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Price Discovery and Risk Management in the U.S. Distiller’s Grain Markets 

 

Abstract 

In this paper, we evaluate the spatial nature of the price discovery process in regional distiller’s 

grain markets in the US and the price relationships among distiller’s grains, corn, and soybean 

meals since the beginning of the biofuel boom. We use multivariate and pairwise cointegration 

analyses to examine spatial integrations among regions and to investigate whether a stable long-

term price relationship exists in the market.  Error correction models are estimated to determine 

the speed of price adjustment to the long-run spatial equilibrium in the distiller’s grain market. 

Furthermore, Directed Acyclic Graphs are used to determine the contemporaneous causal 

patterns of prices observed at different regions. We also conduct cointegration analyses to 

investigate the long-run relationships between corn, soybean meal, and distiller’s grain prices. 

Overall, results suggest that with a few exceptions, the distiller’s grain market in the US market 

is well-integrated for the ten locations considered. It also appears that while there appears to be 

no long-run relationship between corn, soybean meal, and distiller’s grain prices prior to 2007, a 

much stronger link between them has been established since then, in parallel with the expansion 

of ethanol production and the maturity of DDGS markets. 

 

Keywords: distiller’s grain, DDGS, spatial price relationship, corn, soybean meal, biofuel, 

cointegration analyses, market integration 

JEL codes: Q11, Q14, O13, C5, C00 
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Price Discovery and Risk Management in the U.S. Distiller’s Grain Markets 

 

1. Introduction 

Distillers dried grains with solubles at 10% moisture, or DDGS, is a primary co-product 

of ethanol production using the dry mill process. About one third of the grain used in ethanol 

production comes out as DDGS. Due to its high protein and fat content, DDGS has generally 

been considered a more cost-effective source of energy, amino acids, and phosphorus than either 

corn, soybean meal, or canola meal for animals (Skinner, Weersink, and deLange, 2012), and has 

become an important feed ingredient included into a number of livestock and poultry diets. The 

recent expansion of DDGS has tracked the dramatic increase in ethanol production. According to 

USDA’s Economic Research Service, DDGS production for marketing year 2013/14 was about 

35.3 million metric tons, compared to about 10.1 million metric tons in 2005/06—an over 250% 

increase (USDA, ERS, 2013).  DDGS are increasingly popular among livestock producers as a 

substitute to corn and soybean meal that have experienced higher prices since 2006 (Hoffman 

and Baker, 2010).  

Despite the growing importance of the U.S. DDGS markets, little research has examined 

the price discovery process and spatial price relationships within regional DDGS markets. While 

price in any given market is affected by local supply and demand conditions, the no arbitrage 

condition implies that prices among different locations should differ by no more than the cost of 

transportation and handling when the DDGS markets are liquid and efficient.  Spatial price 

relationships are an important indicator of market competitiveness and whether resources are 

allocated efficiently.  A lack of a long-term price relationship would suggest that buyers and 

sellers bear an increased cost of price risk management, since no one price point tends to be a 
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strong indicator of DDGS prices for the other locations and so these locations need to monitor 

prices at different locations (Schroeder 2009). 

Schroeder (2009) examines the prices of DDGS among 12 spatially separated locations 

between 2001 and 2008, finding that relatively little long-run price relationships exist among 

those regions, which indicates that prices in most regions may have been discovered 

independently.  However, as pointed out by Hoffman and Baker (2010), the Schroeder (2009) 

study includes periods when the DDGS market was less mature.  Spatial integration among 

different regions has likely changed in recent years due to the dramatic increase in DDGS 

production and its increasing popularity as a substitute to corn and soybean meal in feed rations, 

which tends to be highly spatially correlated.  Hoffman and Baker (2010) find evidence that the 

Pearson correlation coefficients between prices of selected DDGS regions are in fact close to 

0.90 during the 2006-2008 period, indicating that the DDGS market may have experienced 

structural breaks since 2006.  Clearly, there is a great need to revisit the problem raised by 

Schroeder (2009). 

A second dimension of price discovery is the degree to which DDGS prices are integrated 

with the prices of other feed ingredients.  Since corn is both the primary grain used in wet- and 

dry-mill ethanol plants (accounting for about 98 percent of all ethanol feedstocks), and the main 

energy ingredient in livestock feed, the price of DDGS should be closely aligned with the price 

of corn, with the difference in prices reflecting the products’ differing nutrient content.  The 

price of DDGS might also be influenced by the prices of other competing feeds (such as soybean 

meal) depending on their price ratios.  Clearly, the surge in ethanol production creates a question 

about the relationships among DDGS, corn, and soybean meal prices and how they have changed 

over time.  Given that DDGS is an increasingly important feed ingredient used in livestock and 
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poultry diets, answering this question is of particularly interest to producers who wish to manage 

the DDGS price risk.  Schroeder (2009) argue that DDGS prices are not effectively cross-hedged 

based on traditional corn or soybean meal futures prices, and suggest that a futures market for 

DDGS should be established for risk management.  The corn distillers’ dried grain futures 

contract, which began on April 26, 2010, clearly responds to the need expressed in Schroeder 

(2009). However, many doubts were raised in this work regarding the hedging effectiveness 

using this rather illiquid futures contract. 

