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The Confirmation and Falsification of Equilibrium Displacement Models 

 

 

 

Abstract 

One of the most important principles in any science is testing and consequently confirmation and 

falsification.  In agricultural economics, the equilibrium displacement model is a popular 

modeling approach that presently is not testable and consequently cannot be confirmed or 

falsified.  This paper presents four increasingly sophisticated procedures designed to overcome 

this limitation of equilibrium displacement models.  An empirical illustration demonstrates the 

usefulness of these procedures in deciding between three alternative and theoretically viable 

equilibrium displacement models.  
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The Confirmation and Falsification of Equilibrium Displacement Models 

[M]easurement is science’s highest court of appeal, pronouncing its final verdict  

for or against the meekest and loftiest ideas alike. 

            Fox, Gorbuny, and Hooke (p. 20) 

One of the most important principles in any science is testing and consequently confirmation 

and falsification.  With confirmation and falsification, theoretical speculations may be admitted 

into the elite realm of science.  Without confirmation and falsification, theoretical speculations 

remain just that – speculation. 

A popular modeling approach in agricultural economics that has received recent 

methodological attention is the equilibrium displacement model (EDM) (Davis and Espinoza 

(1998, 2000), Griffiths and Zhao, and Zhao, et al).1  The EDM framework is appealing for three 

reasons:  (i), it is extremely flexible in modeling diverse economic phenomena; (ii), it is easy to 

implement as it only involves inverting some matrices of parameters that are not wed to any 

particular data set; (iii), because of two, the results may be considered rather robust to 

econometric misspecifications.  The work of Davis and Espinoza (1998, 2000), Griffiths and 

Zhao, and Zhao et al. has greatly improved the inferential content obtainable from EDMs. 

However, EDMs are still grossly inadequate when subjected to the scientific standards of 

confirmation and falsification because they presently are not testable as to their empirical 

validity.  Consequently, their empirical claims are highly questionable. 

The goal of this paper is to overcome this significant limitation of the EDMs by making them 

confirmable or falsifiable without completely destroying their major advantage, which is ease in 

implementation.  Two conditions must be satisfied to achieve this goal: 
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Condition 1: The researcher must have a sincere interest in comparing the predictions of the  

         EDM with the actual phenomenon under consideration.  

Condition 2: Some data must be available on one endogenous variable and the exogenous  

         variables in the EDM.  

These two conditions are related. The first condition is necessary because if there is no interest in 

confirming the EDM, then the EDM becomes immunized from the normal scientific practices of 

critique, testing, and improvement.  However, even if a researcher has a sincere interest in 

making an EDM empirically accountable, there presently exists no way to do this and this is 

related to the second condition.  The existing argument for conducting a standard EDM analysis 

is that ‘EDMs are best suited for situations where data are insufficient for a complete 

econometric analysis and if data are sufficient for a complete econometric analysis, an EDM 

should not and would not be used in practice.’  This statement takes a provincial view of 

econometric models and EDMs and is only partially correct.  While there may not be enough 

data to do a complete econometric analysis, there are usually enough data to test the consistency 

of an EDM with the phenomenon it claims to explain, as this paper will demonstrate.  

In an attempt to improve the scientific standing of EDMs, this paper presents four approaches 

to confirming and falsifying EDMs with increasing sophistication and informational content.  

These approaches will simultaneously increase the confidence that may be placed in the validity 

of these models and will also help identify those areas of the model structure that may be 

deficient.  In addition, the techniques will also demonstrate the importance of conducting 

sensitivity analysis in the manner advocated by Davis and Espinoza (1998) and Zhao, et al., and 

will shed light on the Griffiths and Zhao comment and the Davis and Espinoza (2000) reply.  In 

the next section the limitation of EDMs is presented via a simple example.  The following 

                                                                                                                                                             
1 See Davis and Espinoza (1998) for documentation on the popularity of the EDM. 
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section cast the problem in a more general framework and presents the formal 

confirmation/falsification techniques.  An empirical illustration is then given for the U.S. meat 

market where three different, but all potentially valid, theoretical model structures are 

investigated with the techniques.  The paper closes with conclusions. 

  

Empirical Limitations of EDMs 

To demonstrate the empirical limitations of an EDM, consider a simplistic but representative 

situation where an analyst claims the retail beef market can be represented by the supply and 

demand EDM, 

 (1) *
z

*
d

*
d ZPQ η+η=  :  Demand 

(2) *
w

*
s

*
s WPQ ε+ε=  :  Supply 

(3) *
d

*
s QQ =   :  Equilibrium. 

For any variable X*  = dX/X = dlnX is the percentage change in X, ηd and εs are own price 

demand and supply elasticities respectively, and ηz and εw are elasticity scalars or vectors 

associated with the shift variables Z* and W* respectively.  Solving (1) – (3) simultaneously 

yields the reduced forms, 

(4) *
pz

*
pw

* ZWP π+π=  :  Reduced Form Price 

(5) *
Qz

*
QW

* ZWQ π+π=  :  Reduced Form Quantity 

where the reduced form parameters (i.e., elasticities) are defined as πpw = (ηd – εs)-1εw, πpz = – 

(ηd – εs)-1ηz, πQw = (ηd – εs)-1ηdεw, and πQz = – (ηd – εs)-1ηzεs.2   

                                                 
2 The term parameter and elasticity are interchangeable in this paper. 
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Now suppose the analyst has structural elasticity estimates of ηd = –.5, ηz = .25, εs = .5, and 

εw = –.15 but is interested only in the impact income will have on the price and quantity.  The 

analyst substitutes the structural elasticity estimates into the reduced form parameter equations 

and solves the system with Z* equal to some constant, usually Z* = 1, and W* = 0 to yield the 

solution P* = .25 and Q* = .125.  The analyst then claims that “for a one-percent increase in 

income, the price of beef and quantity of beef will increase by .25 and .125 percent, 

respectively.”  To date EDM analysis stops here or with some deterministic function of  P* and 

Q* (e.g. producer surplus).  However, the obvious question becomes how accurate are these 

estimates of the percentage change in price and quantity induced by income? 

The accuracy and validity of the EDM approach clearly rest on two maintained assumptions.  

First, the structural parameter estimates are considered unbiased or at least reasonable.  Second, 

the structural model is taken as being true or correct, and therefore by deduction, the reduced 

form model is correct.  The work of Davis and Espinoza (1998, 2000), Griffiths and Zhao, and 

Zhao, et al. concentrates on the first maintained assumption and allows for the formal 

incorporation of parameter uncertainty by replacing point estimates with distributional 

assumptions.  What results is a distribution on P* and Q*, so P* = .25 and Q* = .125, may 

represent means or modes of these distributions.  They refer to this approach as the stochastic 

EDM (SEDM).   

While the SEDM is certainly an improvement over previous attempts to allow for parameter 

uncertainty, the truth of the underlying structural model is still a maintained assumption.  

Consequently, even if P* = .25 and Q* = .125 come from a SEDM, there is still no outside 

validation of the ‘truth’ of the structural model.  It is, therefore, difficult to place any confidence 

in the claim that if income increased by one-percent that the price would increase by .25 percent 
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or quantity by .125 percent.  The central question is, how can these types of models be confirmed 

or falsified as being consistent with the actual phenomenon being modeled? 

