions.  

Table 2. Estimation results of the OLS regression model used to generate random 
exogenous “national” prices from equation (10). 

 𝒏 = 𝟏 𝒏 = 𝟐 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 𝒏 = 𝟔 𝒏 = 𝟕 𝒏 = 𝟖 

𝜽𝒏𝟎 

-0.0306 -0.0645 -0.0124 -0.0308 -0.0012 -0.0566 0.0413 0.0008 

(0.0376) (0.0324) (0.0304) (0.0638) (0.035) (0.0347) (0.024) (0.0366) 

𝜽𝒏𝟏 

0.6802 0.3443 0.6711 0.9015 0.8613 0.6029 0.8428 0.9225 

(0.0942) (0.1437) (0.1128) (0.0785) (0.0799) (0.1166) (0.0804) (0.0536) 

𝒑̅ 0.9087 0.9063 0.9629 0.7317 0.9913 0.8672 1.3007 1.01 

𝐥𝐨𝐠 (𝒑̅) -0.0958 -0.0984 -0.0378 -0.3123 -0.0088 -0.1425 0.2629 0.0099 

𝝈𝜻
𝟐 0.068 0.0342 0.0372 0.034 0.0439 0.0392 0.0207 0.0237 

Note: Standard errors in parenthesis 

 

Dropping the “𝑛” subscript to ease notation, in the long run, the logarithm 𝑝𝑡  and 𝑝𝑡−1 

converge to 𝑝̅ and therefore we can calculate long run expected prices as 𝑙𝑜𝑔(𝑝̅) = 𝜃0/(1 − 𝜃1). 

The variance of the error term in (10) can be calibrated from observed price variation of Eldon 

Ball’s datasets: 𝜎𝑙𝑜𝑔 (𝑝)
2 = 𝜃1

2𝜎𝑙𝑜𝑔 (𝑝)
2 + 𝜎𝜁

2 which implies that 𝜎𝜁
2 = (1 − 𝜃1

2)𝜎𝑙𝑜𝑔 (𝑝)
2 . In this case, 



 

 

we calibrate price variation from a combination of data observed variance and regression results, 

and not exclusively from the latter.  

To draw exogenous log-normal netput prices, we fit (10) with the estimated parameters, set 

𝑙𝑜𝑔(𝑝𝑠=0) = 𝜃0 (1 − 𝜃1)⁄ , and take a draw from a 𝑁(0, (1 − 𝜃1
2)𝜎𝑙𝑜𝑔 (𝑝)

2 )  random variable, 

yielding a netput price for each n in the first iteration, i.e. 𝑙𝑜𝑔(𝑝𝑠=1). We repeat this procedure 

𝑆=10,000 times; we keep the last 50 iterations for the set of exogenous “national” netput prices 

and burn the remaining iterations. 

Finally, we generate firm-specific netput prices 𝒑𝑓𝑡
∗∗  as deviations from the “national” market 

price, deviations that are small relative to 𝒑𝑡
∗∗  to acknowledge for the contemporaneous low 

variability of prices firms receive and pay. A regional average is first calculated as 𝒑𝑟𝑡
∗∗ =

𝒑𝑡
∗∗𝑑𝑟𝜀𝑟𝑡,

10 where 𝑑𝑟 is a regional indicator with mean one across regions11 and 𝜀𝑟𝑡 is a mean one 

symmetric shock distributed as 𝜀𝑟𝑡~[0.95 + 0.1𝐵𝑒𝑡𝑎(2,2)]. Random variables 𝑑𝑟  and 𝜀𝑟𝑡  are 

symmetric and independently distributed. The indicator implies prices of region 𝑟 are on average 

(𝑑𝑟 − 1)% away from the national average, and the 𝜀𝑟𝑡 allows for non-constant deviations over 

time.  