The purpose of this study is to evaluate the spatial nature of the price discovery process in 

regional DDGS markets and the price relationships among DDGS, corn, and soybean meals 

since the beginning of the biofuel boom.  In particular, the study seeks to characterize the 

dynamic integration among multiple DDGS markets and the relative importance of each 

individual market in determining the equilibrium market price. The data used in this study are 

weekly DDGS prices in (1) California Points, CA (2) Central Illinois, (3) East River, SD, (4) 

Iowa, (5) Kansas, (6) Minnesota, (7) Nebraska, (8) Northern Missouri, (9) Portland, OR, and 

(10) Wisconsin from November 2007 to May 2015. These regions represent the majority of the 

DDGS production in the U.S., as well as the main US exporting locations (California Points, CA 

and Portland, OR).  We use multivariate and pairwise cointegration analyses to examine spatial 

integrations among regions and to investigate whether a stable long-term price relationship exists 

in the market.  Error correction models are estimated to determine the speed of price adjustment 

to the long-run spatial equilibrium in the DDGS market.  This provides information regarding 

how quickly price in one location responds to changes in price at other locations. Furthermore, 

Directed Acyclic Graphs (DAGs) are used to determine the contemporaneous causal patterns of 

prices observed at different regions. Finally, we conduct cointegration analyses to investigate the 
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long-run relationships between corn, soybean meal, and DDGS prices. 

Overall, results suggest that with a few exceptions, the DDGS market in the US market is 

well-integrated for the ten locations considered. It also appears that while there appears to be no 

long-run relationship between corn, soybean meal, and DDGS prices prior to 2007, a much 

stronger link between them has been established since then, in parallel with the expansion of 

ethanol production and the maturity of DDGS markets. 

 

2. Data 

We consider weekly DDGS prices from the following 10 locations: (1) California Points, 

CA, (2) Central Illinois, (3) East River, SD, (4) Iowa, (5) Kansas, (6) Minnesota, (7) Nebraska, 

(8) Northern Missouri, (9) Portland, OR, and (10) Wisconsin. The sample consists of data from 

November 3, 2007 to May 2, 2015, resulting in 392 weekly observations. The data are obtained 

from the Agricultural Marketing Service (AMS) of the United States Department of Agriculture 

(USDA). While the AMS reports prices for several other locations, prices of the 10 locations 

selected in this study are consistently available throughout the sample period. Additionally, 

prices prior to November 2007 are also available, but only for a few selected regions.  

Figure 1 shows the geographical location of the 10 regions considered in this study. As 

can be seen, locations (2)-(8) and (10) are located in the Midwest Corn Belt, representing the 

main corn and ethanol/DDGS production in the US. By contrast, (1) California Points, CA and 

(9) Portland, OR are the two main DDGS exporting locations in the US. Over 50 percent of the 

US DDGS is railed first to the West Coast (e.g. California and Oregon) before being shipped to 
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China.1 

Figure 2 plots the logarithm of DDGS price for each location. As can be seen, the sample 

period considered consists of sub-periods when DDGS prices were declining (year end-2007 to 

mid-2009), booming (mid-2009 to year end-2013), busting again (year end-2013-mid 2014), and 

rising again (mid-2014 to mid-2015). While consistent in general pattern, significant regional 

variations are observed for DDGS prices in different locations. Prices in primary producing 

regions are consistently higher than the two exporting locations, with the largest average 

difference being 41 percent for (9) Portland, OR and 36 percent for (1) California Points, CA 

(see table 1, which reports the summary statistics of log DDGS prices for each location). Despite 

being higher in levels, prices in California Points and Portland appear to have the smallest 

variations compared to the other eight locations, as evidenced by the standard deviation of log 

DDGS prices reported in table 1. For the eight producing locations, locations (3) East River, SD 

and (6) Minnesota appear to have the lowest DDGS prices, while prices in (5) Kansas and (8) 

Northern Missouri are slightly higher than the other regions.   

Table 2 presents the pairwise correlation coefficients between prices at different 

locations. As can be seen, the pairwise correlation coefficients are consistently above 0.94 and 

statistically significant at the 1 percent significance level, suggesting a rather strong relationship 

between DDGS prices at two different locations. One of the strongest correlations is found 

between (1) California Points, CA and (9) Portland, OR, with a correlation coefficient of 0.99. 