 

A General Framework for Confirming and Falsifying an EDM 

As Davis and Espinoza (1998) indicate, the EDM can be couched within a standard 

simultaneous econometric framework.  Let Y* be a 1×G vector of endogenous variables defined 

in terms of percentage change, X* be a 1 x K vector of exogenous variables defined in terms of 

percentage change, ΓΓΓΓ be a G x G matrix of parameters and B be a K x G matrix of parameters.3  

The structural system is then written in matrix form as Y*ΓΓΓΓ + X*B = 0, which has the reduced 

form solution for Y*, 

(6) Y* = –X*BΓΓΓΓ -1 
       =   X*ΠΠΠΠ 
       =   X*ΠΠΠΠ(ββββ,γγγγ) 

where ΠΠΠΠ is the K x G reduced form parameter matrix and is a function of the structural 

parameters with ββββ = vec (B) and γγγγ = vec (ΓΓΓΓ).  It is important to recognize that by construction the 

EDM claims to provide the full specification of the variables entering the structural model and 

therefore the reduced form model.  If this were not the case, then the EDM would be internally 

inconsistent with its own implied reduced form.  As indicated, the EDM analysis proceeds by 

specifying values for the structural parameters, say γβ ˆandˆ , setting the elements of X* equal to a 

constant, usually one, to generate the values for the elements of Y* as 

(7) Y* = X*ΠΠΠΠr 

                                                 
3 If the equations are repeated for T observations, as is the case in econometric estimation, then Y* is a T × G and 
X* is a T × K. 
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where )ˆ,ˆ(ˆˆ 1
r γγγγββββΠΠΠΠ====ΓΓΓΓΒΒΒΒ−−−−====ΠΠΠΠ −−−− .  It is at this point where the interpretation of (7) differs from 

Davis and Espinoza (1998).   

In simultaneous equation models there are three classes of reduced form estimators: the 

unrestricted estimator, the derived or restricted estimator, and the partially restricted estimator 

(see e.g. Fomby, Hill, and Johnson chapter 23).  Here interest centers on the first two.  The 

unrestricted reduced form estimator comes from just applying ordinary least squares to the 

reduced form equation or system Y* = X*ΠΠΠΠ + V without imposing any of the overidentifying 

restrictions and gives the estimate ΠΠΠΠu.  The restricted reduced form estimator comes from 

estimating the structural parameters and substituting them into the overidentifying restrictions to 

yield the estimate ).ˆ,ˆ(r γγγγββββΠΠΠΠ====ΠΠΠΠ  Davis and Espinoza (1998) interpret (7) as being an extreme 

version of a Bayesian estimator where the conditional (data) likelihood function plays no role in 

determining the posterior distribution.  Griffiths and Zhao correctly point out that within a 

Bayesian framework this interpretation is misleading because the resulting distribution is not a 

posterior but just a nonlinear transformation of the prior distribution(s) of the structural 

parameters.  However, in the Bayesian context a more accurate description is that the SEDM 

leads to a restricted reduced form estimate that can be considered a prior for the unrestricted 

reduced form estimate.  This interpretation leads naturally to several ways to test the validity of 

the SEDM. 

If the SEDM restrictions are “true” then there will be no statistical difference between the 

unrestricted estimate ΠΠΠΠu and the restricted estimate ΠΠΠΠr.  Alternatively, if the restrictions are not 

“true” then the unrestricted estimate ΠΠΠΠu and the restricted estimate ΠΠΠΠr will be statistically 

different.  The attractive feature of working with the reduced form is that the EDM can be 

confirmed or falsified without estimating a complete structural model.  Consequently, data on all 
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the endogenous variables are not needed (condition two).  In fact, data on one endogenous 

variable is sufficient and, for most commodities, the obvious candidate is the price. 

The comparison between the restricted reduced form (i.e., the EDM result) and the 

unrestricted reduced form can be done in several ways and four increasingly sophisticated 

methods are pursued here: (i) an adjusted R2 comparison between the EDM restricted reduced 

form and the unrestricted reduced form; (ii) an F test of the difference between the EDM 

restricted reduced form and the unrestricted reduced form; (iii) a mixed estimation procedure 

with a corresponding test of the superiority of the mixed estimator compared to the unrestricted 

estimator; (iii) a Bayesian procedure that leads to an odds ratio test.  Before proceeding one point 

needs to be made clear and kept in mind.  In the present context, the unrestricted reduced form 

model is to be interpreted only as a testing model, not necessarily a descriptive model, and is 

therefore analogous to an encompassing or artificial regression model in the econometrics 

literature, which also are only testing models.  See Mizon on the encompassing approach and 

Davidson and MacKinnon on artificial regressions.    

 

An adjusted R2 and F test of the EDM 

With the goal of confirming or falsifying the EDM, assume a data set is in hand and that data 

is only available on the first endogenous variable.  The first reduced form equation is  

(8) y*1 = X*ΠΠΠΠ1 + v1, 

where y*1 is the T × 1 regressand vector, X* is the exogenous T ×  K regressor matrix, ΠΠΠΠ1 is the 

K × 1 reduced form parameter vector and v1 is the T × 1 disturbance term.  Letting ΠΠΠΠ1u represent 

the unrestricted reduced form estimate, the unrestricted reduced form predicted value would be 

y*1u = X*ΠΠΠΠ1u.  The restricted reduced form (i.e., the EDM) predicted value can be similarly 
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defined as y*1r = X*ΠΠΠΠ1r, where ΠΠΠΠ1r is the restricted reduced form estimate that comes from 

substituting the (prior) structural parameter estimates being utilized in the EDM into the 

overidentifying restrictions. 

The R2 can be considered the square of the correlation between a predicted value and the 

actual value, so a measure of fit for the unrestricted and restricted (EDM) would be 2
jR  =  

[Cov( y*1j, y*1)]2/[var(y*1j) var(y*1)], where y*1 is the actual value of the endogenous variable 

and y*1j is its predicted value j = u, r.  Once the R2s are in hand adjusted R2s can also be 

calculated.  The R2 or adjusted R2 gives an indication of how well the EDM fits the actual data, 

but it is not a formal test statistic that can be used to confirm or falsified the EDM. 

A simple formal test of the EDM would be an F test of the restricted reduced form 

parameters (EDM) versus the unrestricted reduced form parameters.  Formally Hausman (p. 432) 

gives a Wald test of the restricted versus the unrestricted estimator, which following standard 

procedures can be written in its asymptotic F test form as,  

(9) f = (ΠΠΠΠ1r – ΠΠΠΠ1u)′ΨΨΨΨu(ΠΠΠΠ1r – ΠΠΠΠ1u)q-1 

where q is the number of restrictions.  Under the null hypothesis that (ΠΠΠΠ1r – ΠΠΠΠ1u) = 0, f is 

distributed as an F distribution with T and q degrees of freedom.4  In the single equation case the 

weighting matrix ΨΨΨΨu = s-2(X*′ X*), with s2 being the estimate of the variance of v1.  If the null 

hypothesis is rejected, then this indicates that the EDM is not consistent with actual data.  The 

appealing nature of this test is that subsets of the EDM can be tested and used to identify 

individual parameter estimates that may be problematic.  However, it should be noted that this 

test treats ΠΠΠΠ1r as if it is a constant and effectively ignores its stochastic nature.  For this reason it 

is natural to go to a mixed estimation and/or Bayesian procedure.  



  9  

A mixed estimation approach 

While the R2 and F statistics give an idea of fit of the restricted reduced form model (i.e., the 

EDM), they concentrate on comparing point estimates and do not take into account variances.  In 

the nonstochastic case, even if the restricted estimator is bias it will have a smaller variance than 

will the unrestricted estimator.  This is not necessarily the case if the restrictions are stochastic, 

but it may be the case, and so the researcher may be willing to trade a smaller variance coming 

out of an SEDM even if the SEDM is biased when compared with the unrestricted estimator.  

