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Crop revenue coverage has continued to expand since its introduction in the 1990s and now accounts for
roughly 85 percent of the $110 billion total insured value in the federal crop insurance program. The vast majority
of this type of insurance is sold with a harvest–price replacement feature that pays indemnities on lost yields at the
higher of the projected or the realized harvest price. Because of the public private nature of the heavily subsidized
program, private companies that market and service the insurance policies cannot compete on insurance offerings
covered under the federal program. Terms of coverage and premium rates are identical across these companies or
approved insurance providers.

One dimension of the federal program that offers potential for more flexible private products is the price
dimension: the manner in which prices that determine insurance guarantees are set. In the federal program, price
discovery for most major crops in important growing areas is determined using a planting–time futures price
(typically the February average) of a harvest–time futures contract (typically the October average of a November
or December contract). However, a one size fits all approach to establishing price guarantees may not align
with the needs of individual producers. A form of insurance that provides flexibility around this point involves
establishing coverage on the basis of a maximum of prices observed over a fixed interval. For example, one
might envision coverage that establishes a projected price guarantee using the highest observed value of a futures
contract between January and May. Coverage could also be based on other functions of prices like geometric or
arithmetic averages.

There are a number of conceptual approaches to measuring the risks associated with averages and order statis-
tics. Options on extrema are often termed exotic options. The pricing of such exotics is an important area of
financial research that requires the analyst to grapple with a number of dependencies. Zhang [8] provides a clear
overview of the pricing of exotic options. It is possible to approach this problem in the crop insurance context by
considering individual months. This leads to a multivariate distribution with important dependencies among the
individual monthly average prices. Alternatively, one may approach the problem in terms of the joint distribution
of the maximum over an interval and the harvest time price.

In this paper, we model the joint distributions using copula functions that capture tail dependence. Though we
have made some assumptions on the form of the copula for convenience, it would be relatively easy to draw on a
wide variety of copulas. Higher ordered but less flexible multivariate copulas that incorporate dependencies among
a range of individual quotes spread over time are considered. Initial results indicate that dependence structures for
policies with exotic price coverage are complex. However, it is possible to price these policies in a simple way
using available financial and statistical tools. These policies provide an appealing alternative to standard revenue
insurance offered under the federal crop insurance program.

1 Pricing Revenue Insurance
As the federal crop insurance program has grown in size, farmers have migrated toward the purchase of revenue
insurance policies. Traditional insurance against crop yields does not necessarily protect the farmer from low
prices. Though prices and yields typically have an inverse relationship, often termed the “natural hedge”, it is
possible for simultaneous declines to occur. Revenue insurance allows the farmer to protect himself from falling
yields and falling prices. The most recent Farm Bill expanded federal crop insurance by adding a “Supplemental
Coverage Option” on top of existing revenue insurance policies and calling for the development of additional
insurance programs.

One of the most widespread revenue insurance products is revenue protection (RP) insurance. Coverage
is available for both enterprise and whole farm units. The premium on these policies is calculated using the
planting–time futures price but includes an adjustment to account for the possibility of a higher harvest–time
price. For crop insurance to be actuarially sound, policies must be priced accurately. Ideally, pricing would occur
at the actuarially fair rate where the premium on the policy is equal to expected loss. The true expected loss is
rarely known and must be estimated. This estimation process depends on probability distributions of, in the case
of revenue insurance, both yields and prices.