                                                           
1 “A typical route for DDGS in containers starts at an ethanol plant, with the DDGS being 

loaded into a container that is sent to the Chicago container yards. From Chicago, containers are 

railed to the West Coast and shipped overseas on a container vessel.” See 

http://www.patriotrenewablefuels.com/wp-content/uploads/50_51_Ethanol_Exports.pdf \ 

 

http://www.patriotrenewablefuels.com/wp-content/uploads/50_51_Ethanol_Exports.pdf%20/


7 
 

Given that these are both exporting locations, it is not surprising to find that their prices are more 

closely tied to each other compared to other main producing regions. Other pairs of regions with 

a correlation coefficient close to or above 0.99 include (2) Central IL and (1) Wisconsin, (3) East 

Rivers, SD and (4) Iowa, IA, (3) East Rivers, SD and (6) Minnesota, (3) East Rivers, SD and (7) 

Nebraska, and (4) Iowa and (6) Minnesota, all within the main DDGS producing region. The 

pairwise correlation coefficients in table 2 are consistent with Hoffman and Baker (2010) that 

use a sample period of 2006-2008. 

 

3. Econometric Method 

To characterize the interrelationship among DDGS prices in different locations, we perform a 

cointegration analysis that explores the long-run relationship among endogenous variables. The 

procedure starts with a structural vector autoregression (SVAR) model, as shown in equation (1): 

(1) 𝐴0𝑦𝑡 = 𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡 , 

where 𝑦𝑡 is the price series at each of the ten locations considered in this study,  𝑝 is the lag 

order, 𝐴𝑖 , 𝑖 = 0, … , 𝑝, are 10 × 10 matrices of coefficient parameters, and 𝑢𝑡 is a ten-component 

vector of serially and mutually uncorrelated structural innovations. Without loss of generality, 

the variance-covariance matrix of structural errors is typically normalized such that 𝐸(𝑢𝑡𝑢𝑡
′ ) ≡

𝛴𝑢 = 𝐼𝑘 as long as the diagonal elements of 𝐴0 remain unrestricted. 𝐴0 is essentially a matrix 

that specifies the contemporaneous correlations between different prices. To obtain the reduced-

form representation of equation (1), we pre-multiply both sides of the equation with 𝐴0
−1, and 

obtain equations (2) and (3), 
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(2) 𝑦𝑡 = 𝐴0
−1𝐴1𝑦𝑡−1 + ⋯ + 𝐴0

−1𝐴𝑝𝑦𝑡−𝑝 + 𝐴0
−1𝑢𝑡 , or 

(3) 𝑦𝑡 = 𝐵1𝑦𝑡−1 + ⋯ + 𝐵𝑝𝑦𝑡−𝑝 + 𝜀𝑡, 

 

where 𝐵1 = 𝐴0
−1𝐴1, …, 𝐵𝑝 = 𝐴0

−1𝐴𝑝 and 𝜀𝑡 = 𝐴0
−1𝑢𝑡.  Equation (3) is the usual representation of 

a reduced-form vector autoregression (VAR) model. 

 

3.1 Long-Run Spatial Analysis 

If the endogenous variables (i.e., the ten price series) in equation (3) are all non-stationary, then 

the short-run analysis from reduced-form VAR model is inconsistent. The VAR system may thus 

need to be transformed into a vector error correction model (VECM). With some simple 

algebraic manipulation, we can obtain equation (4): 

(4) ∆𝑦𝑡 = 𝚷𝑦𝑡−1 + 𝐵1∆𝑦𝑡−1 + ⋯ + 𝐵𝑝−1∆𝑦𝑡−𝑝+1 + 𝜀𝑡, 

where ∆ is the difference operator such that ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, 𝚷 and 𝐵1, …. 𝐵𝑝−1 are all 10 × 10 

matrices of coefficients that relate either lagged price levels or lagged price changes to a change 

in current period price ∆𝑦𝑡. Coefficient matrices 𝐵1, …. 𝐵𝑝−1 also represent the short-run 

estimates of the price relationship. 

To determine the long-run relationship among endogenous variables, we need to 

determine the rank of the matrix 𝚷. If 𝚷 equals zero, then there exists no long-run relationship 

and clearly equation (4) becomes a VAR in first differences that can be estimated consistently 

under the usual asymptotic distribution theory. 𝚷 being full rank indicates that 𝑦𝑡 must be 

stationary, as the left hand side of equation (4) as well as other variables on the right-hand side 
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are all stationary. In order for cointegration to exist, the rank of matrix  𝚷 must be less than full 

but not zero. One popular procedure in testing for cointegration relationship is the Johansen 

maximum likelihood estimator.  This procedure starts with testing the null of zero cointegrating 

vector. If the null hypothesis is rejected, we then test whether there is at most one cointegrating 

vector among the endogenous variables. The process continues until either the null is not rejected 

or the matrix 𝚷 has reached full rank. 