From the regional prices, we generate 𝐹 firm-specific random prices per region as deviations 

from the regional average: 𝒑𝑓𝑡
∗∗ = 𝒑𝑟

∗∗𝜀𝑓𝑡, where 𝜀𝑓𝑡 is a symmetric mean one shock distributed as 

follows: 𝜀𝑓𝑡~[0.80 + 0.40𝐵𝑒𝑡𝑎(2,2)]. Shocks 𝜀𝑟𝑡 , 𝜀𝑓𝑡 , and 𝑑𝑟  are independent. Values for 𝜀𝑓𝑡 

are calibrated using prices from the USDA-ARMS dataset, such that they yield a coefficient of 

variation of 0.08, which is twice as large as the one observed in the USDA-ARMS dataset. 

                                                

10  The same procedure and shocks are used for 𝒑𝑓𝑡
∗∗ . 

11  The values of 𝑑𝑟 are 0.90, 1.00, and 1.10 for regions 1 through 3 respectively.  



 

 

For simulation, netput prices are correlated with quantities at the aggregate level, but 

independent at the firm level. While actual prices received and paid may arguably be correlated 

with firm size, we assume independence so as to favor parameter identification. Also, observed 

prices in USDA-ARMS show the majority of firm-level prices are concentrated in four or fewer 

different clusters in each region; however, we generate a “continuum” of firm-specific prices to 

favor identification. 

D. Profit Maximization Problem 

The panel dataset is formed by variable netput quantities and prices, and quasi-fixed netputs: 

[𝒚𝑓𝑡
∗∗ , 𝒑𝑓𝑡

∗∗ , 𝑲𝑓𝑡
∗ ]. We first solve the problem in (3) with exogenous prices received or paid 𝒑𝑓𝑡

∗∗ . 

These results are used to test the accuracy of duality theory in recovering production technology 

using time-series data whose only source of noise is aggregation across heterogeneous firms. 

This constitutes the minimum possible noise when interested in applying duality theory with 

time series. Under the normalized quadratic production function 𝑮(𝒚𝑓𝑡
∗∗ , 𝑲𝑓𝑡

∗ ; 𝜶𝑓) in (11), the 

FOCs are: 

 𝒑𝑓𝑡
∗∗ − 𝐴1𝑓 − 𝐴11𝑓𝒚𝑓𝑡

∗∗ − 𝐴12𝑓𝑲𝑓𝑡
∗ =  0 (11) 

This system is jointly solved for the vector of optimal variable netput quantities 𝒚𝑓𝑡
∗∗  as a 

function of the vector of variable netput prices 𝒑𝑓𝑡
∗∗ , the vector of quasi-fixed netput quantities 

𝑲𝑓𝑡
∗ , and the production parameters 𝒂𝑓

∗ . The solution is: 

 𝒚𝑓𝑡
∗∗(𝒑𝑓𝑡

∗∗ , 𝑲𝑓𝑡
∗ ; 𝒂𝑓

∗) = 𝐴11𝑓
−1(𝒑𝑓𝑡

∗∗ − 𝐴1𝑓𝐴12𝑓𝑲𝑓𝑡
∗ ) (12) 

This produces a panel dataset of (𝑅 × 𝐹) firms over T time periods that can be used to 

recover production parameters using time-series or cross-section. We denote this dataset as 

follows:  



 

 

 [𝒚𝑓𝑡
∗∗ , 𝒑𝑓𝑡

∗∗ , 𝑲𝑓𝑡
∗ ] (13) 

E. Unobserved Firm Heterogeneity.  

Finally, in agreement with this study’s objective of testing duality theory using time-series 

data, before estimation we proceed to aggregate across the F=10,000 heterogeneous firms as if 

data came from a single firm. This aggregation is performed on the data described in (13). If the 

objective were to study empirical properties of duality under a cross-sectional dataset, we would 

have taken one year of the panel and conducted the analysis without aggregating across firms. 

This is left for future research. 

For each period  𝑡 , we aggregate the subvector [𝒚𝑓𝑡, 𝒑𝑓𝑡 , 𝑲𝑓𝑡]  across firms to obtain 

observations over T=50 time periods (years) of a “single firm” [𝒚𝑡,  𝒑𝑡, 𝑲𝑡] . For netput 

quantities, we aggregate by adding across firms since they are homogeneous commodities. The 

𝑛th netput price at period 𝑡 (𝑝𝑛𝑡) is a quantity-weighted average of the firm-specific netput prices.  