The prior integrated mixed estimator (PIME) of Mittelhammer and Conway is implemented 

here because it is designed to overcome some of the conceptual limitations of the original Theil 

and Goldberger mixed estimator. The first reduced form equation for the PIME would be 

augmented with the prior information as  









+Π








=








Π 1

1
1

r1

1

u
v

R
*X*y

)10(  

where the new notation is R, a K × K identity matrix and u1, a K × 1 disturbance vector with 

E[u1] = δδδδ and cov(u1) = ΩΩΩΩ, a positive definite matrix.  The PIME estimator is then 

(11) ΠΠΠΠ1P = (σ -2 X* ′ X*  +  R′ΩΩΩΩ-1R)-1(σ -2 X* ′ y*1 + R′ΩΩΩΩ-1ωωωω) 

where cov(v1) = σ2I and ωωωω would be the researchers best guess as to the value of RΠΠΠΠ1.  The 

covariance of the PIME estimator is ΛΛΛΛ-1ΨΨΨΨuΛΛΛΛ-1 with ΛΛΛΛ = ΨΨΨΨu + R′ΩΩΩΩ-1R.  

To operationalize the PIME, the first and second moments of the subjective prior distribution 

on ΠΠΠΠ1r are needed.  Consequently, the PIME is the next logical step in the stochastic EDM 

(SEDM) analysis since in an SEDM an entire distribution on the prior of ΠΠΠΠ1r is generated.  In this 

context the prior expected value of ω within the PIME framework is ωωωω = ΠΠΠΠ1r.  Furthermore, 

                                                                                                                                                             
4 In the normal context, where the same data has been used to estimate structural parameters, this is an 
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because of the sampling techniques, an estimate of the covariance of the prior distribution on 

ΠΠΠΠ1r, say ΩΩΩΩ̂ , is also easily generated.  Once the PIME is implemented, a simple conservative test 

of the PIME being strong mean square error (SMSE) superior to the unrestricted least squares 

estimator is related to the F test given in equation (9). The test criterion is  

if  f 















>
≤

α reject do
reject not do

 thenK-TK, )5.;(F SMSE superiority 

of the PIME estimator.  Note the appropriate F distribution is a noncentral F distribution with the 

noncentrality parameter equal to .5.  See Mittelhammer and Conway for more discussion. 

The PIME estimator is attractive because it provides a rather simple way of pooling the prior 

information with data to perhaps generate an estimate that has a superior mean square error 

compared to the unrestricted estimator.  Furthermore, because actual data is being used with the 

SEDM, the SEDM is disciplined to be somewhat compliant with the data, a shortcoming of the 

SEDM as pointed out by Davis and Espinoza (1998, 2000). 

 

The Bayesian Approach 

A Bayesian approach is a more sophisticated way of pooling the prior information with data.  

Because the testing procedure has been couched within the context of a reduced form restriction, 

the standard Bayesian techniques found in several textbooks become applicable and so are just 

outlined here (e.g., Judge, et al. Chapter 4).  In a Bayesian analysis, interest centers on estimating 

the entire posterior distribution for the parameter vector of interest, here ΠΠΠΠ1, and not just a point 

estimate.  Let the posterior distribution be given generally as p(ΠΠΠΠ1 | y, M), where y = (y*1, X*) 

and M represents a specific model containing prior information.5  Following standard Bayesian 

                                                                                                                                                             
overidentification test. 
5 The parameter representing the variance is omitted for simplicity. 
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arguments, the posterior distribution can be written as being proportional to the product of the 

conditional likelihood distribution of the data l(ΠΠΠΠ1| y) and the subjective prior distribution p(ΠΠΠΠ1| 

M) or p(ΠΠΠΠ1 | y, M) ∝  l(ΠΠΠΠ1| y) p(ΠΠΠΠ1| M). Once the posterior distribution is obtained, several 

summary measures are useful.  For example, assuming a quadratic loss function, the posterior 

mean E(ΠΠΠΠ1| y, M ) = ∫ ΠΠΠΠ1 p(ΠΠΠΠ1 | y, M) dΠΠΠΠ1 is optimal, which is often referred to as the Bayesian 

point estimate.    

An appealing aspect of the Bayesian approach is that it allows one to make probability 

statements about one model versus another model.  Let Mi denote the ith model.  Using Bayes 

theorem, the probability of the Mi model given the data y can be written as Prob(Mi | y) = 

[Prob(Mi)× p(y | Mi)] / p(y), where the marginal density is p(y | Mi) = ∫  p(ΠΠΠΠ1| Mi) p(y |ΠΠΠΠ1, Mi) 

dΠΠΠΠ1 and p(y) is the data density.  Consequently, the posterior odds ratio between models i and j 

is given as 

)M |(p
)M |(p

)M(Prob
)M(Prob

)|M(Prob
)|M(Prob

K)12(
j

i

j

i

j

i
ij y

y
y
y

×== . 

The second term in (12) is the ratio of the marginal densities and is often referred to as the 

“Bayes factor.”  Note in case the subjective probability attached to each model is the same, i.e. 

Prob(Mi) = Prob(Mj), the odds ratio is the Bayes factor.  If the odds ratio is less than one then 

support is given for the jth model and if it is greater than one then support is given for the ith 

model. 

Probability statements are also easily developed within the Bayesian framework by 

calculating a highest posterior density interval, for a particular element of ΠΠΠΠ1, 

1

b

a
11 )y,|()()13( ππ=<π< ∫ d  Mpb   a Prob , 
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which, because this is a Bayesian analysis, is interpreted as giving the probability that the “true” 

π1 lies between a and b.  Alternatively, often (13) will be set to some predetermined value, say 

.95, and the values of a and b determined.  For further discussion on Bayesian econometrics see 

for example Judge, et al. chapter four.  

 

An Empirical Illustration with the U.S. Beef Market 

The techniques outlined above are applied to three alternative SEDMs. Each SEDM is 

designed to determine the percentage change in the price of beef attributed to a percent change in 

generic beef advertising in the U.S. beef market.  This market and issue is chosen for three 

reasons.  First, several authors have used EDMs to analyze the impacts of advertising in this 

market (e.g., Chung and Kaiser; Kinnucan, Xiao, and Hsia; Wohlgenant).  However, contrary to 

the conventional wisdom that EDMs are only applied where there is insufficient data to validate 

the model, there is more than enough data for this market to implement the procedures outlined 

here.  Second, there exist numerous structural elasticity estimates in the literature for this 

industry from which the prior distributions may be formed.  Finally, three alternative market 

structures are considered: (i) an isolated structure where the only variables considered 

endogenous are the price and quantity of beef; (ii) a horizontal structure where all meat prices 

and quantities are considered endogenous; and (iii) a vertical structure where the price and 

quantities of beef and cattle are considered endogenous.  These three structures are somewhat 

representative of how EDMs have been implemented.  For example, Lemieux and Wohlgenant; 

Wohlgenant; Chung and Kaiser assume a vertical structure between the beef and cattle.  Piggott, 

Piggott, and Wright assume a horizontal structure between beef, lamb, pork, and chicken.  

Kinnucan, Xiao, and Hsia assume both a vertical and horizontal structure for beef, pork, and 
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chicken but restrict technology to be of the Leontief form.  However, none of these structures 

have been validated so this seems an especially inviting application of the techniques discussed 

above. 

The general EDM can be written as 

DemandPork  Retail   : pppD)2.14(

Demand Beef Retail   : pppD)1.14(

pxd
*
rpr

*
ppp

*
bpb

*
p

bxd
*
rbr

*
pbp

*
bbb

*
b

               X

               X

*
d

*
d

η+η+η+η=

η+η+η+η=

Supply Cattle Farm   :wS(17)

Demand Cattle Farm   :wpD)16(

SupplyPoultry  Retail   :wpS(15.3)

SupplyPork  Retail   :wpS(15.2)

Supply Beef Retail   : wpS(15.1)

DemandPoultry  Retail   :pppD(14.3)

tzs
*
ttt

*
t

txs
*
ttt

*
btb

*
t

rxs
*
nrn

*
rrr

*
r

pxs
*
gpg

*
ppp

*
p

bxs
*
tbt

*
bbb

*
b

rxd
*
rrr

*
prp

*
brb

*
r

                                              Z

                            X

                        X

                      X

                      X

                  X

*
s

*
s

*
s

*
s

*
s

*
d

θ+θ=

λ+λ+λ=

ε+ε+ε=

ε+ε+ε=

ε+ε+ε=

η+η+η+η=

 

Notationally, all variables represent percentage changes.  D* and S* are quantity demanded and 

supplied, respectively; p* and w* are retail and farm level prices, respectively. The subscripts 

indicate the product: b = beef, p = pork, r = poultry, t = cattle, g = hogs, and n = chicken.  The 

capital lettered right hand side variables are considered exogenous vectors regardless of the 

market structure: X*d (retail demand), X*s (retail supply), and Z*s (farm supply).  These vectors 

are defined precisely in the next section.  The retail elasticities are denoted by η(demand) and ε 

(supply).  The farm elasticities are denoted by λ (demand) and θ (supply).6 

                                                 
6 The market is assumed to be perfectly competitive because there appears little evidence in the literature for market 
power. See for example Muth and Wohlgenant or Paul.  