 

3.2 Contemporaneous Correlations 

Most procedures for identifying the contemporaneous correlations among endogenous 

variables of a VAR system either impose arbitrary restrictions (based on a recursive VAR) or 

require the researcher to have prior knowledge of the underlying model that may prove to be 

arbitrary (exclusion restrictions or sign restrictions). Following Swanson and Granger (1997), 

this study employs a data-determined approach to determine the contemporaneous correlations 

between endogenous variables. This procedure is based on the conditional and unconditional 

correlations among reduced-form VECM innovations and is extended by Demiralp and Hoover 

(2003) using graph-theoretic methods. Specifically, they examine the validity of applying the PC 

algorithm of Directed Acyclic Graph (DAG) procedure to direct the contemporaneous causal 

patterns. The PC algorithm of Spirtes, Glymour, and Scheines (2000) is the most widely used 

DAG technique and is embedded in the Tetrad V software. The DAG approach, in conjunction 

with the Swanson and Granger (1997) procedure, has been applied in a number of studies in 

applied economics including, among others, Bessler and Yang (2003), Haigh and Bessler (2004), 

and Wang and Bessler (2006). Here we follow Wang and Bessler (2006) and provide a brief 

file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_39
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_8
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_8
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_37
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_39
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_4
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_13
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_43
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_43
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description of the DAG technique using the PC algorithm.   

A directed graph is an assignment of causal flows among a set of variables based on 

observed and partial correlations. Under the context of the current study, five possible 

relationship exists between two variables: (1) no edge relationship, or (𝑋 𝑌), (2) undirected edge, 

or (𝑋 − 𝑌), (3) directed edge (𝑋 → 𝑌), (4) directed edge (𝑋 ← 𝑌), and (5) bi-directed edge (𝑋 ←

→ 𝑌). Arrows are used to indicate causal flows. Starting with an undirected edge between all 

possible pairs of variables, the PC algorithm tests for independence among variables and works 

backward until all edges are specified. Specifically, the technique follows two steps—

elimination and direction. In the elimination stage, for a pair of variables 𝑋 and 𝑌, we remove the 

edge connecting 𝑋 and 𝑌 if one of the following two conditions are satisfied: (1) the 

unconditional correlation 𝜌(𝑋, 𝑌) is not statistically significant, and (2) the conditional 

correlation given a third variable 𝑍: 𝜌(𝑋, 𝑌|𝑍) is not statistically significant. In the latter case, 

there are 𝑁 − 2 possible conditional correlations for an 𝑁-variable system. Instead of using 

standard 𝑡 statistics as in Swanson and Granger (1997), Fisher’s z statistic is used to test the 

significance of conditional correlations. The elimination works backwards until every pair of 

variables is examined.  

In the direction stage, consider a three-variable pair 𝑋 − 𝑍 − 𝑌 such that edges exist 

between 𝑋 and 𝑍 as well as between 𝑌 and 𝑍. However, there is no conditional or unconditional 

correlation between 𝑋 and 𝑌. If 𝑍 is not the conditioning variable that leads to the removal of the 

edge connecting 𝑋 and 𝑍, i.e. 𝜌(𝑋, 𝑌|𝑍) ≠ 0, the triplets should be directed as 𝑋 → 𝑍 ← 𝑌. If 

𝑋 → 𝑍 − 𝑌, and there is no arrowhead at 𝑍, then 𝑍 − 𝑌 should be oriented as 𝑍 → 𝑌. If there is a 

direct path from 𝑋 to 𝑌 via way of other variables, and an edge between 𝑋 and 𝑌, direct 𝑋 − 𝑌 as 
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𝑋 → 𝑌. A demonstration of the validity of this algorithm is presented in Spirtes, Glymour, and 

Scheines (2000).  

The PC algorithm has been tested on simulated data in a number of studies such as 

Spirtes, Glymour, and Scheines (2000). Monte Carlo studies conducted by Demiralp and Hoover 

(2003) show that under the context of a VAR model, the DAG approach based on the PC 

algorithm performs well with a variety of model structures and can be an effective tool when 

specifying the contemporaneous causal patterns among variables.  

 

4. Spatial Integration Results for the US DDGS Market 

Before proceeding to the spatial cointegration analysis, we need to first determine the 

stationarity property of prices. Cointegration only exists if the variables of interest are all non-

stationary and are integrated of the same order. Table 3 reports the results from the augmented 

Dickey-Full (ADF) and Philips and Perron (PP) tests both with and without a trend for log 

DDGS prices, as well as the ADF test results without a trend for log prices in first differences. 