We abstract from consideration of the relationship between yields and prices to focus explicitly on dependence
in prices alone. As noted, this is one dimension where private insurance companies can offer policies that differ
from those stipulated under Federal crop insurance. There are several reasons why such policies may be more
attractive from the farmer’s perspective. From a behavioral standpoint, the purchase of insurance policies based
on maxima are “no regret.” The farmer is paid at the best possible price over the interval. In the case of coverage
that depends on an average of prices, the distributions of such averages may have favorable properties. The average
of many independent and identically distributed random variables will have a smaller variance that the individual
random variables themselves. Policies built around these averages could offer a cheaper way for farmer’s to
insure against price risk. There may also be complex interactions between these types of policies and the type of
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expectations specifications described by Just and Rausser [5].
When estimating probability distributions in the context of price risk, it is possible to take either financial or

purely statistical approaches. Financial pricing (market based) typically relies on financial theory for the distri-
bution of prices. The Risk Management Agency (RMA) has employed this technique in their ratemaking. For
example, volatility may be estimated from observed futures prices and then used in simulations under the assump-
tion that prices are distributed lognormally. The assumption of lognormality follows the use of the Black–Scholes
model. In contrast to financial pricing, we make use of what might be termed a purely statistical approach. No
underlying distribution of prices is assumed. Distributions are chosen based on fit criteria and the statistical proper-
ties of prices. While we primarily consider statistical approaches in this paper – aside from our copula simulations
– we are engaged in a broader effort to rate exotic price coverage under both paradigms.

2 Statistical Approaches
To measure price risk under the types of exotic price coverage we propose, it is necessary to be able to accurately
estimate joint distributions of several statistics that are functions of prices. Actuarial soundness of the insurance
program depends on this assessment. Because our present application uses a statistical approach, we do not rely on
economic theory that would imply distributional assumptions for prices. The accuracy of the statistical approach
depends on its flexibility. We would like to be able to capture idiosyncrasies in the marginal distributions and
dependence structures of these functions of prices.

In our first pricing exercise, we estimate eight different models using a variety of univariate distributions.
The goodness of fit of these models is captured by statistics that are functions of the likelihood or the empirical
cumulative distribution function. Given a vector of data x of size n, and a distribution function with k parameters,
the formulas in Table 1 are used to calculate the fit statistics. The first three statistics are based on the likelihood
function L, while the latter three are based on comparison of the empirical distribution function (EDF ) and the
cumulative distribution function (CDF ).

Fit Criteria

Statistic Acronym Formula

Akaike Information Criterion AIC −2 log (L) + 2p

Corrected Akaike Information Criterion AICC −2 log (L) + 2np
n−p−1

Scwarz Bayesian Information Criterion BIC −2 log (L) + p log (n)

Kolmogorov–Smirnov KS supx|EDF − CDF |

Anderson–Darling AD n
∫∞
−∞

(EDF−CDF )2

CDF (1−CDF )
dCDF

Cramér–von Mises CvM n
∫∞
−∞(EDF − CDF )2dCDF

Table 1: Fit Statistics and Formulas

The first eight models do not capture joint dependence between monthly average prices. We also estimate
four models based on copulas, allowing us to account for this structure. Copulas have recently seen increased
application in crop insurance. Goodwin and Hungerford [3] applied copula models to investigate dependence
between yields and prices. A copula is a function that joins two or more marginal distributions to form a single
joint distribution. Comprehensive treatments of the theory of copulas can be found in Cherubini, Luciano, and
Vecchiato [2] and Joe [4] while one of the earliest works on copulas was by Sklar [7]. In what follows, we make
use of the Student’s t or t copula, which is a member of the elliptical copula family. This copula is a generalization
of a multivariate t distribution and is able to capture dependence in extreme values of prices. The t copula is

C(u) =

∫ F−1
v (u1)

−∞
· · ·
∫ F−1

v (un

−∞

Γ( v+n
2 )

Γv
2

√
(πv)n|P |

(
1 +

x′P−1x

v

)− v+n
2

dx (1)

where v is the degrees of freedom, P is the correlation matrix, d is the number of dimensions of the copula, Γ(·)
is the gamma function, x is a vector of data, and F−1v are the marginal quantile functions.

