

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Price and Income Elasticities of Demand for Canine Wellness Visits: An Exploratory Analysis

J. Scott Shonkwiler Agricultural and Applied Economics Department University of Georgia: jss1@uga.edu

Maureen Kilkenny National Center for Food and Agricultural Policy

Stan Johnson
National Center for Food and Agricultural Policy

Ross Knippenberg Veterinary Economics American Veterinary Medical Association

Selected Poster prepared for presentation at the 2015 Agricultural & Applied Economics Association and Western Agricultural Economics Association Joint Annual Meeting, San Francisco, CA, July 26-28

Price and Income Elasticities of Demand for Canine Wellness Visits:

An Exploratory Analysis

J. Scott Shonkwiler, M. Kilkenny, S. Johnson and R. Knippenberg NCFAP

Background

Since 1997:

- fees for veterinary services doubled (vet price index rose to 216)
- dog owners who did not visit a veterinarian in prior year rose to 19%
- number of visits/year by dog owners who did visit declined by 18%
- alternative sellers of pet health services or products proliferated
- · veterinarians' incomes have stagnated compared to similarly educated professionals'

Sources: KMPG (1999); BLS (various years

Question

Is an aggressive pricing strategy rational, or is the demand for veterinary services more price elastic than veterinarians implicitly believe?

Data

The 2012 Pet Demographic Survey (AVMA, 2012)

Nationwide scope; every five years (2002, 2007, 2012,...)

50,000 respondent households

Socioeconomic characteristics:

age, family size, education, employment status, race, ethnicity, income, housing type, location

Pets and pet characteristics:

numbers of dogs, cats, birds, ...

each pet's age, sex, weight, breed, source, ...

Attitudes about pets and about veterinarians

by pet category (Dogs, cats, birds, horses, ...)

Expenditure on the last/most recent visit to a veterinarian with dog(s) veterinary procedures at that last visit to a veterinarian (0/1)

Total expenditure on veterinary care for the previous year on dog(s) veterinary procedures during the previous year (0/1)

Total number of visits in previous year to the veterinarian with dog(s) Pet health insurance (0/1)

The 2012 Veterinary Fee Reference (AAHA, 2012))

Nationwide scope; annual

~700 responding veterinary practices or hospitals

by location, size and type of practice,

for each type of pet (dog, cat, horse, ...),

for each age, sex, weight class (as appropriate):

fee charged for each veterinary procedure or service, and percent change in fee charged since prior year

Data Issues

Expenditure data on visit bundles confounds prices paid, quantities, and procedures purchased.

•PDS "amount spent" responses displayed far more variation than AAHA "fee charged" data.

•How to measure the latent price faced by pet owners who did not visit a veterinarian in the year?

Solutions

- Focus on observations reporting "wellness visits" only (exam and/or vaccination) in the prior year, excluding outliers ($$30 \le \text{spent} \le 250).
- •Measure Q by the answer "times visited."
- •Measure P by "spent"/ "times visited."
- •Measure latent P using hedonic regression.

variab	c Model of Expenditure	label	Coefficient	Std. Error	t-value
fee for exam		Constant	88.124	1.807	48.757
fee for vaccination		Vac	7.152	1.974	3.623
Atlantic		reg2	-3 030	4 081	-0.965
region (New England excluded)	East North Central	reg3	-8.266	4.012	-2.060
	West North Central	reg4	-16.573	4.522	-3.665
	South Atlantic	reg5	2.361	4.210	0.561
	East South Central	reg6	-10.520	5.078	-2.072
	West South Central	reg7	-17.261	4.630	-3.728
	Mountain	reg8	-24.273	4.491	-5.405
	Pacific Region	reg9	-26.074	4.505	-5.788
dod	commute zone, ln	lnCZpop	4.527	1.145	3.955
	county	CoPop	-0.086	0.066	-1.304
	pop. density (100s)	pd	0.047	0.021	2.228
County Beale Code (large metro excluded)	250K-1 million	bc2	4.867	2.271	2.143
	50-250K	bc3	10.796	3.211	3.363
		bc4	8.945	3.947	2.267
	20-50K non-adjacent	bc5	10.739	6.941	1.547
표 등 등	2.5-20K adjacent	bc6	7,009	4,305	1.628
A B X	2.5-20K nonadjacent	bc7	15.955	5.779	2.761
8 ~ ∣	< 2.5K adjacent	bc8	-5.209	9.754	-0.534
0	< 2.5K non-adjacent	bc9	23,421	9,929	2,359
% non		nw	0.139	0.059	2.359
labor f	labor force participtn rate		0.423	0.190	2.231
	county mean:median hhi		10.571	10.774	0.981
median income (\$1,000)		hhi	0.521	0.088	5.915
# dogs < 1 yr old		dogs1	-2.870	2,365	-1.214
# dogs 1-5 yrs old		dogs2	0.867	1.712	0.506
	6-10 yrs old	dogs3	5.112	1.692	3.021
	11 yrs or older	dogs4	4.613	1.992	2.316