The lag length of the ADF test is selected using the Akaike Information Criterion (AIC) with the 

maximum lag being eight. As can be seen, all log prices are nonstationary at 10 percent 

significance level, while their first differences are strongly stationary.  

Having identified that log prices are all I(1) processes, we proceed to pairwise 

cointegration tests that consider the long-run relationship between the prices in two locations, as 

shown in table 4. Numbers in the table indicate whether a cointegration relationship exists 

between the prices in two different locations. A 1 percent significance level is considered in the 

table. Results from 5 percent significance level identifies significantly less log-run relationship. 

file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_37
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_8
file:///I:/Research/SVAR-3rd%20Essay/2013_SVAR_6.2.docx%23_ENREF_8
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The lag length (ranging from one to four lags) used in each underlying VAR model is selected 

based on AIC. 

As can be seen, the prices in location (1) California Points, CA is cointegrated with the 

prices in locations (2) Central IL, (6) Minnesota, (7) Nebraska, (8) Northern Missouri, (9) 

Portland, OR, and (10) Wisconsin, but not with (3) East River, SD, (4) Iowa, and (5) Kansas. For 

(2) Central IL, it appears that the only location it does not have a long-run relationship with is (7) 

Nebraska. Prices in location (3) East River, SD appear not to be cointegrated with the prices in 

the two exporting locations, (1) California Points CA and (9) Portland, OR. Interestingly, (3) 

East River, SD also has one of the lowest average prices among the ten locations considered in 

this study.  A similar pattern is also observed for location (5), whose prices fail to have a long-

run relationship with prices in the two exporting locations.  In addition to prices in (2) Central 

IL, prices in (7) Nebraska are also not cointegrated with one of the exporting locations, (9) 

Portland, OR. Finally, prices in locations (6) Minnesota, (8) Northern Missouri, and (10) 

Wisconsin appear to be cointegrated with the prices in all other locations. The pairwise 

cointegration test results suggest that while a lack of long-run relationship is found between the 

prices of some locations, the DDGS market appears to be rather spatially integrated overall. 

We next turn to the multivariate cointegration analysis for the ten locations when 

considered in one system, the results of which are presented in table 5. Based on AIC, two lags 

are considered for the underlying VAR system. As can be seen, using a 5 percent significance 

level, eight cointegrating equations are identified, while seven cointegrating equations are 

identified with a 1 percent significance level. The multivariate cointegration analysis in table 5 

provides additional evidence that the DDGS markets in the US are well integrated. 
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We proceed to estimate the VECM model as in equation (3) assuming seven 

cointegrating equations, and use the residuals to determine the contemporaneous correlations 

among the prices of ten locations. Results from the PC algorithm of the DAG analysis is 

presented in figure 3. A five percent significance level is considered.  As can be seen, locations 

(2) Central IL and (7) Nebraska are information sinks, receiving information contemporaneously 

from several other locations but do not pass information to any other locations. Specifically, (2) 

Central IL receives information from several other main producing regions.  (3) East River, SD, 

(8) Northern Missouri, (9) Portland, OR, and (10) Wisconsin. For (7) Nebraska, it receives 

information from (1) California Points, CA in addition to three other producing locations: (3) 

East River, SD, (4), Iowa, and (5) Kansas. It appears that (3) East River, SD plays the most 

active role among the ten locations in contemporaneous information transmission: it not only 

receives information from (5) Kansas, (6) Minnesota, (9) Portland, OR, and (10) Wisconsin, but 

also provides information to (2) Central IL, (4) Iowa, and (7) Nebraska.  

Other locations that both receive information from and pass information to other 

locations at contemporaneous time include (1) California Points, CA, (4) Iowa, (6) Minnesota, 

and (8) Northern Missouri. California Points appears to receive information from (9) Portland, 

OR, and provides information to (6) Minnesota and (7) Nebraska. Iowa receives information 

from (3) East River, SD, and passes information to (6) Minnesota and (7) Nebraska. Minnesota 

receives information from (1) California Points, CA, (4) Iowa, and (10) Wisconsin while passing 

information to (3) East River, SD. Finally, we also observe that there are three locations that only 

provide information to but do not receive information from any other location at 

contemporaneous time, including (5) Kansas that passes information to East River, SD and 

Nebraska, (9) Portland that passes information to California Points, Central IL, and East River, 
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SD, and (10) Wisconsin that passes information to Central IL, East River, SD, and Minnesota. 

 

5. Price Relationship among DDGS, Corn, and Soybean Meal Markets 

Effective DDGS price risk management requires market participants to be aware not only 

of the spatial distribution of DDGS prices, but also of its price relationship with the main input 

commodity, corn, and the main competing feedstuff, soybean meals. Here, we obtain the weekly 

nearby prices of the No.2 Yellow Corn futures contracts and soybean meal futures contracts, 

both of which are traded on the Chicago Board of Trade (CBOT). We use the DDGS price in 

Central IL as the benchmark price for DDGS, as it is close to the corn and soybean meal delivery 

location. The sample period considered is January 2000-May 2015 (801 weekly observations), 

the period when the DDGS price in Central IL is available.  