  14  

 

Three Potential Market Structures and the Reduced Form Price for Beef 

Solving different subsets of equations (14.1) – (17) is consistent with making different 

assumptions about the market structure.  The isolated market structure solution is obtained by 

solving (14.1) and (15.1) simultaneously for the reduced form retail beef price equation, 

[ ]

,wpp

wpp)(p)18(

*
sbxs

*
dbxd

*
tbt

*
rbr

*
pbp

*
sbxs

*
dbxd

*
tbt

*
rbr

*
pbp

1
bbbb

*
b

XX

XX

Π+Π+π+π+π=

ε+η−ε+η−η−ε−η= −

 

where Πbxd and Πbxd are the reduced form parameter vectors associated with the exogenous 

vectors of demand (X*d) and supply (X*s), respectively.7  Note in (18) that the price of pork, 

poultry, and cattle are all considered exogenous along with the other exogenous variables. 

The horizontal market structure solution is obtained by solving (14.1)-(15.3) simultaneously 

for the reduced form price equations 
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and the first row corresponds to the price of beef reduced form, which in reduced form notation 

would be, 

.wwwp)19( *
sbxs

*
dbxd

*
nbn

*
gbg

*
tbt

*
b XX Π+Π+π+π+π=  

                                                 
7 The focus on the price of beef is mainly to simplify the illustration but also because of the data limitations of 
quantities at the retail level and the analytical implications that are nicely demonstrated in Brester and Wohlgenant. 
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In addition to several of the arguments of the reduced form equation in (19) being different than 

in (18), the reduced form parameter values will be in general different even for those variables in 

common. 

The vertical market structure solution is obtained by solving (14.1), (15.1), (16), and (17) 

simultaneously for the reduced form prices 
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so the first row would correspond to the price of beef reduced form, which in reduced form 

notation would be, 

,ppp)20( *
sbzs

*
sbxs

*
dbxd

*
rbr

*
pbp

*
b ZXX Π+Π+Π+π+π=  

with Πbzs being the reduced form parameter vector associated with the exogenous farm supply 

vector Z*s.  Once again, several of the arguments of the reduced form equation in (20) are 

different from those in (18) and (19) while some are the same.  However, again, the reduced 

form parameter values will be in general different even for those variables in common. 

 

Data and Prior Distributions 

To obtain prior distributions on the structural elasticities or parameters, and therefore, 

reduced form parameters, the procedures outlined in Davis and Espinoza (1998), and Zhao, et al. 

were followed.  Specifically, after reviewing the literature, nineteen published articles on 

different aspects of the beef industry were identified as providing insights into different 

important variables and enough information to obtain their corresponding elasticity estimates.  
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Based on the literature review, seventeen variables were identified as potentially important to be 

used in the empirical analysis.   

For the estimation component of the analysis, quarterly data was collected on all seventeen 

variables for the period 1976.1-1993.4 because this period overlaps with a majority of the data 

sets.   Henry Kinnucan was kind enough to provide a large portion of the data set and it was 

supplemented where needed.  Table 1 gives the variables, their definitions, from which studies 

they were identified, the data source, and the measurement units and based on table 1,  

Xd* = (pcpi*, m*, ab*, ap*, h*, f*), Xs* = (wk*, wl*, we*), and Zs* = (wf*, wc*, ww*). 

 For the prior distribution specification component of the analysis, each study’s structural 

elasticity estimate associated with each variable in table 1 was recorded and summary statistics 

across the studies for each structural elasticity estimate were calculated. All retail demand 

elasticities were Marshallian elasticities, which were either taken directly or derived via 

Slutsky’s equation from data available in the articles.  With the exception of the retail supply 

elasticity provided by Brester, finding retail supply and therefore unconditional farm demand 

elasticities proved challenging.  Though much research has been conducted on the beef 

processing sector, most of this work has estimated cost functions.  While it is not difficult using 

duality theory to convert cost parameter estimates to unconditional elasticities, this usually 

requires additional information.  The only study that provided sufficient information to calculate 

these elasticities was Ball and Chambers. The mathematical appendix provides the derivations 

for obtaining these estimates from the Ball and Chambers study.  The farm supply elasticities 

came from Marsh.   

With the summary statistics in hand, next a moment matching procedure was followed 

whereby a prior distribution was chosen for each elasticity.  Each prior distribution was 
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parameterized such that the mean, standard deviation, minimum and maximum values from 1000 

draws from the distribution closely matched those of the summary statistics for the 

corresponding elasticity.  Either a Beta or uniform distribution was used for all distributions.  

The Beta was used whenever there was more than one estimate of an elasticity available because 

it is quite flexible in terms restricting the range of the distribution to lie between a minimum and 

maximum value.  The uniform was chosen whenever there was only one estimate of an elasticity 

available.  The endpoints for the uniform were then selected to be plus and minus twice the 

estimate.  Table 2 gives the summary statistics from the prior distributions for the structural 

elasticities.   

 

Estimation  

Before presenting the results, two estimation issues need to be briefly mentioned.  First, it is 

known that Marshallian demand functions are homogeneous of degree zero in prices and income 

and supply functions are homogeneous of degree zero in all prices.  Consequently, imposing 

homogeneity by deflating variables can lead to a specification subtlety that needs to be 

explained.  In solving for the equilibrium market price, the demand and supply functions are set 

equal to each other and solved.  However, if the endogenous price is deflated by one price in the 

demand function and a different price, as it should be, in the supply function, then technically the 

deflated endogenous price is no longer the same in each function.  This can be easily overcome 

with a little math as is demonstrated in the appendix, however it implies that the dependent 

variable in all equations estimated is the nominal price of beef and the deflators become 

additional regressors. 
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Second, while the unrestricted OLS estimation and PIME estimation is straightforward and 

requires no further explanation, the Bayesian estimation deserves a short discussion.  One of the 

main criticisms of Bayesian estimation has been implementation difficulty.  Though this may 

have been true just a few years ago, this is no longer the case.  There have been great advances in 

the theory and implementation of Bayesian techniques using numerical methods within the last 

decade and several user friendly programs are now available (see Geweke 1989, 1999; Koop 

1994).  In this paper, the Bayesian Analysis, Computation, and Communication (BACC) program 

developed by John Geweke is implemented (see Koop 1999 for a review).  The BACC program 

uses Monte Carlo importance sampling techniques in generating the prior and posterior 

distributions.  The present analysis is a straightforward application of the normal linear model in 

BACC.  If the reduced form price equation model is written in standard notation as y = Xβ + u, 

the errors are assumed to obey u | X ~ N(0, H -1⊗  IT) and H is the k × k precision matrix.  The 

prior distributions are assumed to be of the Normal-Gamma form such that β ~ N(β , H –1) and 

H ~ W(S –1, v), with W indicating the Wishart distribution, and v is the degrees of freedom 

parameter.  In the present context the priors β come from the SEDM outlined above and, because 

of the sampling approach in generating these priors, this also provides an estimate of S.  For the 

Monte Carlo integration, 10,000 samples are drawn for the prior and posterior and the BACC 

software allows the estimation of all the statistics mentioned in the previous section.8  

                                                 
8 The BACC software and manuals are available free at http://www.econ.umn.edu/~bacc/bacc99/. The software is 
obtainable as a Gauss module and thus all of the Bayesian analysis is done in Gauss.  
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Results 

Tables 3, 4, and 5 give the results for the three potential market structures. Each table 

contains the mean and standard deviation of the prior distributions of the restricted reduced form 

or SEDM estimates.  The tables also contain the unrestricted reduced form, the PIME, and the 

Bayesian point estimates, along with their standard deviations, the squared correlations, and the 

F test statistics. 