 𝒚𝑡 = ∑ 𝒚𝑓𝑡𝑓    

𝑲𝑡 = ∑ 𝑲𝑓𝑡𝑓   

𝑝𝑛𝑡 = (𝑦𝑛𝑡)
−1  ∑ 𝑝𝑛𝑓𝑡𝑦𝑛𝑓𝑡𝑓 .  

(14) 

The time-series dataset used in estimation is denoted as follows: 

 [𝒚𝑡
∗∗,  𝒑𝑡

∗∗ , 𝑲𝑡
∗] (15) 

IV. Data for estimation 

The dataset in (15) includes all 𝑛 = 8 netput quantities and prices, and 𝑚 = 1 quasi-fixed 

netput. Variable netput prices are exogenous from quantities, but have serial autocorrelation. The 

DGP yields 0.5 million observations for each of the three regions (𝐹=10,000 firms in the region 

over 𝑇=50 years). We aggregate the 10,000 heterogeneous firms at each time 𝑡, resulting in a 



 

 

dataset of 50 observations for each variable per region that we use to estimate a system of netput 

demands and supplies in (17). To avoid the addition of another source of noise coming from 

heterogeneous technology across regions, we select region 1 to conduct the estimation, and 

compare results with the true parameters of that same region. The estimation incorporating data 

from other more heterogeneous regions to capture a broader area and increase the sample size, 

which is common in these applications, is shown as a sensitivity analysis. 

V. Estimation 

We approximate the restricted profit function 𝜋𝑅(𝒑,𝑲), which solves problem (3), by the 

following normalized quadratic flexible functional form:  

 𝜋𝑅(𝒑,𝑲; 𝜷) = 𝒑′𝐵1 + 𝑲′𝐵2 + 0.5𝒑′𝐵11𝒑 + 𝒑′𝐵12𝑲 + 𝑲′𝐵22𝑲 + 𝒑′𝜿 (16) 

where 𝐵1 and 𝐵2 are (𝑛 × 1) and (𝑚 × 1) vectors of 𝛽𝑖 coefficients, 𝐵11 is a symmetric (𝑛 × 𝑛) 

matrix, and 𝐵12 and 𝐵22 are 𝑛 × 𝑚 and 𝑚 × 𝑚 matrices. Submatrices 𝐵11,  𝐵12, and 𝐵22  form a 

symmetric ((𝑛 + 𝑚) × (𝑛 + 𝑚)) matrix 𝐵 of 𝛽𝑖𝑗 coefficients, which in the case of the NQ profit 

function, is exactly the Hessian matrix with respect to ( 𝒑, 𝑲 ). All 𝛽𝑖  and 𝛽𝑖𝑗  coefficients 

collectively form the set  𝜷 . The error structure 𝒑′𝜿  is consistent with the McElroy (1987) 

additive general error model (AGEM) applied to the case of profit functions. The (𝑛 × 1) vector 

of random variables 𝜿 is jointly normally distributed with mean equal to a (𝑛 × 1) vector of 

zeros and an (𝑛 × 𝑛) covariance matrix 𝚺𝜅 . This covariance matrix induces contemporaneous 

correlation between the equations. Also, the DGP of netput prices—both exogenous and 

endogenous—was constructed as an AR(1) process, implying serial autocorrelation in the 

independent variables that needs to be accounted for in the estimation. 

We derive the set of input demands and output supplies by Hotelling’s lemma, yielding the 

system to be estimated: 



 

 

 𝒚(𝒑,𝑲;𝜷) = 𝐵1 + 𝐵11𝒑 + 𝐵12𝑲 + 𝜿. (17) 

We conduct estimation by iterated SUR, which converges to maximum likelihood, and is the 

most common method employed in empirical studies based on duality theory. We impose 

symmetry cross-equation restrictions (𝛽𝑖𝑗 = 𝛽𝑗𝑖 , 𝑖 ≠ 𝑗) in matrix 𝐵11 . We do not estimate the 

parameters of the profit function because the parameters needed to evaluate the production 

parameters of interest are present in the demands and supplies. 