Figure 4 plots the weekly log DDGS, corn nearby futures contract, and soybean meal 

nearby futures contract prices. All three prices experienced rather dramatic rises and drops. 

Three peaks are observed in corn prices: one in mid-2008, one in mid-2011, and another in mid-

2012. Corn prices during these three periods are in rather comparable levels. By contrast, the 

highest price in DDGS market is observed in 2012, significantly higher than prices in other 

periods. A dramatic decline occurred to DDGS prices in the second half of 2014, dropping close 

to 100% in less than six months. While similar price patterns are observed in the corn and 

soybean meal market during the same timeframe, the magnitudes of price drops in these two 

markets are never as big as in the DDGS market. 

We conduct the multivariate cointegration analysis for DDGS, corn, and soybean meal 

prices using the Johansen ML procedure, the results of which are shown in table 6. For the whole 
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sample period (January 2000-May 2015), four lags are selected based on AIC and one additional 

lag is added to remove autocorrelation in residuals. As can be seen from panel A of table 6, we 

fail to reject the null hypothesis of at most zero cointegration equation among the three prices 

when using a one percent significance level. However, one cointegration equation is identified 

when using a five percent significance level. This long-run relationship may be written as 

log(𝐷𝐷𝐺𝑆) − 0.35 log(𝑐𝑜𝑟𝑛) − 0.71 log(𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑚𝑒𝑎𝑙) + 1.23 = 0. The numerical 

interpretation is that, in the long-run, a 1 percent increase in corn and soybean meal prices may 

lead to a 0.35% and 0.71% increase in the price of DDGS, respectively. In addition, DDGS 

prices respond negatively to this long-run relationship, while soybean meal prices respond 

positively to the cointegration equation. The response of corn prices is not statistically 

significant. 

We further divide the sample into two sub-periods: one from January 2000-December 

2006, and the other from January 2007 to May 2015. The two sub-periods consist of 365 and 436 

observations, respectively. As can be seen in figure 2, the first sub-sample represents a period 

with relatively smaller price volatility for all three markets, while in the second sub-sample, the 

volatility dramatically increases and the prices of the three commodities are generally at much 

higher levels.  

Cointegration testing results are presented in panels B and C of table 6 for the two sub-

periods. No long-run relationship is identified among corn, soybean meal, and DDGS prices 

during the first sub-sample, while one cointegration equation is identified for the second sub-

period using a five percent significance level. The long-run relationship during this period may 

be written as log(𝐷𝐷𝐺𝑆) − 0.51 log(𝑐𝑜𝑟𝑛) − 1.06 log(𝑠𝑜𝑦𝑏𝑒𝑎𝑛 𝑚𝑒𝑎𝑙) + 4.21 = 0, implying 

that a 1 percent increase in corn and soybean meal prices may lead to a 0.51% and 1.06% 
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increase in DDGS prices in the long-run, respectively. DDGS prices respond negatively to this 

long-run relationship, while both corn and soybean meal prices respond positively. Testing 

results for the two-sample periods clearly indicate that a closer link has been established as 

ethanol production expands and the DDGS market matures. 

 

6. Conclusions 

In this study, we examine the price discovery and spatial price integration in the US 

DDGS market. Ten locations are considered, including eight producing regions and two 

exporting locations:  (1) California Points, CA (2) Central Illinois, (3) East River, SD, (4) Iowa, 

(5) Kansas, (6) Minnesota, (7) Nebraska, (8) Northern Missouri, (9) Portland, OR, and (10) 

Wisconsin from November 2007 to May 2015. Pairwise cointegration results suggest that with a 

few exceptions, prices are cointegrated between the prices from two different locations.  

However, it appears that prices at (3) East River, SD, and (5) Kansas are not cointegrated with 

the prices at two exporting locations: (1) California Points, CA, and (9) Portland, OR. With the 

exception of (2) Central IL and (7) Nebraska, cointegration is found between pairs of prices from 

locations within the main producing region. The multivariate cointegration analysis suggest that 

for the ten price series, there exists seven cointegration equations when using a 1 percent 

significance level and eight cointegration equations when using a five percent significance level. 

Overall, both pairwise and multivariate cointegration analyses suggest that the DDGS market in 

the US is well-integrated during the sample period. 