Table 3 gives the results for the isolated market structure.  Comparing the restricted prior 

(SEDM) results with the unrestricted results reveals that all signs are in agreement with two 

exceptions (pork advertising and energy price).  In terms of significance, 10 of the 12 variables 

in each model are insignificant.9  There are four cases of inconsistent results across the two 

models: the two deflators are significant in the restricted model but insignificant in the 

unrestricted model whereas the female participation and cattle price are insignificant in the 

restricted model but significant in the unrestricted model.  As indicated in brackets, there are 

only two cases where there is a statistically significant difference between the individual 

restricted estimates and the unrestricted estimates (pork advertising and cattle prices).  The joint 

F-test that all the restricted parameters estimates are not significantly different from the 

unrestricted estimates is rejected at any reasonable significance level, given the p-value 

associated with the test statistic 6.55 is .29×10-6.  Thus the restricted model is rejected.  

However, this rejection is due to the differences with respect to pork advertising and cattle 

prices.  If the F-test is conducted on all parameters except these two, then whether or not the 

models are considered significantly different depends on what is considered a reasonable level of 
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significance, given the p-value is .09 for the test statistic 1.75.  At a minimum, the priors on the 

pork advertising and cattle price parameters have been identified as potentially problematic.  The 

PIME and Bayesian results combine the prior estimates with the data.  All signs are in agreement 

with the priors and not too surprisingly more parameters are significant.  Furthermore, because 

the priors are combined with the data, the parameter estimates magnitudes reflect a moderation 

between the unrestricted and restricted estimates.  As reminder, it is not true that the PIME and 

Bayesian parameter estimates will be bound by the prior (restricted) and unrestricted estimates, 

but for most parameters this is the case.  The non-central F-test of the PIME being strong mean 

square error (SMSE) superior to the unrestricted model is rejected at any reasonable significance 

level, given the p-value associated with the test statistic 6.55 is .71×10-5, so the unrestricted 

model is preferred based on the SMSE criterion.  Finally, the adjusted squared correlation 

statistics indicate that the restricted model is not highly correlated with the actual data (.17), 

whereas the unrestricted, PIME, and Bayesian have squared correlations of .63, .58, and .51, 

respectively.  

Table 4 gives the results for the horizontal market structure.  The results are qualitatively 

similar to those at found in table 3, with some exceptions.  Once again, comparing the restricted 

prior (SEDM) and the unrestricted results, all signs are in agreement with the same two 

exceptions (pork advertising and energy price).  In terms of significance, the deflators are again 

the only significant variables in the restricted model and cattle price is the only significant 

variable in the unrestricted model.  Pork advertising and cattle price are again the only two 

variables that have significantly different parameter estimates between the restricted and 

unrestricted models (in brackets).  The joint F-test again rejects the null that the restricted 

                                                                                                                                                             
9 Because of the different philosophical views of statistical significance across sampling, frequentists, and 
Bayesians, the terms “significance” and “insignificance” will be used here to refer to parameter estimates that are at 



  21  

parameters estimates are not significantly different from the unrestricted estimates at the .01 

significance level (i.e., p-value is .86×10-5 associated with test statistic 5.13). However, this 

rejection is due to the differences with respect to pork advertising and cattle price, as the F-test 

statistic of 1.25 has a p-value of .28.  All signs for the PIME are in agreement with the priors, 

with the exception of pork advertising, and many more of the parameter estimates are significant. 

Again, because the priors are combined with the data in the PIME and Bayesian approaches, the 

parameter magnitudes reflect a moderation in general between the unrestricted and restricted 

estimates.  The non-central F-test of the PIME being strong mean square error (SMSE) superior 

to the unrestricted model is again rejected at the .01 significance level, given the p-value 

associated with the test statistic 5.13 is .21×10-4.  The Bayesian estimates all have signs in 

agreement with the priors with no exceptions.  The significant Bayesian estimates are the same 

as those from the restricted and unrestricted models (i.e., the deflators and cattle price).  The 

adjusted squared correlation statistics indicate that the restricted model is more highly correlated 

with the actual data than the isolated model (.47) but not too surprisingly, the unrestricted, PIME, 

and Bayesian estimators have higher squared correlations with the data.  

Table 5 gives the results for the vertical market structure.  Relative to the isolated and 

horizontal market structures, there are more differences between the restricted (SEDM), 

unrestricted, PIME, and Bayesian results based on the vertical market structure, but there are also 

more regressors.  There are four cases of inconsistent signs between the restricted and 

unrestricted models (i.e., pork price, income, pork advertising, and farm supply deflator).  

Similar to tables 3 and 4, the only significant variables in the restricted model are the two retail 

deflators.  Six of the 14 variables have significantly different parameter values between the 

                                                                                                                                                             
least two times their standard deviations and not at least two times their standard deviation, respectively. 
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restricted and unrestricted models (in brackets): pork price, poultry price, income, pork 

advertising, feeder cattle price, and the farm price deflator.  The joint F-test again rejects the null 

that the restricted parameter estimates are not significantly different from the unrestricted 

estimates at the .01 significance level (i.e., p-value is .29×10-5 associated with test statistic 5.38). 

However, this rejection is again due solely to those parameter estimates that are individually 

significantly different.  The hypothesis that the individually insignificant parameters are not 

jointly significantly different is not rejected at any reasonable significance level (i.e., p-value is 

.59 associated with test statistic .85).  All signs for the PIME are in agreement with the priors, 

with the exception of pork price and the farm deflator, and again the PIME has many more 

significant parameter estimates. The non-central F-test of the PIME being strong mean square 

error (SMSE) superior to the unrestricted model is again rejected at the .01 significance level, 

given for the test statistic 5.38 the p-value is .11×10-4.  The Bayesian estimates all have signs in 

agreement with the priors with no exceptions.  The significant Bayesian estimates are the same 

as those from the restricted model and the magnitudes in the PIME and Bayesian estimates again 

reflect a moderation in general between the unrestricted and restricted estimates.  The adjusted 

squared correlation statistics indicate that the restricted model is not highly correlated with the 

actual data (.05), whereas the unrestricted, PIME, and Bayesian have adjusted squared 

correlations of .59, .28, and .22, respectively.  

As indicated, an advantage of the Bayesian approach is that odds ratios can be calculated.  

Table 6 gives the results corresponding to equations (12) and (13). The first row gives the 

marginal posterior likelihoods for each model.  The second row gives the prior probability that 

the parameter estimate on beef advertising is greater than zero for each model.  The third row 

gives the posterior probability that the parameter on beef advertising is greater than zero for each 
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model.  Assuming equal priors for the three models, equation (12) implies that the posterior odds 

ratios for the isolated model relative to the horizontal and vertical models are exp(142.64 –

142.16) = 1.618 and exp(142.64 –137.55) = 162.39, respectively.  The posterior odds ratio for 

the horizontal model relative to the vertical model is exp(142.16 – 137.55) = 100.48.  

Consequently, based on the posterior odds ratios, the isolated model is relatively more consistent 

with the data than the other two models and the horizontal model is more consistent with the data 

than the vertical model.  

