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A Water Quality Strategy for the Mississippi River Basin and the Gulf of Mexico

Suzie Greenhalgh1 and Paul Faeth2

Abstract

Nutrient pollution, now the leading cause of water quality impairment in the United States, has

had significant impact on the nation’s waterways.  Excessive nutrient pollution has been linked

to habitat loss, fish kills, blooms of toxic algae, and hypoxia (oxygen depleted water).  The

hypoxic ‘dead zone’ in the Gulf of Mexico is one of the most striking illustrations of what can

happen when too many nutrients from inland watersheds reach coastal areas. Despite the efforts

of municipal building programs, industrial wastewater requirements and agricultural programs

designed to reduce sediment loads in waterways, water quality and nutrient pollution continues

to be a problem.

We undertook a policy analysis to assess how the agricultural community could better reduce its

contribution to the ‘dead zone’ and also evaluate the synergistic impacts of these policies on

other environmental concerns like climate change. Using a sectoral model of U.S. agriculture,

we compared policies including untargeted conservation subsidies, nutrient trading,

Conservation Reserve Program extension, agricultural sales of carbon and greenhouse gas

credits and fertilizer reduction. This economic and environmental analysis is watershed based,

primarily focusing on nitrogen in the Mississippi River basin, allowing us to assess the

distribution of nitrogen reduction in streams, environmental co-benefits and impact on

agricultural cash flows within the Mississippi River basin from various options. The model

                                                
1 Suzie Greenhalgh (corresponding author: suzieg@wri.org) is an Associate in the Economics Program of the World
Resources Institute. World Resources Institute, 10 G. St, NE, Suite 800, Washington DC, 20002.
2 Paul Faeth is the director of the Economics Program of the World Resources Institute.
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incorporates natural resource accounts and alternative production practices, making it possible

to get a more a complete picture of the costs and co-benefits of nutrient reduction. These

elements also help to identify those policy options that minimize the costs to the farmers and

maximize benefits to society.

Keywords: Hypoxia, Dead Zone, policy, trading, water quality, greenhouse gases, Mississippi

River, Gulf of Mexico

Introduction

The pollution of rivers and estuaries by excessive levels of nutrients, such as nitrogen and

phosphorus, is a persistent water quality problem in the U.S. and a growing problem worldwide.

Most of this pollution comes from non-point sources, especially agriculture and urban runoff

(Carpenter et al., 1998). Some of the most visible impacts of nutrient pollution have occurred in

coastal waters and estuaries, where freshwater flows from land meet the ocean. Nutrient

influxes in estuaries have increased up to tenfold since the beginning of this century, with the

greatest increases occurring after 1950. Scientists have linked these increased nutrient loads

with habitat loss, fish kills, blooms of toxic algae, and hypoxia (NOAA, 1998).

Hypoxia occurs when the amount of dissolved oxygen in water decreases to levels of 2 parts per

million or lower3. Areas of hypoxia (or “dead zones”) are present in more than half of the

estuaries of the U.S. The largest hypoxic zone off the U.S. coast -- which is also one of the

largest in the world -- occurs near the outflows of the Mississippi and Atchafalaya Rivers in the

                                                                                                                                                            

3 Normal levels of dissolved oxygen are about 5 parts per million.



4

northern Gulf of Mexico. This zone, which was 7,000 to 10,000 km2 in the summers of 1985-

1992, doubled to 20,000 km2 in 1999 (Goolsby and Battaglin, 2000).

The principle factors leading to the development of hypoxic zones are: 1) the stratification of

the saltwater/freshwater column and 2) the decomposition of organic matter from nutrient over-

enrichment, particularly nitrates (CAST, 1999). During the summer months, the warmer

weather and calmer seas cause stratification where the lighter freshwater floats on the seawater

cutting off the flow of oxygen from the surface to the deeper saltwater layer. The nutrient rich

water from the Mississippi River promotes algal growth, which when it dies or is consumed by

other aquatic species produces large quantities of organic matter. As the organic matter

decomposes it consumes the oxygen in the saltwater layer causing hypoxia. This condition is

alleviated in the Fall when stormier weather conditions cause the layers to intermix allowing

oxygen to move through the water column again.