It is well–known that the Gaussian copula is tail independent. The t copula is tail dependent and is generally
more flexible than the Gaussian in terms of the dependence structures it can capture. However, it does impose
symmetry in the tails of the distribution. A brief overview of the features of the t copula is given by McNeil and
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Demarta [6]. While this paper concentrates on a single copula, there are other copulas that could be applied to this
problem and we plan to investigate this issue.

3 Maximum Over an Interval
The data consists of monthly averages for corn and soybean futures contracts from 1960 to 2014 from the Chicago
Board of Trade. Two types of price instruments are considered. Under the first, the insurer pays the higher of the
February or October average futures price. Under the second price instrument, the insurer pays the higher of the
average contract price in October or the maximum of the average prices in January, February, March, or April. We
will refer to the first instrument as the Feb–Oct instrument and the second as the Maximum Over Interval (MOI)
instrument. Prices are normalized about one so that the price charged for coverage is

Coverage Price = (PF − 1)× Commodity Price (2)

The normalizations used to construct the price factors (PF) are

PF =1 + log
PF

PO
(3)

PF =1 + log
max(PJ , PF , PM , PA)

PO
(4)

(5)

where PF is the price factor for a given year and P(·) is the monthly average price in January, February, March,
April, or October. The construction in equation 3 is used for the Feb–Oct instrument and equation 4 for the MOI
instrument.

Because we do not rely on an assumed distribution of prices, we first fit various probability distributions to
these price factors. There are two types of price instruments and two commodities, giving four models. We also
varied the observable history of prices. Each of the four previously mentioned models was applied to both the full
history of prices and a truncated history of prices. In the latter case, the history of price factors is left–truncated
at one. This accounts for the possibility that the price factors may not be observable to certain parties when the
price factor is less than one. After varying the data history, there are a total of eight models estimated in this initial
exercise.

Burr, inverse Gaussian, lognormal, gamma, and Weibull distributions were fit to each set of price factors. These
distributions were chosen because they can capture various types of tail behavior. Estimates of the probability
density functions for each model are given in Figure 1. A comparison of the estimated cumulative distribution
functions with the empirical CDF is shown in Figure 2. The effect of truncation depends largely on the choice
of underlying distribution. Lognormal and inverse Gaussian distributions for truncated data tend to have over–
accentuated modes. The Weibull distribution is fairly consistent across truncated and full data situations.

The best distribution for each model was selected according to fit statistics including the Akaike information
criterion (AIC), corrected Akaike information criterion (AICC), Schwarz Bayesian information criterion (BIC),
Kolmogorov-Smirnov statistic (KS), Anderson-Darling statistic (AD), and Cramér-von Mises statistic (CvM). Fit
statistics for each model with a Feb–Oct price instrument are shown in Table 3. Table 4 contains fit statistics for
the models with MOI price instruments.

In most cases the Weibull distribution has best fit. The primary exception is the estimate using the full history
for the MOI contract for soybeans. In this case the gamma distribution fits best. For some models the Burr
distribution is selected for several criteria. In the cases where it is not clear which distribution is best, we default
to the Weibull distribution. Table 2 gives the parameter estimates for the best distribution for each model.