In their reply to Griffiths and Zhao, Davis and Espinoza (2000) state that probability 

statements about priors do not necessarily carry over to probability statements about posteriors.  

The results in table 6 illustrate this point.  Using the prior distributions, the probability that the 

parameter on beef advertising is greater than zero is .91, .74, and .91 for the isolated, horizontal, 

and vertical models, respectively. Using the posterior distributions, the probability that the 

parameter on beef advertising is greater than zero is .94, .83, and .82 for the isolated, horizontal, 

and vertical models, respectively.  

 

Conclusions 

One of the main limitations of presently implemented equilibrium displacement models (EDMs) 

is their lack of empirical validation.  This paper demonstrates four increasingly sophisticated 

procedures that remove this limitation with some minimal modeling effort.  Two conditions are 

required for these procedures to be applicable: (i) the researcher must have a sincere interest in 

comparing the predictions of the EDM with the actual phenomenon under consideration; (ii) 

some data must be available on one endogenous variable and the exogenous variables in the 

EDM.  If the first condition is satisfied, the second condition is often easily satisfied. 
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The procedures are illustrated by analyzing three potentially valid EDMs of the U.S. beef 

market.  The results suggest that an isolated stochastic equilibrium displacement model (SEDM) 

that only treats beef price and quantity as endogenous is more consistent with the data relative to 

a horizontal SEDM that treats all meat prices and quantities as endogenous and relative to a 

vertical SEDM that treats beef and cattle price and quantities as endogenous.  The horizontal 

SEDM is also more consistent with the data relative to the vertical SEDM. 

The validation procedures implemented here imply two important points that are not 

obtainable by doing just a standard EDM or SEDM analysis.  As Davis and Espinoza (1998) and 

Zhao, et al. discuss, the standard EDM analysis that relies on one or a few set(s) of point 

estimates can give the impression of significance when none exist.  However, the calculation of a 

distribution on the prior in the SEDM analysis a la Davis and Espinoza (1998), and Zhao, et al. 

allows for the determination of significance, and in the present case, many of the reduced form 

parameter estimates are insignificant in the SEDM.   This lack of significance may be considered 

a negative if one stops at the Davis and Espinoza and Zhao, et al, type of SEDM analysis. 

However, if one goes beyond their analysis and validates the model as is done here, these 

insignificant results turn out to be a positive, because most of the unrestricted estimates are also 

not significantly different from zero.  Thus in general and observationally the individual 

parameter estimates coming from the SEDM are statistically consistent with the data.  Second, 

the Bayesian validation procedures also demonstrate that inferences (e.g., probability statements 

as in Griffiths and Zhao) based on prior distributions in isolation (i.e., SEDMs) can be 

misleading when compared to inferences based on posterior distributions, as pointed out by 

Davis and Espinoza (2000). 
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Table 1. Variable Definitions, Study Utilization, Data, Sources, and Units 
 

Empirical Analysis  
 
 
 
Variable and Definitiona 

 
 
 

Prior Variable Identification Sourceb 
 

Data Sourcec 
 

Original Units 
    
Retail Sector     

    
p*b =  beef price All Retail Demand Studies Kinnucan, et al. ¢/lb per pound 
    
p*p =  pork price All Retail Demand Studies Kinnucan, et al. ¢/lb per pound 
    
p*r =  poultry price All Retail Demand Studies Kinnucan, et al.  ¢/lb per pound 
    
p*cpi = consumer price index All Retail Demand Studies FRED consumer price index 
    
m* = income All Retail Demand Studies FRED per capita disposable income $1000 
    
a*b = generic beef advertising Brester and Schroeder, Kinnucan,et al. Kinnucan, et al. $1000 
    
a*p = generic pork advertising Brester and Schroeder, Kinnucan,et al. Kinnucan, et al. $1000 
    
h* = health information index Capps, Kinnucan,et al., McGuirk, et al. Kinnucan, et al. weighted average number of articles on 

cholesterol 
    
f* = female labor participation McGuirk, et al. BLS Women overage of 20 in labor force 
    
w*k = processing capital price  Ball and Chambers FRED Producer Price index for capital goods 

(1982-84 base) 
    
w*l = processing labor price Ball and Chambers, Kinnucan et al. Kinnucan, et al. Wage rate in meat packing $/hr. 
    
w*e = energy price Ball and Chambers Kinnucan, et al. Energy price index (1982-84 base) 
    

 
 



 

 

 
 
Table 1. Continued 

 
Empirical Analysis  

 
 
 
Variable and Definitiona 

 
 
 

Prior Variable Identification Sourceb 
 

Data Sourcec 
 

Original Units 
    
Farm Sector     

    
w*t= cattle price Brester, Marsh NASS Prices received by farmers, $/cwt. 
    
w*g = hog price Theory NASS Prices received by farmers, $/cwt. 
    
w*n = chicken/turkey price Theory NASS Prices received by farmers, $/lb. 
    
w*f = feeder cattle Brester, Marsh USDA Red Meat 

Yearbook 
Slaughter Steers Nebraska Direct, $/cwt. 

    
w*c = corn price Marsh NASS Prices received by farmers, $/bu. 
    
w*w = farm labor price Theory NASS Farm wage index (1982-84 base) 

 
a  All variables are expressed as percentage change in the empirical analysis. b  Retail Demand Studies: Alston and Chalfant, Brester and 
Schroeder, Brester and Wolhgenant, Capps and Schmitz, Choi and Sosin, Eales and Unnevehr (1988,1993), Gao and Shonkwiler, Hahn (1994, 
1988), Kesavan, et al., Kinnucan, et al., McGuirk, et al., Moschini, Moro, and Green, Moschini and Meilke, Thurman. Retail Supply Studies: 
Ball and Chambers, Brester. Farm Demand Studies: Ball and Chambers. Farm Supply Studies: Marsh. c  Federal Reserve Economic Data 
(FRED), Bureau of Labor Statistics (BLS), National Agricultural Statistical Service (NASS). 
 



Table 2.  Summary Statistics on Prior Distributions of Structural Parameters 
 

Retail Demand 
 

Price 
 

Advertisement 
   

 Beef Pork Poultry Beef Pork Incomea Health Female 
Beef ηbb ηbp ηbr ηbba ηbpa ηbm ηbh ηbf 
    mean -.846 .05 .013 .0028 .012 .98 -.19 -.39 
    variance (.072) (.925) (.013) (.32E-5) (.25E-6) (.55) (.04) (.05) 
    range [-1.27, -.45] [-.12, .54] [-.13, 36] [.0003, .006] [.003, .002] [.13, 2.09] [-.58, -.0005] [-.78, -.0006] 
         
Pork ηpb ηpp ηpr ηpba ηppa ηpm ηph ηpf 
    mean .05 -.83 -.05 -.004 -.0002 .59 -.07 .37 
    variance (.025) (.11) (.02) (.7E-6) (.7E-6) (.28) (.008) (.042) 
    range [-.12, .54] [-1.23, .17] [-.38, .15] [-.009, .0006] [-.0005, .0001] [.02, 1.88] [-.23, .014] [.0005, .72] 
         
Poultry ηrb ηrp ηrr ηrba ηrpa ηrm ηrh ηrf 
    mean .08 .02 -.46 .006 -.005 .51 .52 1.41 
    variance (.04) (.02) (.15) (.6E-6) (.6E-6) (.64) (.22) (.66) 
    range [-.29, .38] [-.25, .34] [-1.25, -.01] [-.01, -.002] [-.01, -.001] [.57, 1.84] [.004, 1.54] [.003, 2.81] 

 
          