As oxygen stress has increased in the Gulf the composition of organisms inhabiting bottom

waters has shifted over time (Rabalais et al., 1999), resulting in fewer fish and a less diverse

array of fish inhabit the area. Fishery managers point out that hypoxia could lead to significant

losses for Louisiana, where Gulf fisheries generate more than $2.4 billion of economic activity

from recreational and commercial fisheries per year (Holiday and O’Bannon, 1997). Despite the

current lack of direct evidence of economic impacts in the Gulf of Mexico (Diaz and Solow,

1999) ecological and fisheries impacts of hypoxic zones worsen as they become bigger (Caddy,

1993; Diaz and Rosenberg, 1995) and can cause in economic impacts (Baden et al., 1990). The
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Black Sea, for instance, is now permanently hypoxic below 100m, and of the 26 commercial

fish species only 6 still support a fishery (Earles, 2000).

The annual phosphorus flux reaching the Gulf of Mexico is approximately 136,000 metric tons

and has not increased significantly over the years. Of the annual phosphorus flux approximately

31 percent comes from commercial fertilizers, 18 percent is from animal manure and 10 percent

is from point sources. Another 41 percent comes from sources that have not been quantified but

phosphorus attached to soil particles is believed to be a major component (Goolsby et al., 1999).

The total annual nitrogen flux from the Mississippi River is approximately 1.5 million metric

tons, with nitrates accounting for around 1 million metric tons. This is three times higher than

the nitrate flux 30 years ago. Nonpoint sources are thought to contribute as much as 90 percent

of the nitrogen flowing into the Gulf of Mexico, with 56 percent entering the Mississippi River

above the Ohio River. Commercial fertilizer and mineralized soil nitrogen comprises about 50

percent of the total flux, while atmospheric deposition, soil erosion and groundwater discharge

contributes 24 percent, animal manure 15 percent and point sources 11 percent. Of these

sources, only commercial fertilizer and legumes have increased significantly since the 1950’s

(Smith, Schwarz and Alexander, 1997; Goolsby et al., 1999). As agriculture is the primary

source of nitrogen, participation by the agricultural sector in finding a solution is essential in

order to achieve the necessary nitrogen loading reductions. Any policy options aimed at

reducing the nitrogen flux from the Mississippi River basin will have some economic impact,

either positive or negative, on the farming community.
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Federal Taskforce

The hypoxic zone in the Gulf of Mexico became a high priority problem with the establishment

of the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force in 1997. The role of the

Taskforce was to study the causes and effects of excess nutrient runoff in the Mississippi River

basin and to coordinate and implement nutrient reduction activities to alleviate hypoxia in the

Gulf of Mexico. An initial scientific study of the problem resulted in a series of reports from

which an Action Plan was developed. This Action Plan was released in January 2001

(Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2001)

The central coastal goal of the Action Plan was that “by the year 2015, subject to the availability

of additional resources, reduce the 5-year running average areal extent of the Gulf of Mexico

hypoxic zone to less than 5,000 square kilometers through implementation of specific, practical,

and cost-effective voluntary actions by all States, Tribes, and all categories of sources and

removals within the Mississippi/Atchafalaya River Basin to reduce the annual discharge of

nitrogen into the Gulf” (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force,

2001, p. 9)

Model simulations from the scientific reports commissioned by the Task Force suggest that

nutrient (nitrate) load reductions of between 20-30% would be sufficient to increase the bottom

water dissolved oxygen concentrations by 15-50% (Brezonik et al., 1999) and meet the coastal

goal. Some of the options to reduce nutrient runoff to surface waters include improving the

efficiency of farming practices, restoring wetlands, establishing riparian buffers and tighter

controls of point sources such as wastewater treatment plants. Many of the nutrient mitigation
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options available to reach this target reduction level will also provide local water quality

benefits by reducing phosphorus losses.

An economic analysis of the agricultural nutrient loading and hypoxia was commissioned for

the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force (Doering et al., 1999).

This analysis explored a variety of options and their cost-effectiveness, in part by using a

version of the USMP model that World Resources Institute (WRI) developed with the USDA

Economic Research Service (USDA/ERS) for the last farm bill.  This model version, while the

best available at the time, had a number of deficiencies that limited its utility to address the

hypoxia issue. First, the model was not configured by watersheds, making it difficult to draw

conclusions about the economic and environmental impacts in the five major sub-basins of the

Mississippi River, and to assess the nutrient loadings and loading reductions in the basin.

Second, current industrial and municipal point source information was not explicitly included in

the model.  In assessing the feasibility of nutrient trading or tighter regulatory controls, using up

to date point source nutrient discharges is important. Finally, only conventional agricultural

production practices were analyzed for the Task Force analysis, which limits the flexibility of

farmers to react to technological and economic changes.  The intent of this study was to extend

the modeling system to allow it to better address issues relating to the hypoxic zone in the Gulf

of Mexico.
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Modeling Approach

To evaluate water quality strategies for the Mississippi River basin and the Gulf of Mexico we

used the U.S. Regional Agricultural Sector Model (USMP), a model developed and maintained

by the USDA/ERS. This is the same model used for the economic analysis commissioned by the

Task Force.