We treat mean-independence violations in estimation by noting that an inspection of the 

autocorrelation and partial autocorrelation functions of the time series suggests first 

differentiation of the data for estimation. This is a consequence of the DGP of price data as 

AR(1) processes.  

The estimated values of matrix 𝐵11 and vector 𝐵12 are the focus of our attention; they are, 

respectively, the marginal effects of prices and quasi-fixed netputs on netput quantities, and 

therefore they are the base to construct the estimated profit function Hessian matrix [𝐵̌] and the 

elasticities matrix of netput quantities with respect to own price, cross prices, and quasi-fixed 

netputs [𝐸̌]. As described in Figure 2, we obtain matrix [𝐵̌] from estimation using the described 

panel data. This matrix is then transformed into an elasticity matrix in a straightforward way. 

In order to compare estimated elasticities with true values, we proceed as follows. We begin 

from the true and known firm-specific production function Hessian matrix [𝐴]𝑓 and convert it 

into the corresponding profit function Hessian [𝐵]𝑓  using Lau’s Hessian identities. We further 

transform the true profit function Hessian into the true matrix of own- and cross-price elasticities 

and quasi-fixed elasticities of netput quantities [𝐸]𝑓 . Finally, as indicated in Figure 2, we 

compare the true [𝐸]𝑓 versus the estimated values ([𝐸̌]) to evaluate how precisely we recover the 

true price and quasi-fixed netput elasticities under duality theory. Note that this comparison 



 

 

implies that the true values are represented by a distribution of each firm’s true parameters, while 

the estimated values consist of a point estimate and its confidence interval. 

 

Figure 2. Post-estimation comparison between true and estimated elasticities  

 

VI. Results 

Figure 3, Figure 4, and Table 3 summarize the results from estimating output supplies and 

input demands parameters in (17).  

In Figure 3 we show how the estimated own- and cross-price elasticity of netput quantities 

(𝑬̌𝒊𝒋) compares with the distribution of true firm-specific elasticities, the mean of the distribution 

(𝑬̅𝒊𝒋) and its median (𝑬̿𝒊𝒋), for the 64 entries of the 8 × 8 elasticity matrix. The vertical axis 

represents the mean of the distribution of true elasticities and the horizontal axis show 

descriptive statistics of the distribution of true elasticities: the 90% highest probability density 

interval of the true distribution (the horizontal line), the mean of the distribution (diamond), 

median of the distribution (filled square), and the SUR estimated elasticity (circle). Therefore, all 

of the means (diamonds) are along the 45º line. The median (filled square) is to the left or to the 

right of the mean depending on the skewness of the distribution. The elasticity point estimates 

(circle) and the 95% confidence intervals (vertical lines) are in all cases within the support of the 
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true distribution. This implies that estimation with a dataset constructed as the aggregation across 

heterogeneous firms (as if it belonged to a representative firm) is able to recover elasticities that 

are not only within the relevant range of the distribution but also fairly close to the median and 

the mean. 

A second conclusion arises by noting that the point estimates are closer to the median of the 

distribution than to the mean. The representative firm is better described by the median of the 

distribution than the mean. The root mean squared error (RMSE) helps illustrate this conclusion. 

The RMSE is the average difference between each entry of the estimated elasticity matrix versus 

its corresponding true elasticity, expressed in elasticity units. We show two alternative values to 

describe the true elasticity: the median of the true firm-specific elasticity distribution and its 

mean. When compared to the median of the distribution, the RMSE is: 

 

𝑅𝑀𝑆𝐸 = [
1

64 × 𝑆
∑∑∑(𝐸̿𝑖𝑗,𝑠 − 𝐸̌𝑖𝑗,𝑠)

2

𝑠𝑗𝑖

]

1/2

 (18) 

where 𝑆 = 10,000 is the number of draws from the limiting distribution of the SUR parameter 

estimates and the subscript 𝑠 indicates the 𝑠th
 draw of the 𝑖𝑗th parameter. For comparison with the 

mean we substitute 𝐸̿𝑖𝑗  by 𝐸̅𝑖𝑗 . The RMSE averages over all the 64 × 𝑆 squared differences. We 

also provide a measure of its dispersion by calculating the standard deviation of these 64 × 𝑆 

values before averaging over them. The RMSE standard deviation contains two sources of 

variation or error. One is due to the SUR estimation error within each of the 64 parameters and 

the other is associated with the variation of the difference between the estimated and the true 

value of the elasticity across the 64 parameters.  