Parameter Estimates

Price Factor Parameter Estimate Standard Error t Value Approx Pr > |t|

Corn Feb-Oct Truncated
Theta 1.18384 0.02823 41.93 <.0001

Tau 11.04376 2.63746 4.19 0.0002

Corn Feb-Oct
Theta 1.11067 0.02386 46.54 <.0001

Tau 6.70928 0.74893 8.96 <.0001

Soybeans Feb-Oct Truncated
Theta 1.04613 0.11235 9.31 <.0001

Tau 6.04127 2.59018 2.33 0.0280
4



Parameter Estimates

Price Factor Parameter Estimate Standard Error t Value Approx Pr > |t|

Soybeans Feb-Oct
Theta 1.06000 0.02334 45.42 <.0001

Tau 6.59190 0.69484 9.49 <.0001

Corn MOI Truncated
Theta 1.16484 0.05139 22.66 <.0001

Tau 7.32752 1.91734 3.82 0.0005

Corn MOI
Theta 1.14486 0.02482 46.12 <.0001

Tau 6.66723 0.72312 9.22 <.0001

Soybeans MOI Truncated
Theta 1.04261 0.11825 8.82 <.0001

Tau 5.49807 2.24218 2.45 0.0202

Soybeans MOI
Theta 0.02827 0.00550 5.14 <.0001

Alpha 36.20392 7.00072 5.17 <.0001

Table 2: Parameter Estimates for Selected Distributions

In addition to the eight models given above, we also generate four models based on copulas. We consider
both price instruments and both crops. The exercise for pricing the copula based models is slightly different from
previous methods. Instead of fitting distributions to observed price factors, we model the joint distribution of
the average prices from each month. Price factors are generated through simulation following estimation of the
copulas. This modeling approach is able to capture additional information and incorporate it into the estimation
process. Accounting for dependence among monthly average prices suggests increased accuracy in ratemaking.

We fit a t copula to both corn and soybean average monthly futures prices for January, February, March, April
and October. The empirical CDF was used to transform the data prior to estimation. Parameter estimates and
correlation matrices for each crop are shown in Table5. Correlation between October and the other months is
generally stronger for corn than soybeans. Correlation among the first four months of the year is fairly similar
across crops. Scatter diagrams are shown in Figures 3 and 4. Note that in these diagrams p0 denotes the October
price, p9 the January price, p8 the February price, and so on.

The degrees of freedom parameter v that is estimated for each copula is also a general measure of dependence
structures. As the degrees of freedom increase, the t copula converges to the Gaussian copula. Less degrees of
freedom implies an increase in the probability that an extreme event will occur. The degrees of freedom estimates
of 4.4389 for corn and 1.3852 for soybeans suggest that the probability of a tail event is greater for soybeans.

For the first eight models, pricing is accomplished via simulation with 10,000 draws taken from the quantile
function of the best fitting distribution. Table 6 gives the mean of all price factors and the mean of price factors
greater than one. Standard deviations for each group are also shown. For the copula models, 10,000 draws are
taken from the copulas and then raw prices are constructed assuming that prices follow a lognormal distribution
with a mean of 400 and variance of 0.2. To make the price factors from the copula models comparable with those
from the initial eight models, add one to each factor.

Initial results show that the way coverage is constructed, and the assumptions embedded in the parameters, can
have a significant effect on the pricing of insurance contracts. In many cases, the mean price factors for the copula
based models and the initial eight models are considerably different. This difference is economically significant
when viewed with respect to the amount of money in crop insurance programs. These types of insurance contracts
may also be appealing to private insurers. However, the viability of exotic price coverage in crop insurance will
ultimately depend on proper assessment of risk.
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Table 3: Fit Statistics for Feb-Oct Price Factors

All Fit Statistics: Corn Feb-Oct Truncated

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Igauss −63.77660 −59.77660 −59.36281 −56.84513 0.71222 0.59913 0.08064

Logn −64.09163 −60.09163 −59.67783 −57.16015 0.61406 * 0.58536 0.08554

Burr −66.97035 −60.97035 −60.11321 −56.57315 0.68459 0.49699 * 0.07296 *

Weibull −66.98313 * −62.98313 * −62.56933 * −60.05166 * 0.68191 0.49883 0.07336

Note: The asterisk (*) marks the best model according to each column’s criterion.

All Fit Statistics: Corn Feb-Oct

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Gamma −19.46301 −15.46301 −15.23224 −11.44834 0.71935 0.89199 0.12097

Igauss −13.65028 −9.65028 −9.41951 −5.63562 0.95094 1.03133 0.10255

Logn −14.49095 −10.49095 −10.26018 −6.47628 0.84037 1.16830 0.16659

Burr −30.89409 −24.89409 −24.42350 −18.87209 0.58022 * 0.38009 * 0.04451 *

Weibull −30.91775 * −26.91775 * −26.68698 * −22.90308 * 0.58368 0.38221 0.04490

Note: The asterisk (*) marks the best model according to each column’s criterion.