USMP is designed for general purpose economic, environmental and policy analysis of the U.S.

agricultural sector.  This model is linked to a number of national databases – the regularly-

updated USDA production practices surveys, the USDA multi-year baseline and geographic

information systems databases such as the National Resources Inventory.  USMP estimates how

policy changes, demand or technology will affect the regional supply of crops and livestock,

commodity prices, use of production inputs, net farm returns, government expenditures,

participation in farm programs and environmental indicators.

WRI has collaborated in the past with USDA/ERS to improve the spatial delineation of USMP,

increase the diversity of cropping rotations and to simulate the environmental impacts of each

production practice and the Conservation Reserve Program. The model includes 10 major crops

(corn, sorghum, oats, barley, wheat, rice, cotton, soybeans, hay and silage), a number of

livestock enterprises (dairy, swine, poultry and beef cattle) and a variety of different processed

and retail products. There are 45 production regions in the model that are derived from the

intersection of the USDA farm production and land resource regions.
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A majority of the environmental impacts are derived using the Erosion/Productivity Impact

Calculator (EPIC) (Williams, Jones and Dyke, 1984; Sharpley and Williams, 1990). EPIC is a

crop biophysical simulation model used to estimate the impact of management practices on crop

yields, soil quality and a variety of environmental parameters like nutrient, pesticide and soil

losses at the farm field level. It uses information on soils, weather, and management practices

including specific fertilizer rates, to produce information on crop yields, erosion and chemical

losses to the environment. Additional environmental effects that the USMP model produces

include some greenhouse gas emissions, soil carbon flux, energy use including that embodied in

inputs and related off-site soil damage. Nitrous oxide emissions from fertilizer use were derived

using the same method as the USEPA Greenhouse Gas Inventory (USEPA, 1999) and

calibrating to their estimate.

Modifications to the USMP Model

Alexander, Smith and Schwarz (2000) showed that the delivery of nitrogen from inland point

and nonpoint sources is not a simple function of the distance from these sources to the coast.

They demonstrated that the amount of nitrogen delivered from interior watersheds depends on

the size of the channels through which nitrogen moves, with the rate of nitrogen loss in

waterways decreasing as channel size increased. This means, in the case of the Mississippi

River, that a larger portion of the nitrogen entering the system in the Upper Midwest and

traveling through wider streams may reach the Gulf of Mexico than nitrogen travelling through

smaller streams close to the Gulf.
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Significant sources of nitrogen and phosphorus come from municipal wastewater treatment

plants and industrial facilities within the basin. A study initiated by EPA to determine the total

nutrient discharge level from these point sources using 1996 National Pollutant Discharge

Elimination System (NPDES) information showed there were about 11,500 permitted facilities

in the basin. The discharge rate varied from campgrounds at approximately 0.01 metric tons of

nitrogen per year to the Chicago municipal wastewater treatment plant that discharges

approximately 10,000 metric tons of nitrogen per year. The estimated total discharge level from

point sources in the Mississippi River basin was 286,400 metric tons of nitrogen per year and

59,000 metric tons of phosphorus per year (Goolsby et al., 1999).

Watershed delineation, nitrogen attenuation coefficients and updated point source discharges are

some of the modifications to the USMP version used by the Task Force economic analysis. The

spatial delineation of watersheds within the Mississippi River basin is based on USGS 8, 4 and

2 digit hydrological units. This enables the economic and environmental parameters to be

explicitly determined for the Mississippi River basin. To account for the loss of nitrogen as it

moves through the basin, the attentuation coefficients derived using the SPARROW model

(Alexander, Smith and Schwarz, 2000) were included into the model. This information

combined with the watershed delineation provides more accurate information of the amount of

nitrogen reaching the Gulf of Mexico from the Mississippi River sub-basin. In addition, 1996

point source discharges determined by the EPA commissioned study were included into the

model (USEPA, 2000).
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Water Quality Strategies for the Mississippi River Basin

Any successful water quality strategy for the Mississippi River basin must involve participation

from the agricultural sector.

The question is what is the most effective way of involving agriculture to achieve the reductions

in nitrogen flux to the Gulf of Mexico with the least impact on the agricultural community.