As shown in Table 3, RMSE is 0.048 in the case of the median and more than double (0.111) 

for the mean. To put these values into perspective, we calculate the percentage deviation of the 



 

 

RMSE with respect to the descriptive statistics of the true distribution of elasticities. Relative to 

the median it yields a difference of 12.4% and, as expected, it is higher relative to the mean, 

26.3%. 

The RMSE standard deviation is 0.078 for the median and a higher value (0.196) for the 

mean. Given the SUR estimation provides only a minor source of error because the point 

estimates are all highly significant due to the use of a data with only minor sources of noise,12 the 

majority of the RMSE standard deviation is attributed to the deviations between the estimated 

and the true value across elasticities.  

Figure 4 illustrates the estimated results of the eight netput quantity elasticities with respect 

to the quasi-fixed input. The SUR estimated elasticities (circles) are within the interval of true 

elasticity distribution for all cases, and similar to the variable netputs case, closer to the median 

of the distribution than to its mean. As Table 3 indicates, the RMSE is 0.035 in the case of the 

median, and 0.071 for the mean. The size of the RMSE standard deviation also suggests high 

variation (of their dispersion relative to the true value) across the 8 elasticities. Our estimated 

elasticities are 7.5% apart from the median absolute value of the true elasticity and 14.7% from 

the mean absolute value. 

  

                                                

12  Results are available from the authors. 



 

 

Figure 3. Elasticities of variable netput quantities with respect to prices. True versus 

estimated values. 

 

 

  



 

 

Figure 4. Elasticities of variable netput quantities with respect to quasi-fixed netputs. True 

versus estimated values. 

 

VII. Conclusions 

The dual relationship between the production function and the profit or cost function 

established by the Neoclassical theory of the firm has been widely applied in empirical work 

with the objective of obtaining price elasticities, substitution elasticities, and return to scale 

estimates. This empirical method, usually referred to as “duality theory approach” has the 

advantage of providing the mentioned features of the production function using market data on 

input and output prices and quantities, without the requirement of explicitly specifying the 

technology relationships. However, the duality theorem requires a set of assumptions, which we 

claim fail to hold in practice; or in other words, market data typically employed in this type of 



 

 

studies bears levels of noise that prevent the theorem from holding exactly. If this is the case, the 

elasticity estimates will be biased with respect to their true values.  

Table 3. Comparison of estimated elasticities versus moments of the distribution of true 
elasticities. 

Elasticities with 

respect to 

 Moment of True Distribution 

  Median Mean 

Variable 

Netputs Prices 

RMSE 0.048 0.111 

Std. error  0.078 0.196 

% deviation 12.4 26.3 

Quasi-fixed 

Netputs 

Quantities 

RMSE 0.035 0.071 

Std. error 0.044 0.089 

% deviation 7.5 14.7 

 

In this paper we analyze the ability of the approach to recover the technology features using 

simulated data. We start by selecting a parametric form of the production technology and 

choosing its set of parameter values. Using Monte Carlo simulations, we generate observations 

of netput prices and quantities such that they are comparable to those found in data on U.S. 

agriculture. More precisely, we generate a panel of production and price data for successive 

periods of time, coming from a population of technologically heterogeneous firms that belong to 

different regions. We calibrate model parameters using datasets (both time-series and cross-

sectional) widely employed in empirical applications.   

Estimated parameters (and resulting elasticities) come from applying econometric methods to 

a system of input demands and output supplies with the simulated data. Because the true 



 

 

parameters are known from the outset, we can judge the degree with which the dual approach is 

able to recover these parameters. Comparison between true and recovered parameters relies on 

the use of Hessian identities.  