We use the DAG method to analyze the contemporaneous price relationship among the 

10 locations considered in this study. Overall, we identify two information sinks (Central IL and 

Nebraska) that only receive information from but do not pass information to other locations, and 
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three locations that only pass information to but do not receive information from other locations 

(Kansas;  Portland, OR; and Wisconsin). The remaining five locations (California Points, CA; 

East River, SD; Iowa; Minnesota; Northern Missouri) both receive and pass information to other 

locations at contemporaneous time. In particular, East River, SD appears to play the most active 

role as the contemporaneous information transmission mechanism, receiving information from 

four locations and passing information to three other locations. 

We further examine the price relationship among DDGS, corn, and soybean meal 

markets. Corn is the main input in ethanol production, which generates DDGS as a byproduct. 

Soybean meal is the main competing feedstuff to DDGS. We find that for the whole sample 

period (January 2000-May 2015) there exists one cointegrating equation among the price series. 

However, when dividing the sample into two sub-periods (January 2000-December 2006 and 

January 2007-May 2015), it appears that this long-run relationship is driven primarily by the 

price behavior in the later sub-period. Specifically, a 1% increase in corn and soybean meal 

prices will lead to 0.51% and 1.06% increases in DDGS prices, respectively. Further, DDGS 

prices respond negatively to this long-run relationship, while both corn and soybean meal prices 

respond positively. Clearly, a closer link between these three prices has been established as 

ethanol production expands and the DDGS market matures. To effectively manage the DDGS 

price risk, market participants should pay closer attention to both corn and soybean meal prices.
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Tables and Figures 

Table 1. Summary Statistics of Log DDGS Prices in Ten Locations 

Location N Mean Std. Dev. Min Max 

      

(1) California Points, CA 392 5.41 0.26 4.84 5.87 

(2) Central IL 392 5.15 0.31 4.51 5.73 

(3) East River, SD 392 5.06 0.33 4.33 5.68 

(4) Iowa 392 5.10 0.33 4.33 5.72 

(5) Kansas 392 5.18 0.32 4.47 5.78 

(6) Minnesota 392 5.06 0.33 4.27 5.71 

(7) Nebraska 392 5.14 0.33 4.33 5.80 

(8) Northern Missouri 392 5.16 0.29 4.23 5.75 

(9) Portland, OR 392 5.47 0.23 5.00 5.90 

(10) Wisconsin 392 5.11 0.32 4.46 5.68 
Notes: N refers to the total number of observations.  

Table 2. Correlation Coefficients 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(1) 1          

(2) 0.96 1         

(3) 0.95 0.98 1        

(4) 0.96 0.98 0.99 1       

(5) 0.95 0.96 0.97 0.97 1      

(6) 0.95 0.98 0.99 0.99 0.97 1     

(7) 0.94 0.96 0.99 0.98 0.98 0.98 1    

(8) 0.96 0.98 0.98 0.98 0.97 0.98 0.97 1   

(9) 0.99 0.97 0.95 0.97 0.95 0.96 0.95 0.96 1  

(10) 0.96 0.99 0.98 0.98 0.95 0.98 0.96 0.98 0.97 1 
Notes: (1) California Points, CA (2) Central Illinois, (3) East River, SD, (4) Iowa, (5) Kansas, (6) Minnesota, (7) 

Nebraska, (8) Northern Missouri, (9) Portland, OR, and (10) Wisconsin. All correlation coefficients are statistically 

significant at 1% level. 
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Table 3. Unit Root Test Results 

 Levels without Trend Levels with Trend 

First Diff without 

Trend 
    

 

ADF Test 

Stat 

PP Test 

Stat 

ADF Test 

Stat 

PP Test 

Stat ADF Test Stat 

(1) California Points, 

CA -2.06 -1.90 -2.38 -2.15 -9.19*** 

(2) Central IL -2.03 -1.93 -2.19 -2.00 -10.23*** 

(3) East River, SD -2.08 -1.89 -2.17 -1.91 -8.25*** 

(4) Iowa -2.15 -1.92 -1.91 -2.00 -8.60*** 

(5) Kansas -1.65 -1.76 -1.75 -1.79 -12.12*** 

(6) Minnesota -2.36 -2.11 -2.52 -2.19 -9.81*** 

(7) Nebraska -2.09 -1.84 -2.11 -1.87 -9.76*** 

(8) Northern Missouri -1.84 -1.98 -2.02 -2.14 -13.57*** 

(9) Portland, OR -1.55 -1.66 -1.67 -1.84 -11.72*** 

(10) Wisconsin -1.92 -1.93 -2.26 -2.01 -9.83*** 
Notes: colums 2-4 indicate the augmented Dickey-Fuller and Philips-Perron (PP) test results with and without a 

trend for log prices in levels for each region. The last column indicates the ADF test results without a trend for log 

prices in first differences. One, two, and three asterisks indicate statistical signficiance at 1, 5, and 10 percent, 

respectively. The lag length is selected using the Akaike information criterion (AIC). 
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Table 4. Pairwise Cointegration Results 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