All Fit Statistics: Soybeans Feb-Oct Truncated

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Igauss −59.04031 −55.04031 −54.54031 −52.44864 0.56073 0.39393 0.05593

Logn −60.14000 −56.14000 −55.64000 −53.54833 0.36450 * 0.25433 0.02702

Burr −60.49474 −54.49474 −53.45126 −50.60723 0.38939 0.23810 0.02427

Weibull −60.50001 * −56.50001 * −56.00001 * −53.90833 * 0.38844 0.23785 * 0.02418 *

Note: The asterisk (*) marks the best model according to each column’s criterion.

All Fit Statistics: Soybeans Feb-Oct

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Gamma −38.74367 −34.74367 −34.51290 −30.72901 0.57951 0.25061 0.04044

Igauss −37.47523 −33.47523 −33.24446 −29.46056 0.48120 0.35837 0.03523

Logn −37.46822 −33.46822 −33.23745 −29.45355 0.66105 0.34970 0.05710

Burr −39.44273 * −33.44273 −32.97215 −27.42074 0.41179 * 0.14959 * 0.01888 *

Weibull −39.17579 −35.17579 * −34.94502 * −31.16112 * 0.41193 0.17629 0.02218

Note: The asterisk (*) marks the best model according to each column’s criterion.
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Table 4: Fit Statistics for MOI Price Factors

All Fit Statistics: Corn MOI Truncated

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Gamma −62.39521 −58.39521 −58.03157 −55.22817 0.41291 0.25081 0.03062

Igauss −61.42247 −57.42247 −57.05883 −54.25543 0.50956 0.33340 0.03317

Logn −62.15130 −58.15130 −57.78767 −54.98427 0.42140 0.26935 0.03354

Burr −63.35048 −57.35048 −56.60048 −52.59992 0.36743 0.18029 0.01877 *

Weibull −63.35784 * −59.35784 * −58.99420 * −56.19080 * 0.36499 * 0.18018 * 0.01889

Note: The asterisk (*) marks the best model according to each column’s criterion.

All Fit Statistics: Corn MOI

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Gamma −22.49188 −18.49188 −18.26111 −14.47721 0.59057 0.64551 0.09568

Igauss −19.17333 −15.17333 −14.94256 −11.15866 0.70008 0.75660 0.07195

Logn −19.42225 −15.42225 −15.19148 −11.40758 0.68810 0.86940 0.13244

Burr −29.15893 −23.15893 −22.68834 −17.13693 0.36999 * 0.13479 0.01690 *

Weibull −29.17045 * −25.17045 * −24.93968 * −21.15578 * 0.37357 0.13475 * 0.01698

Note: The asterisk (*) marks the best model according to each column’s criterion.

All Fit Statistics: Soybeans MOI Truncated

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Gamma −66.11206 −62.11206 −61.69827 −59.18059 0.38663 0.23805 0.02536

Igauss −64.43540 −60.43540 −60.02160 −57.50392 0.52509 0.44271 0.05564

Logn −65.97741 −61.97741 −61.56362 −59.04594 0.38896 0.24504 0.02626

Burr −66.59649 −60.59649 −59.73935 −56.19929 0.38169 0.22463 0.02346

Weibull −66.60454 * −62.60454 * −62.19075 * −59.67307 * 0.38142 * 0.22458 * 0.02344 *

Note: The asterisk (*) marks the best model according to each column’s criterion.