Three are the main objectives of this study. The first one is to describe in detail the 

procedures used to Monte Carlo simulate a panel of observations featuring important 

characteristics of U.S. agriculture. The second is to document the consequences of pooling 

together data from firms with heterogeneous technology and proceed to estimation as if it 

belonged to a representative firm. Finally, to test the ability of the dual approach to recover 

production parameters when the only source of noise is firm’s heterogeneity.  

Together, these objectives allow us to set a solid base to develop studies to further analyze 

the empirical properties of duality theory, especially when the datasets used by practitioners in 

empirical work realistically bear more sources of noise, such as uncertainty, prediction errors, 

omitted variables, netput aggregation, and endogeneity. 

Results show that the dual approach applied to a time-series dataset bearing the minimum 

noise possible, i.e., only the aggregation across technologically heterogeneous firms, is able to 

recover elasticities that not only are within the support of the distribution of true elasticities, but 

also considerably close to the mean and median of such distribution. We also conclude that this 

approach applied to aggregated (county-, state-, or country-level) data as if it belonged to a 

representative firm optimizing for the entire region, will recover technology features that are 

close to the firm in the median of the distribution, provided that the data do not contain other 

sources of noise.  
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IX. Appendix 

Random generation of the firm-specific sets 𝒂𝑓
∗  

We start from the “generic” set 𝒂 which is composed by the vectors 𝐴1, 𝐴2, 𝐴11, 𝐴12, 𝐴21, 

𝐴22, and matrix 𝐴11, where 

𝐴1 = [0.007 0.007 0.004 −0.059 −0.314 −0.028 −0.017 −0.081]′  

𝐴2 = −70.620 

𝐴11 =

[
 
 
 
 
 
 
 
1.569 1.062 0.027 2.245 1.986 1.378 0.742 3.120
1.062 1.899 0.051 3.025 2.840 1.985 1.143 4.435
0.027 0.051 3.154 4.059 1.030 1.530 3.356 1.646
2.245 3.025 4.059 16.789 7.045 5.359 7.293 10.778
1.986 2.840 1.030 7.045 17.592 4.210 2.169 9.662
1.378 1.985 1.530 5.359 4.210 5.624 3.481 6.311
0.742 1.143 3.356 7.293 2.169 3.481 7.016 3.539
3.120 4.435 1.646 10.778 9.662 6.311 3.539 19.629]

 
 
 
 
 
 
 

 

𝐴12 = (𝐴21)′ = [5.493 8.967 8.221 35.195 36.758 19.172 20.705 38.203] 

𝐴22 = 150.640 

These values are based on profit function estimated parameters 𝑩𝒊𝒋  found in literature using 

Eldon Ball’s dataset (Schuring, Huffman, and Fan 2011). We transform the original estimates to 

meet the desired convexity properties and convert them to production function parameters using 

Hessian identities. This provides us with a first approximation of the parameters size.  

 Vectors 𝐴1,𝑟, 𝐴2,𝑟, 𝐴1,𝑓  and 𝐴2,𝑓: For 𝑟 = {1,2,3}, we obtain the regional vectors 𝐴1,𝑟 and 

𝐴2,𝑟, by respectively affecting each entry of 𝐴1 and 𝐴2 by independent multiplicative shocks 𝜈𝑎~ 

Uniform [0.60, 1.40]. Then the farm-specific vectors within each region 𝐴1,𝑓  and 𝐴2,𝑓 , are 

obtained from each regional value also by inducing variation with correlated and multiplicative 

shocks 𝜇𝑎  distributed beta. These shocks determine the size, dispersion and skewness of the 

netput quantities produced, so they need to be calibrated accordingly. To control for the 



 

 

skewness, we use the county-level variable “Total sales, Value of sales, number of farms” of the 

2002 U.S. Agricultural Census as a proxy of firm’s size, to fit a standard beta distribution for 

each region; the results are: a Beta(0.3062, 2.5654) for region 1; a Beta(0.2810, 2.4012) for 

region 2; and a Beta(0.3315, 2.1364) for region 3. To obtain the desired variability of the firm-

specific parameters we modify the beta distributions interval widths to [0.90, 1.40] [0.90, 2.00], 

and [0.90, 4.20] for regions 1 through 3 respectively, so they match the coefficient of variation of 

the technology parameters estimated by the fixed-effects regression using USDA-ARMS and 

PRISM datasets and described in the text. Because parameters determine firm size, we impose a 

positive correlation of 0.9 between the shocks, so that firms producing high output quantities also 

use more inputs. In all cases, correlation is imposed by the method in Iman and Conover (1982).  