Retail Supply     Price     

 Beef Pork Poultry Cattle Hogs Chickens Labor Energy Capital 
Beef εbb ---------- ------------ εbt ----------- ---------- εbl εbe εbk 
    mean .49   -.09   -.013 .0004 -.01 
    variance (.04)   (.003)   (.0001) (.06E-6) (.37E-4) 
    range [.12, .86]   [-.19, 0.00]   [-.03, 0.00] [0.00, .0008] [-.02, 0.00] 

          

Pork --------- εpp ----------- --------------- εpg --------------- εpl εpe εpk 
    mean  .49   -.09   
    variance  (.04)   (.003)  
    range  [.12, .86]   [-.19, 0.00]  

-------------------Same as Beef------------------ 
                          



 

 

Table 2.  Continued 
Retail Supply     Price     

 Beef Pork Poultry Cattle Hogs Chickens Labor Energy Capital 
Poultry ----------- ---------- εrr --------------- --------- εrk εrl εre εrk 
    mean   .99   -.09  
    variance   (.04)   (.003) 
    range   [.62, 1.36]   [-.19, 0.00] 

-------------------Same as Beef------------------     
 

 
 
Farm Demand Price 
  

Beef 
 

Cattle 
 

Labor 
 

Energy 
 

Capital 
Cattle λ tb λ tt λ tl λ te λ tk 
    mean .026 -.03 .02 -.002 -.06 
    variance (.0002) (.0003) (.0002) (.14E-5) (.0011) 
    range [.0001, .05] [-.06, 0.00] [0.00, .04] [-.004, 0.00] [-.12, -.0003] 
      
Farm Supply                                              Price 
   
 Cattle Feeder Corn Labor  

Cattle θtt θtf θtc θtl  
    mean .17 -.71 -.11 .002  
    variance (.009) (.16) (.004) (.14E-5)  
    range [0.00, .34] [-1.4, -.0001] [-.23, -.0004] [0.00, .004]  

 a  Based on expenditure and income elasticities. 
 

  

 



Table 3.  Results from Isolated Market Structurea 
 (SEDM) 

Restricted Prior 
 

Unrestricted 
 

PIME 
 

Bayesian 
Pork Price (p*p) .04 

(.13) 
.10 

(.06) 
[1.01] 

.09b 
(.05) 

.08 
(.07) 

 

Poultry Price (p*r) .01 
(.09) 

.09 
(.06) 

[1.36] 

.06 
(.04) 

.05 
(.06) 

Beef Advertising (a*b) .002 
(.002) 

.001 
(.001) 
[-1.36] 

.001 
(.001) 

.002 
(.001) 

Pork Advertising (a*p) .0009 
(.0005) 

-.001 
(.001) 
[-3.13] 

.0003 
(.0002) 

.0006 
(.0004) 

Income (m*) .80 
(.67) 

.46 
(.27) 

[-1.26] 

.28  
(.21) 

.37 
(.35) 

Cholesterol (h*) -.16 
(.18) 

-.29 
(.21) 
[-.66] 

-.09 
(.08) 

-.12 
(.13) 

Female (f*) -.32 
(.21) 

-.74 b 
(.35) 

[-1.22] 

-.47 b 
(.09) 

-.42 b 
(.18) 

Cattle Price (w*t) .07 
(.05) 

.31 b 
(.04) 

[6.66] 

.22 b 
(.02) 

.16 b 
(.04) 

Labor Price (w*l) .01 
(.007) 

.07 
(.07) 
[.87] 

.01 b 
(.001) 

.01 
(.006) 

Energy Price (w*e) -.0003 
(.0002) 

.04 
(.09) 
[.48] 

-.0003 b 
(.00002) 

-.0003 b 
(.0001) 

Retail Demand Deflator (p*cpi) .63 b 
(.13) 

.95 
(.69) 
[.44] 

.71 b 
(.03) 

.67 b 
(.13) 

Retail Supply Deflator (w*k) .36 b 
(.13) 

.58 
(.67) 
[.32] 

.29 b 
(.03) 

.33 b 
(.13) 

 
 
 
 
 



 

 

Table 3 Continued 
 (SEDM) 

Restricted Prior 
 

Unrestricted 
 

PIME 
 

Bayesian 
 
Squared Correlation (R2) 

 
.30 

 
.69 

 
.65 

 
.59 

Adjusted Square Correlations ( 2R ) .17 .63 .58 .51 

Ho: Full difference F  6.55   
Hl: Insignificant difference F  1.75   

a  The standard deviation is in parenthesis. The t-test value of the difference between unrestricted and 
restricted parameter estimates is in square brackets. 

b   The parameter estimate is at least twice as large as the standard deviation. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4.  Results from Horizontal Market Structurea 
 (SEDM) 

Restricted Prior 
 

Unrestricted 
 

PIME 
 

Bayesian 
Income (m*) .89 

(.74) 
.55 

(.29) 
[-1.19] 

.42 
(.22) 

.46 
(.36) 

Beef Advertising (a*b) .002 
(.002) 

.0007 
(.0008) 
[-.89] 

.0008 
(.0007) 

.001 
(.001) 

Pork Advertising (a*p) .0006 
(.001) 

-.001 
(.007) 
[-2.37] 

-.0004 
(.0004) 

.00002 
(.0007) 

Cholesterol (h*) -.14 
(.22) 

-.34 
(.22) 
[-.90] 

-.23b 
(.09) 

-.19 
(.15) 

Female (f*) -.21 
(.33) 

-.71 
(.40) 

[-1.26] 

-.44 b 
(.14) 

-.37 
(.24) 

Cattle Price (w*t) .07 
(.05) 

.31 b 
(.04) 

[5.96] 

.22 b 
(.02) 

.17 b 
(.04) 

Hog Price (w*g) .008 
(.03) 

.03 
(.03) 
[.57] 

.03 b 
(.01) 

.02 
(.02) 

Chicken Price (w*n) .005 
(.02) 

.008 
(.03) 
[.10] 

.014 b 
(.006) 

.01 
(.01) 

Labor Price (w*l) .013 
(.009) 

.06 
(.07) 
[.83] 

.016 b 
(.002) 

.01 
(.01) 

Energy Price (w*e) -.0004 
(.0003) 

.02 
(.09) 
[.24] 

-.0005 b 
(.00004) 

-.0005 
(.0002) 

Retail Demand Deflator 
(p*cpi) 

.73b 
(.26) 

.97 
(.76) 
[.32] 

.86 b 
(.09) 

.81 b 
(.20) 

Retail Supply Deflator 
(w*k) 

.46b 
(.23) 

.49 
(.75) 
[.05] 

.44 b 
(.06) 

.44 b 
(.18) 

 
 



 

 

Table 4 Continued 
 (SEDM) 

Restricted Prior 
 

Unrestricted 
 

PIME 
 

Bayesian 

Squared Correlation (R2)  .56 .65 .63 .60 
Adjusted Squared Correlation ( 2R ) .47 .58 .56 .52 

Ho: Full difference F  5.13   
Hl: Insignificant difference F  1.25   

a The standard deviation is in parenthesis. The t-test value of the difference between unrestricted and  
restricted parameter estimates is in square brackets. 

b  The parameter estimate is at least twice as large as the standard deviation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5.  Results from Vertical Market Structurea 
 (SEDM) 

Restricted Prior 
 

Unrestricted 
 

PIME 
 

Bayesian 
Pork Price (p*p) .04 

(.13) 
-.14 
(.07) 

[-2.46] 

-.01 
(.05) 

.02 
(.08) 

Poultry Price (p*r) .01 
(.09) 

.16b 
(.06) 

[2.41] 

.07 
(.04) 

.04 
(.07) 

Income (m*) .82 
(.69) 

-.09 
(.29) 

[-3.04] 

.10 
(.22) 

.23 
(.37) 

Beef Advertising (a*b) .002 
(.002) 

.001 
(.001) 
[-1.19] 

.001 
(.001) 

.001 
(.001) 

Pork Advertising (a*p) .001 
(.001) 

-.001 
(.001) 
[-2.63] 