There are a number of additional environmental co-benefits that can also be gained from

strategies aimed at addressing the hypoxic zone in the Gulf of Mexico. Faeth and Greenhalgh

(2000) showed that strategies aimed at reducing greenhouse gas emissions had significant water

quality benefits. Considering these co-benefits as part of the solution set provides a more

comprehensive assessment of overall environmental improvements when determining the

appropriate strategies to adopt.

A number of scenarios aimed at improving water quality or reducing greenhouse gas emissions

were tested to determine their impact on the nutrient load at the mouth of the Mississippi River

and agricultural cash flows. These include:

Nitrogen Fertilizer Tax: A significant portion of the nitrogen lost to water in the Mississippi

River basin comes from fertilizer. In many instances, farmers apply ‘insurance’ fertilizer rates

hoping that climatic conditions produce a ‘bumper’ crop. In years, were the growing conditions

are less than ideal this additional fertilizer is not used. Frequently, the nitrogen is lost to the
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atmosphere, leaches into groundwater or moves with sub-surface drainage to surface waterways.

Tax rates that resulted in a 70 and 500 percent increase in price were used in this analysis. The

70 percent tax rate corresponds to the increase in nitrogen fertilizer price observed between

2000 and 2001. The 500 percent tax was found in the Task Force analysis to achieve the

reduction in fertilizer use that resulted in a 20 percent decrease in nitrogen losses. This loss

value includes nitrogen losses in solution (via surface runoff), nitrogen losses with sediments,

nitrogen leaching potential and nitrogen losses through denitrification.

Conservation Tillage Subsidies: Tillage subsidy payments have been used for many years to

encourage farmers to convert from conventional and moldboard tillage practices to conservation

tillage practices. In this analysis, a payment of $25/acre was given for changing to ridge tillage,

mulch tillage or no-till practices. In most cases conservation tillage subsidies were paid on a 75

percent cost-share basis. Suggested subsidy payments to provide incentives for conservation

tillage adoption varies from $10/acre in parts of the cornbelt and lake states to $25/acre for

cotton acreage in the southern plains and appalachia regions (Dan Towery, CTIC, pers. com.,

June 12, 2000). A payment of $25/acre was chosen as this amount should provide sufficient

incentive for farmers to change tillage practices in a majority of regions across the U.S. There

was no restriction placed on the type of conservation tillage practices implemented, acreage

limits on adoption or specific areas targeted.

Conservation Reserve Program (CRP): CRP was instituted in the 1986 farm bill to take

marginal, highly erodible land out of production to reduce soil erosion and improve water

quality. At the end of 2000, there was 31.4 million acres enrolled in this program. CRP land is
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not tilled and does not use fertilizer so any increase in CRP would decrease the amount of

nitrogen, phosphorus, sediments and pesticides lost to waterways. Greenhouse gas emissions

also decrease on CRP land as there is less nitrous oxide emissions from fertilizer applications,

no carbon emissions related to tillage operations or the production of fertilizers and more carbon

sequestered in the soil due to the lack of soil disturbance. This analysis allowed CRP acreage to

increase to 40 million acres and included an across the board increase in rental rates of 20

percent.

Carbon Trading: Agricultural soils sequester carbon and tillage practices that cause little soil

disturbance, like no-till, sequester larger amounts of carbon than conventional tillage practice.

Different crop rotations also affect the rate of soil carbon sequestration. The trading of soil

carbon credits generated by agriculture has the potential to reduce overall U.S. greenhouse gas

emissions. In a previous study, Faeth and Greenhalgh (2000) showed that strategies to reduce

greenhouse gas emissions also provided water quality co-benefits. Many agricultural practices

that increase soil carbon sequestration also have significant water quality benefits. CRP land

sequesters large amounts of carbon and has no nitrogen loss, both to water and as nitrous oxide

to the atmosphere, associated with fertilizer applications. A carbon price of $23/t was used to

simulate a carbon trading system. This price corresponds to the Administration’s upper bound

assessment of the carbon permit price if the Kyoto Protocol was implemented (AEA, 1998).