Matrices 𝐴11,𝑟 and 𝐴11,𝑓: We generate the inverse of the regional and firm-specific matrices 

𝐴11,𝑟 and 𝐴11,𝑓, because the latter is the one entering the FOCs of the firm’s problem. First, we 

perturb each entry of an upper triangular matrix 𝐶 representing the Cholesky factorization of the 

“generic” positive-semidefinite matrix (𝐴11)
−1, such that (𝐴11,𝑟)

−1
= 𝐶𝑟

′𝐶𝑟. This guarantees the 

matrices of interest are positive-semidefinite in each iteration. The regional deviations come 

from using an independent and multiplicative shock denoted as 𝜈𝑏  and distributed Uniform [0.70, 

1.30]. Then, to obtain the firm-specific submatrices (𝐴11,𝑓)
−1

 in each region we induce variation 

on the Cholesky factors of (𝐴11,𝑟)
−1

 with correlated and multiplicative beta shocks 𝜇𝑏  with 

shape parameters mentioned in the previous paragraph, but over the intervals [0.90, 1.20], [0.90, 

1.60] and [0.80, 2.60] for regions 1, 2 and 3 respectively. Again, we set the interval width so that 

the coefficient of variation of the parameters matches that from the fixed effects regression for 

each region. Also, we impose positive correlation among the parameters of the matrix to control 

for firm size. 



 

 

Vectors 𝐴12,𝑓 and 𝐴22,𝑓: Similar to the case of matrices 𝐴11,𝑟 and 𝐴11,𝑓, we construct these 

vectors, as well as the “generic” vectors 𝐴12 and 𝐴22, starting from the “generic” profit function 

parameters 𝐵12 and 𝐵22, and using Hessian identities in (4). This is done not only to guarantee 

theoretically consistent values of the vectors of interest, but also because profit function 

parameters are readily available in the literature. We respectively shock each entry of 𝐵𝑖𝑗  by 

independent multiplicative deviations 𝜈𝑐~ Uniform [0.95, 1.05], obtaining regional 𝐵𝑖𝑗,𝑟 . The 

corresponding firm-specific values (𝐵𝑖𝑗,𝑓) within a region come from deviations of the regional 

𝐵11,𝑟 , 𝐵12,𝑟  and 𝐵22,𝑟  by means of multiplicative and correlated shocks beta 𝜇𝑐 , and then 

transformed into 𝐴12,𝑓 and 𝐴22,𝑓 using the Hessian identities in (4). Note that in this process we 

do not directly generate regional vectors 𝐴12,𝑟 and 𝐴22,𝑟. The Beta distribution shape parameters 

are the ones stated above and the intervals for 𝐵12,𝑓 are set at [0.90, 2.00], [0.90, 2.20], and [0.80, 

3.60] for each region, and at [0.90, 1.10] for all regions in the case of 𝐵22,𝑓. The narrow interval 

in the latter case is due to the fact that enough variation is already induced on 𝐴22,𝑓 by 𝐵11,𝑓, 

𝐵12,𝑓 and 𝐵22,𝑓 through the Hessian relationship. Finally, we impose positive correlation between 

the entries of 𝐴12,𝑓  and 𝐴22,𝑓 to take care of firm size. 

We calibrate the width of the beta intervals enumerated above by trial and error such that 

they yield a set of firm-specific production parameters 𝒂𝑓
∗  in each region whose coefficient of 

variation is consistent with 𝑏̌0𝑐  estimated with the fixed-effects model. These are 0.06, 0.17, and 

0.43 for regions 1 through 3 respectively. 

 