.0002 
(.0002) 

.001 
(.0004) 

Cholesterol (h*) -.16 
(.17) 

-.34 
(.22) 
[-.81] 

-.08 
(.08) 

-.12 
(.14) 

Female (f*) -.32 
(.22) 

-.74 
(.42) 

[-1.02] 

-.50 b 
(.10) 

-.38 b 
(.19) 

Labor Price (w*l) .01 
(.009) 

.12 
(.07) 

[1.48] 

.0007  
(.002) 

.01 
(.008) 

Energy Price (w*e) -.0006 
(.0008) 

-.13 
(.079) 
[-1.34] 

-.0005 b 
(.0001) 

-.0005 
(.0005) 

 Retail Demand Deflator 
(p*cpi) 

.64 b 
(.13) 

1.04 
(.74) 
[.53] 

.65 b 
(.03) 

.64 b 
(.13) 

Retail Supply/Farm 
Demand Deflator (w*k) 

.37 b 
(.13) 

.22 
(.72) 
[-.21] 

.35 b 
(.03) 

.37 b 
(.13) 

Feeder Cattle Price (w*f) .12 
(.34) 

.35 b 
(.05) 

[4.82] 

.20 b 
(.04) 

.19 b 
(.06) 

Corn Price (w*c) .02 
(.03) 

.02 
(.03) 
[.07] 

.01 
(.02) 

.02 
(.03) 

 
 



 

 

Table 5 Continued 
 (SEDM) 

Restricted Prior 
 

Unrestricted 
 

PIME 
 

Bayesian 
Farm Supply Deflator (w*w) -.02 

(.01) 
.44 b 
(.08) 

[5.66] 

.0005 
(.002) 

-.01 
(.01) 

 

Squared Correlation (R2) .23 .67 .42 .37 

Adjusted Squared Correlation ( 2R ) .05 .59 .28 .22 

Ho: Full Difference F  5.38   

Hl: Insignificant Difference F  .85   
a  The standard deviation is in parenthesis. The t-test value of the difference between unrestricted and 

restricted parameter estimates is in square brackets. 
b   The parameter estimate is at least twice as large as the standard deviation. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.  Bayesian Statistics for Different Models. 
  

Isolated 
 

Horizontal 
 

   Vertical 

Marginal Posterior log likelihoods 142.64 142.16     137.55 

Prior Prob (0 < Beef Advertising parameter)  .91 .74       .91 

Posterior Prob (0 < Beef Advertising parameter) .94 .83       .82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Mathematical Appendix 
 

Retail Supply Elasticity Derivations 
 
From Chambers (pages 169-170), the cost function can be written as the primal/dual problem 

 
(A.1)       C(w,y) = MAX[py - Π (p,w)] 
                     p>o 
                 = p*y - Π (p*,w) 
 
so 
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The first order conditions for (A.1) imply Hotelling’s Lemma 
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 so by the implicit function theorem from (A.4) and also (A.2) 
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where the second line in (A.6) just uses Hotelling’s lemma. Consequently, under perfect 

competition marginal cost (MC) equals price (p), so the supply output price elasticity )( yjε  and 

the jth input price elasticities )( ypε  are, with some simple algebra 
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Now Ball and Chambers use a translog cost specification of the form 
 
(A.9)              C = exp jiijji

2
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Noting that 
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then with some straight forward calculus it can be shown that for the translog 
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Similarly, it can be shown that 
 

j
1

cyyj
j

s
wln
MCln +εγ=

∂
∂ −  

 
so for the translog 
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Ball and Chambers report all of values necessary to implement (A.7.1) and (A.8.1). 
 
 
Retail Demand Elasticity Derivations from the Cost Function 

 
From the cost minimization problem the conditional demand is C

iD (w,y). The unconditional 

demand is obtained by substituting the supply function )w,p(y into the conditional demand or 
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Consequently by the chain rule, the ith input output price elasticity is 
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and the ith input input price elasticity is 
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These conditional elasticities C

ijλ  and iy
Cλ  are reported in Ball and Chambers and are then 

coupled with the estimates of ypε  and yjε  from equations (A.7.1) and (A.8.1). 

 

Homogeneity, Deflation, and the Estimating Equations 

According to consumer theory, the Marshallian demand function D(P,m) is homogeneous of 

degree zero in prices (P) and income (m). According to producer theory the supply function 

)W,p(S is homogeneous of degree zero in p and W. Homogeneity in D can be imposed by 

deflating all arguments by a single price, and usually this is assumed to be an aggregate of all 

other goods whose price is represented by the cpi. Let this price be denoted as pcpi, so the 

demand function can be written as ( )m~,P~D , where P~ is the vector of deflated prices 1
cpipPP~ −•=  

and 1
cpiPmm~ −•=  is the deflated income. On the supply side a similar argument can be made for 

imposing homogeneity but the deflator will be different, say wk. Now the supply function can be 

written as ( )1W,pS − , where p  is the deflated output price 1
kwpp −•= and 1

k11 wWW −
−− •=  



 

 

vector of deflated n – 1 input prices. In equilibrium we want to solve for the endogenous market 

price p, and if the demand and supply functions are in their regular form then D(P,m) = S(p,W) 

implies via the implicit function theorem that there exist a reduced form solution p = f(P-1, m, 

W), where P-1 is the vector of exogenous prices in demand. Alternatively, if homogeneity is 

imposed then setting demand equal to supply yields ( ) ( ).W,pSm~,P~,p~D 11 −− =  Consequently, 

because pp~ ≠  due to different deflators, this equation must be solved for the nominal price. This 

is very simple in the present setting because the equilibrium displacement model is expressed in 

log differentials. Taking total log differentials of both sides of ( ) ( )1d W,pSX~,p~D −=  where for 

simplicity )m~,P~(X~ 1d −= yields *W*pX~*p~ 1wp
*
dxdp −ε+ε=η+η . Now in empirical work for any 

variable )z/zln(zlnzlnz,z 1tt1tt
*
t −− =−= . Consequently, 

( ) ( )[ ]1cpit1tcpittp p/plnp/pln −−−η *
cpitp

*
tp pp η−η= . A similar result can be obtained on the supply 

side. The equilibrium condition can then be written as 

*
t1w

*
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*
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*
dtxd
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*
tp WwpX~pp −ε+ε−ε=η+η−η  which leads to the reduced form price equation  
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As seen in equation (A.13), both deflators are then included as right hand side variables. 



 

 

An important final question that needs to be addressed is how should EDMs or SEDMs be 

interpreted if they are not tested or if they are falsified?  Not testing an EDM or SEDM is not 

necessarily fatal.  It depends on why they are not tested.  EDMs or SEDMs are still very 

appealing analytical tools when there is insufficient data to do estimation and this would be the 

case when there is some ex ante factor that is expected to affect a market that has not been in 

effect long enough to support an econometric type analysis.  For example, Lemieux and 

Wolghenant use an EDM to analyze the impact of PST on the hog market, and at the time this 

analysis was conducted there simply was not enough data available to implement standard 

econometric procedures.  EDMs or SEDMs would seem to be less appealing in an ex post setting 

where there is sufficient data to conduct a standard or prior incorporating econometric procedure.  

If an EDM or SEDM is tested and falsified one can always interpret the results within a ceteris 

paribus comparative static framework.  That is, an alternative interpretation of EDMs is that they 

are a useful tool for signing comparative static relationships when these relationships cannot be 

signed analytically.  In this context the theoretician is taking what are considered reasonable 

values for key parameters and trying to sign the comparative static results, ceteris paribus.  

However, in this interpretation, the quantitative results are an illusion and the analyst should not 

take these results as being quantitatively accurate but only as being qualitatively suggestive.  If 

the analyst takes refuge in this interpretation, then it would seem more appropriate to only report 

the signs and not the magnitudes coming from the model. 

 