           

(1)  1 0 0 0 1 1 1 1 1 

(2)   1 1 1 1 0 1 1 1 

(3)    1 1 1 1 1 0 1 

(4)     1 1 1 1 1 1 

(5)      1 1 1 0 1 

(6)       1 1 1 1 

(7)        1 0 1 

(8)         1 1 

(9)          1 

(10)           
Notes: (1) California Points, CA (2) Central Illinois, (3) East River, SD, (4) Iowa, (5) Kansas, (6) Minnesota, (7) 

Nebraska, (8) Northern Missouri, (9) Portland, OR, and (10) Wisconsin. The number in each cell indicates the 

number of cointegrating equations between each pair of log prices at 1 percent signficiance level. For instance, there 

is one cointegrating equation between DDGS prices in (1) California Points, CA and (2) Central Illinois, and no 

cointegrating equation between DDGS prices in (1) California Points, CA and (3) East River, SD. The lag length is 

selected using the Akaike information criterion (AIC). 
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Table 5. Multivaraite (System-wide) Cointegration Results 

Max Rank 

# of 

Parameters 

Log 

Likelihood Eigenvalue 

Trace 

Stat 

5% Critical 

Value 

1% Critical 

Value 

0 110 8162.30  510.48 233.13 247.18 

1 129 8215.23 0.24 404.62 192.89 204.95 

2 146 8265.86 0.23 303.36 156.00 168.36 

3 161 8311.26 0.21 212.56 124.24 133.57 

4 174 8336.91 0.12 161.28 94.15 103.18 

5 185 8360.96 0.12 113.17 68.52 76.07 

6 194 8381.76 0.10 71.57 47.21 54.46 

7 201 8401.29 0.10 32.50*** 29.68 35.65 

8 206 8410.70 0.05 13.68** 15.41 20.04 

9 209 8415.84 0.03 3.41 3.76 6.65 

10 210 8417.54 0.01    
Notes: The null hypothesis for each row is that there is less than 𝑟 cointegrating equations. When 𝑟 = 0, and the 

trace statistics is greater than the critical value, we reject the null hypothesis that there is less than zero cointegrating 

equations. Here based on the 1% signficiance level, the system contains 7 cointegrating equations. For a signficiance 

level of 5%, there are 8 cointegrating equations among the 10 price sereis. The lag length is selected using the 

Akaike information criterion (AIC). 
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Table 6. Cointegration Relationship among DDGS, Corn, and Soybean Meal Prices 

Panel A. January 2000 – May 2015 (N=801) 

Max Rank 

# of 

Parameters 

Log 

Likelihood Eigenvalue 

Trace 

Stat 

5% Critical 

Value 

1% Critical 

Value 

0 39 4490.33  34.96*** 29.68 35.65 

1 44 4503.07 0.03 9.47** 15.41 20.04 

2 47 4506.36 0.01 2.90 3.76 6.65 

3 48 4507.81 0.00    

       

Panel B. January 2000 – December 2006 (N=409) 

Max Rank 

# of 

Parameters 

Log 

Likelihood Eigenvalue 

Trace 

Stat 

5% Critical 

Value 

1% Critical 

Value 

0 30 1857.18  24.14*** 29.68 35.65 

1 35 1863.63 0.04 11.23 15.41 20.04 

2 38 1867.27 0.02 3.94 3.76 6.65 

3 39 1869.25 0.01    

       

       

Panel C. November 2007 – May 2015 (N=392) 

Max Rank 

# of 

Parameters 

Log 

Likelihood Eigenvalue 

Trace 

Stat 

5% Critical 

Value 

1% Critical 

Value 

0 39 2411.21  32.87*** 29.68 35.65 

1 44 2424.03 0.06 7.23** 15.41 20.04 

2 47 2426.55 0.01 2.18 3.76 6.65 

3 48 2427.64 0.00    
Notes: The null hypothesis for each row is that there is less than 𝑟 cointegrating equations. When 𝑟 = 0, and the 

trace statistics is greater than the critical value, we reject the null hypothesis that there is less than zero cointegrating 

equations. Here based on the 5% signficiance level, both the whole sample period (panel A) and the second sub-

period (panel C) have one cointegrating equations.The lag length is selected using the Akaike information criterion 

(AIC). 
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Figure 1. Geographical Locations of DDGS Prices Considered in This Study 
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Figure 2. Log DDGS Prices at the 10 Locations (Nov 2007 – May 2015) 
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Figure 3 Contemporaneous Correlations among the 10 Price Series 
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Figure 4. Log DDGS, Corn Futures Contract, and Soybean Meal Futures Contract Prices 

(Jan 2000 – May 2015) 
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(a) DDGS Prices (Central IL)
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(b) Weekly Corn Futures Contract Prices
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