Greenhouse Gas Trading: U.S. agriculture is responsible for 11 percent of the total U.S.

emissions of greenhouse gases. Even though carbon dioxide accounts for 80 percent of U.S.

greenhouse gas emissions, agriculture’s share of this is only 2 percent. By far the greatest
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emissions by agriculture are from nitrous oxide, primarily from fertilizers, and methane from

animal waste handling. Not only does 74 percent of nitrous oxide come from agriculture, but

nitrous oxide has a heating potential 310 times greater than carbon dioxide. Similarly, methane

from agriculture contributes approximately 30 percent of the total U.S. emissions and is 80

times more powerful than carbon dioxide. Implementing a trading program that addresses all

three major greenhouse gases provides greater opportunities for agriculture to reduce its overall

emissions. By including nitrous oxide emissions into a trading program provides direct benefits

to reducing the hypoxic zone in the Gulf of Mexico as a majority of these emissions come from

nitrogen fertilizer. As with the carbon trading scenario, a carbon price of $23/t was used.

Nutrient Trading: This market-based mechanism is being explored by a number of state and

federal agencies to reduce the cost of improving water quality. This concept derives from the

fact that each industrial facility or municipal wastewater treatment plant faces different

compliance costs depending upon size, scale, age and overall efficiency. Therefore, the cost of

meeting water quality standards may be cheaper for one facility than another. This provides an

opportunity for those facilities whose costs are lower to make additional reductions beyond their

obligation, and sell these additional reductions to facilities whose costs are higher. As an

adjunct to regulation, trading can lower the overall cost of compliance.

Trading can occur between two point source facilities like municipal wastewater treatment

plants or between a point source and nonpoint source such as agriculture. Point source facilities

are generally controlled by a discharge permit while nonpoint sources are usually not controlled

by regulatory limits.
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The inclusion of nonpoint sources, such as agriculture, into trading programs has raised the

question of uncertainty in the amount of reduction actually achieved by these sources. For

agricultural nonpoint sources to reduce their nutrient contribution to water bodies, some kind of

best management practice (BMP) would be implemented. These practices may include changing

tillage practices or crop rotations, reducing fertilizer rates, or creating filter strips and can

frequently improve water quality at a lower cost than upgrading wastewater treatment facilities.

Trading ratios or discount factors are used to account for the uncertainty surrounding nonpoint

source nutrient reductions. For this analysis the trading ratio is set at 2:1, this means that for a

nonpoint source to generate and sell a one-pound credit, that source would have to reduce its

nutrient contribution by two pounds.

Findings

The preliminary findings from this analysis suggests that none of the scenarios alone produce

sufficient nitrogen flux reductions (20-30 percent) to the Gulf of Mexico to reduce the size of

the hypoxic zone in the Gulf of Mexico to under 5,000 square kilometers.

Nitrogen Fertilizer Tax: A tax on nitrogen fertilizer at the 70 percent level results in decreases

in nitrogen application rates in the Mississippi River basin of around 7 percent which relates to

an approximate 2 percent reduction in nitrogen loadings to the Gulf of Mexico. There are

corresponding decreases in farm net cash returns and crop acreage under this scenario because

of higher input costs. The associated environmental benefits include reductions in greenhouse

gas emissions, erosion rates, pesticide losses and phosphorus runoff to waterways. Using a 500
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percent tax on fertilizer prices resulted in a 35 percent reduction in nitrogen fertilizer application

with about 12 percent less nitrogen reaching the Gulf of Mexico. The corresponding decreases

in farm income and crop acreage and improvements in other environmental co-benefits are of

higher magnitude than the 70 percent tax rate. This scenario produced the greatest reduction in

greenhouse gas emissions because of the large decrease in nitrous oxide emissions from

nitrogen fertilizer. The 500 percent tax on nitrogen fertilizers, however, would not be a feasible

policy option for reducing the size of the ‘dead zone’ because of the substantial decrease in farm

net cash returns.

Conservation Tillage Subsidy: Untargeted conservation tillage subsidies have few

environmental benefits and lead to decreases in farm income. By providing incentives to change

tillage practices more land goes into production which leads to increases in crop production and

a reduction in crop prices. As a result there is a small decrease in nitrogen fertilizer use and a

small increase in nitrogen flux at the mouth of the Mississippi River because of increased crop

acreage. There are small decreases in greenhouse gas emissions and nitrogen reaching the

waterways. There are increases, however, in pesticide losses to waterways. Erosion, as expected

with increases in conservation tillage, does decrease.

Conservation Reserve Program: By increasing the rental rate for CRP acreage there is an

increase in CRP acreage and a decrease in crop acres. The increase in overall net cash returns in

the Mississippi River basin results from the increase in CRP payments. There are small

reductions in nitrogen, phosphorus, pesticides and soil losses to waterways. Larger decreases in
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greenhouse gas emissions relate to larger amounts of carbon sequestered on the additional land

in CRP. The reduction of nitrogen to the Gulf of Mexico is also small, around 1 percent.