All Fit Statistics: Soybeans MOI

Distribution -2 Log Likelihood AIC AICC BIC KS AD CvM

Gamma −39.78159 −35.78159 * −35.55082 * −31.76692 * 0.48616 0.22220 0.02983

Igauss −38.67394 −34.67394 −34.44317 −30.65928 0.42070 0.33070 0.02630

Logn −38.65718 −34.65718 −34.42641 −30.64251 0.56961 0.31852 0.04438

Burr −40.12202 * −34.12202 −33.65143 −28.10002 0.38128 * 0.13548 * 0.01612 *

Weibull −39.73975 −35.73975 −35.50898 −31.72508 0.39146 0.19206 0.02407

Note: The asterisk (*) marks the best model according to each column’s criterion.
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Figure 1: PDF Plots
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Figure 2: CDF Plots
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Parameter Estimates: Corn

Parameter Estimate Standard Error t Value Approx Pr > |t|

DF 4.438858 1.868387 2.38 0.0175

Parameter Estimates: Soybeans

Parameter Estimate Standard Error t Value Approx Pr > |t|

DF 1.385201 0.481244 2.88 0.0040

Correlation Matrix: Corn

Oct Apr Mar Feb Jan

Oct 1.0000 0.8488 0.8368 0.8476 0.8479

Apr 0.8488 1.0000 0.9853 0.9806 0.9693

Mar 0.8368 0.9853 1.0000 0.9903 0.9744

Feb 0.8476 0.9806 0.9903 1.0000 0.9876

Jan 0.8479 0.9693 0.9744 0.9876 1.0000

Correlation Matrix: Soybeans

Oct Apr Mar Feb Jan

Oct 1.0000 0.8104 0.7943 0.7946 0.7784

Apr 0.8104 1.0000 0.9883 0.9744 0.9665

Mar 0.7943 0.9883 1.0000 0.9879 0.9840

Feb 0.7946 0.9744 0.9879 1.0000 0.9959

Jan 0.7784 0.9665 0.9840 0.9959 1.0000

Table 5: Copula Parameter Estimates and Correlation Matrices
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Figure 3: Copula Scatter Diagrams
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Figure 4: Copula Scatter Diagrams
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Pricing Estimates from Initial Eight Models

Model Mean PF Mean PF ≥1 SD PF SD PF ≥1

Corn Feb-Oct Truncated 1.1320 1.1680 0.1241 0.0869

Corn Feb-Oct 1.0359 1.1501 0.1804 0.1009

Soybeans Feb-Oct Truncated 0.9685 1.1263 0.1887 0.0894

Soybeans Feb-Oct 0.9889 1.1275 0.1756 0.0886

Corn MOI Truncated 1.0939 1.1799 0.1776 0.1099

Corn MOI 1.0651 1.1745 0.1890 0.1120

Soybeans MOI Truncated 0.9648 1.1402 0.2021 0.0994

Soybeans MOI 1.0242 1.1493 0.1704 0.1194

Table 6

Pricing Estimates from Copula Based Models

Model Mean Feb-Oct PF Mean MOI PF SD Feb-Oct PF SD MOI PF

Corn Copula 0.0406 0.0545 0.0671 0.0771

Soybeans Copula 0.0432 0.0543 0.0877 0.0981

Table 7

4 Conclusion
Though we have only examined price instruments based on a maximum of prices over an interval, similar applica-
tion of these techniques will also allow us to price contracts based on averages of prices. The statistical approach
to this problem shows that these contracts can be constructed fairly easily. In forthcoming work we will expand on
these issues, consider different types of policies, and also compare statistical approaches with financial approaches
based on asset pricing theory (e.g Black–Scholes).

In addition to developing these types of crop insurance policies, it would be useful to have a better understand-
ing of the way that farmers choose insurance policies and manage risk. The expected utility model has received
some criticism based on several studies showing observed behavior that does not conform to its predictions. As
described by Buschena [1], choice patterns may violate transitivity and individuals views of risk may depend on
reference points. In either case, challenges to the expected utility model will have implications for crop insurance
programs. We would be interested in seeing how the demand for various types of policies could change under
different modeling approaches and assumptions.
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