Spending on canine "wellness visit" (exam and/or vaccinations)					
	Mean	Minimum	Maximum		
Observed (PDS subsample who spent \$30-\$250)	\$94.14	\$30.00	\$250.00		
Estimated using the hedonic model	\$94.14	\$41.58	\$155.84		
Simulated for non-consumers using hedonic model	\$93.63	\$45.61	\$157.96		

Demand Function Estimation

•				
able 7. Base Poisson Model of the Demand fo	r Canine W	ellness	Visits	
Jumbar of absorpations: 5 079: Log Likelihood	6214.1			

Number of observatio	ns: 5,978; LogLi	kelinood: -6214.1		
variable	Coefficient	Estimate	Robust SE	z-Value
constant	α	2.2975	0.2606	8.817
ln(P)	ε	-1.0358	0.0478	-21.691
ln(Y)	η	0.3099	0.0265	11.694
important*ln(Y)	β	0.6341	0.1255	5.052
age (HH head)	γage	0.002	0.0016	1.245
black	Уык	-0.1544	0.1567	-0.985
Hispanic	Yhisp	-0.12	0.0853	-1.406
HH size	Ysize	-0.0576	0.0155	-3.729
insured	γinsrd	0.3036	0.0891	3.409
#dogs <1yr	Ydogs1	0.0737	0.0412	1.786
# dogs 2-5 yrs	Ydogs2	0.2707	0.0262	10.327
# dogs 6-10 yrs	Ydogs3	0.2451	0.0306	8.01
# dogs 11 older	Ydogs4	0.1824	0.0374	4.881
important	γimpt	-3.6445	0.5226	-6.974
pet is property	γ _{prpty}	-0.9245	0.2471	-3.741
1 if house	Yhouse	0.0054	0.0519	0.105
1 if mobile home	γmobile	-0.4502	0.0925	-4.865
ln(popdensity)	γInpd	0.0929	0.0112	8.317

 $O = e^{\alpha + \varepsilon \ln(P) + \eta(\ln Y) + \beta(\ln Y)Z + \gamma X}$

where ln(P) is the natural log of the price paid (estimated latent price for non-consumers), Y is household income, Z is the "(not) important" attitude variable interacted with ln(Y), and X is a vector of socioeconomic characteristics, attitudes, and other variables

Attitude variable "Important" = 1 if respondent did \underline{not} agree that 'routine checkups are important for their pet.'

"Pet is property" =1 if respondent rated their dog as 'property' rather than 'a member of the family' or 'a companion.'

Oaxaca dummy =1 if household income < \$35,000), D=0 otherwise, interacted with ln(P) in "Oaxaca" models.

Weighting essentially reduced the number of zero patronage observations from 3330 to 2171, ~ 45% of the observations used to estimate the model

Findings*

The binary choice to make a wellness visit to a veterinarian appears* to be price elastic. And the demand for canine wellness visits may* be:

- 1) price inelastic among current consumers
- 2) more price elastic among non-consumers who are nonetheless "in the market"
- 3) price elastic among poorer households
- 4) income inelastic among all potential consumers
- 5) ~unitary income elastic among those who do not think routine checkups are important.

	# Parameters	Log	Estimated Elasticity	
Model Specification		Likelihood	Price	Income
(6) Truncated Poisson (2,648 obs)	18	-2599.5	0.52	0.173
(1) Full Sample Poisson (6,505 obs)	18	-7316.0	0.622	0.2845
(9) Double Hurdle: in the market out of the market	36	-6030.4	0.744 0.958	0.188 0.319
(4) Wtd Oaxaca Poisson: non-poor poor	19	-5540.0	0.805 0.852	0.170
(5) Negative Binomial	19	-6193.8	1.01	0.413
(3) Oaxaca Poisson: non-poor poor	19	-6205.9	1.021 1.072	0.206
(2) Poisson w/o outliers (5,978 obs)	18	-6214.1	1.04	0.406
(8) Single Hurdle	36	-5885.0	1.18	0.312
(7) Binary Choice	18	-3285.5	1.76	0.428

All findings are tentative and preliminary given the ambiguity in PDS questions/responses, recall error, and other issues with the existing data.

REFERENCES cited

American Animal Hospital Association (AAHA) 2012 Veterinary Fee Reference 8th Edition American Veterinary Medical Association (AVMA) 2012 Pet Demographic Survey Bureau of Labor Statistics (1996 through 2013) archived CPI detailed Report Tables: 1A, 3A, and 25 KPMG LLP Economic Consulting Services (1999) "The Current and Future Market for Veterinarians and Veterinary Medical Services in the United States, Full Report"