Carbon Trading: The trading of carbon credits results in a similar reduction in the nitrogen load

reaching the Gulf of Mexico as the 70 percent tax on nitrogen fertilizer. Reductions in

phosphorus and pesticide runoff is greater than the 70 percent nitrogen tax, conservation tillage

subsidies and CRP expansion, while soil losses are greater than those achieved with the

expanded CRP but less than all the other scenarios tested. As expected greenhouse gas

emissions are reduced more than all other scenarios except for greenhouse gas trading. Increases

in net farm returns is also greater than the 70 percent nitrogen fertilizer tax, conservation tillage

subsidies and CRP expansion.

Greenhouse Gas Trading: The reductions in nitrogen reaching the Gulf of Mexico,

phosphorus, pesticide and soil losses and the increase in net cash returns are greater than all

scenarios except for nutrient trading. As expected the impact on greenhouse gas reductions is

the best of the scenarios tested. This scenario has the greatest increase in CRP enrollment due

to the ability of CRP land to sequester carbon and the lower nitrous oxide emissions resulting

from no nitrogen fertilizer applications.

Nutrient Trading: Implementing nutrient trading produces the largest reduction in nitrogen flux

at the mouth of the Mississippi River, close to 8 percent. There is a similar reduction in nitrogen

fertilizer use in the basin. Reductions in phosphorus, pesticides and soil losses to waterways are

higher than the other scenarios, while the decrease in greenhouse gas emissions are greater than
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all other scenarios except carbon and greenhouse gas trading. Net cash returns for farmers also

increases more than in the other scenarios. This increase relates to the reduction in crop

production from land moving into CRP, the corresponding increases in crop prices that result

from decreased supply, and the direct payments received for reducing nitrogen lost to

waterways. There is greater enrollment in CRP as this land does not use nitrogen fertilizer

making reductions in nitrogen losses to waterways easier to achieve.

Summary

Of the scenarios tested, no one scenario produced nutrient loadings sufficient to met the

Mississippi River/Gulf of Mexico Watershed Nutrient Task Force coastal goal. To meet this

goal, nitrogen (nitrate) loading reductions of 20-30% to the Gulf of Mexico are needed. By

taking into account the attenuation of nitrogen as it moves down the basin, the impacts of

improved nutrient management through more efficient nitrogen fertilizer use and changes in

cropping and tillage practices, depending on where they are located in the basin, are diluted. For

instance, nitrogen reductions in the Arkansas-White-Red region have higher attenuation rates

than the Upper Mississippi Region (Alexander, Smith and Schwarz, 2000), so targeting those

sub-basins with higher nitrogen delivery rates will produce that greatest reduction in the amount

of nitrogen reaching the Gulf of Mexico.

The nutrient trading program for nitrogen produces greater reductions in nitrogen fertilizer use

in the Upper and Lower Mississippi sub-basin than the other scenarios. These sub-basins have

high nitrogen delivery rates leading to greater reduction in nitrogen losses to waterways and the

nitrogen flux at the mouth of the Mississippi River. In addition, substantial improvements in
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local water quality from reduced phosphorus, pesticide and soil loss occur in most sub-basins.

Similarly, greenhouse gas emissions reductions range from 3 to 25 percent in all Mississippi

River sub-basins, highlighting the synergies between water quality improvement and climate

change mitigation strategies.

The greenhouse gas and carbon trading scenarios do not produce the same level of

improvements in water quality that are seen with nutrient trading but the improvements are still

greater than the other scenarios. Climate change improvement, though, is more substantial

overall. Most sub-basins except for the Tennessee and Lower Mississippi sub-basins have

greater reductions in greenhouse gas emissions under these trading programs than with nutrient

trading.

Net cash returns to the agricultural sector tend to decline when a nitrogen fertilizer tax is applied

or untargeted conservation tillage subsidies are implemented. The other scenarios induce higher

net cash returns with nutrient trading exhibiting the largest increase.

It appears that trading strategies produce greater all round benefits for the environment and for

farm returns than traditional policy approaches. Trading not only exploits the synergistic co-

benefits between water quality and climate change but also provides a voluntary incentive

mechanism for the agricultural community to be part of the solution to the ‘dead zone’ in the

Gulf of Mexico. However, further explorations of combinations of strategies and adding

Wetland Reserve Program acreage is necessary to ascertain if better policy solutions can be
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found to more effectively meet the Mississippi River/Gulf of Mexico Watershed Nutrient Task

Force coastal goal.
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