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Abstract.To account for the effects of heterogeneity in mieconometric models has been
major concern in labor economics, empirical indabtirganization or trade economics for at
least two decades. The micro-econometric agricallfproduction choice models found in the
literature largely ignore the impacts of unobserkieterogeneity. This can partly be explained
by the dimension of these models which deal witigdachoice sets.g, acreage choices,
input demands and yield supplies.

We propose a random parameter framework to acdouttie unobserved heterogeneity in
micro-econometric agricultural production choicesdels. This approach allows accounting
for unobserved farms’ and farmers’ heterogeneityaifairly flexible way. We estimate a
system of yield supply and acreage choice equatiatisa panel set of French crop growers.
Our results show that heterogeneity significanttters in our empirical application and that
ignoring the heterogeneity of farmers’ choice pes&s can have important impacts on
simulation outcomes.

Due to the dimension of the estimation problem tadfunctional form of the considered
production choice model, the Simulated Maximum likeod approach usually considered in
the applied econometrics literature in such conigexmpirically intractable. We show that
specific versions of the Stochastic Expectation-iézation algorithms proposed in the
statistics literature can be implemented.

Keywords Unobserved heterogeneity, random parameter maalgli€ultural production
choices

JEL codes: Q12, C13, C15



Accounting for unobserved heterogeneity in micro-eenometric agricultural production

models: a random parameter approach

Evidences of the effects of unobserved heteroggeimeitmicro-econometric models are now
pervasive in many applied economics fields. Durihg last two decades applied micro-
econometricians have developed tools to estimatetae@xplicitly accounting for the effects
of unobserved heterogeneity on economic choicess@tools have already been successfully
used in several applied economics domains. Empistadies highlighting the role of
unobserved heterogeneity effects in econometric elsodan be foundge.g, in labor
economics (seee.g, Heckman, 2001), in empirical industrial orgatiza (see,e.g,
Ackerberget al 2007) or in international trade economics (s&¢g, Eatonet al 2011). An
important point is that the effects of unobserveteltogeneity are not simply “extracted”
from the error terms of the considered models. &ledfects also affect the responses of these
models to important interest variables.

Our view is that similar heterogeneity featuresrabterize agricultural production choices.
Farms and farmers are heterogeneous and this peteity affects the way farmers respond
to, e.g, economic incentives. However, the micro-econoimeigricultural production choice
models found in the literature largely ignore thgpacts of unobserved heterogeneity. This
can partly be explained by the dimension of thesdets which deal with large choice sets,

e.g acreage choices, input demands and yield sugplié® so-called multicrop models.

The objectives of this article are twofold. Firste aim at showing that tools recently
developed by micro-econometricians and statistcialiow specification and estimation of
econometric agricultural production choice modetzoanting for farms’ and farmers’
unobserved heterogeneity in a fairly flexible w&gcond, we aim at showing that unobserved
heterogeneity effects significantly matter in engail agricultural production choice models.
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Farmers face different production conditions duehéterogeneous soil quality or usual
climatic conditions across space. They also owfermdiht machineries and different wealth
levels. Finally, farmers are also different becanfstneir various educational level or abilities,
as well as because they may have different obgstivith respect to income risk or with
respect to the leisureersuslabor trade-off. These heterogeneity sources iketylto have
important impacts on farmers’ production choices. dontrol for the effects of these
heterogeneity sources is difficult in practice. sisggested by the short list given above,
potential heterogeneity sources are numerous. &untbre many heterogeneity sources are
not suitably described in the data sets usuallyl useagricultural economists. As a result,
empirical investigators generally rely on a fewiables —e.g farms’ size, farmers’ age,
farmers’ education, farms’ location or, when aualgga rough soil quality indices — to control
for the effects of many heterogeneity sources oméas’ production choices. As a matter of
fact, numerous important heterogeneity sourcesuaobserved for agricultural production
modeling.

Means usually employed by agricultural productiocor®@mists to cope with the
unobserved heterogeneity of farms and farmers depentheir modeling approaches and
purposes. Mathematical programming models useddtyze agricultural supply responses to
economic policies (or other determinants of farrmarsices) are usually built by considering
sets of farms, of small regions or of farm-typesmathematical programming model is
calibrated for each element of the considered s&taoms”. This disaggregated calibration
procedure allows controlling for farms’ and farmensobserved heterogeneity. Of course the
lack of statistical background of the standardbcation procedures is often pointed out as a
major limitation of agricultural supply mathematiggogramming models (Howitt 1995 ;
Heckelei and Wolff 2003 ; Heckelet al 2012). However, the simulations provided by these

models appear to be highly valued by decision-ngakKenese provide disaggregated results



with respect to the simulated effects of agricatupolicy measures on farmers’ choices
across more or less large geographical areas. Bpaoson, the ability of micro-econometric
models of agricultural production choices to acedonfarms’ and farmers’ heterogeneity is
much more limited. As recalled above, only a femtoal variables are usually available to
agricultural production economists. Standard spmtibns of econometric agricultural
production choice models can be defined as a suanddterministic part and of a vector of
random error terms. In these models, farmers’ nesg®to economic (or other) incentives are
governed by the deterministic part.e. by a few statistically estimated parameters —taed
effects of farms’ and farmers’ unobserved heteredgnare “pushed” into additively
separable error terms. This often leads to sinmaratiesults which are unrealistically

homogeneous across farms.

The agricultural production choice models propasetthis article allow accounting for farms’
and farmers’ unobserved heterogeneity while beingpiecally tractable. We adopt the
random parameter modeling framework because itvallestimating standard production
choice models under the assumption that the maatainpeters are farmer specific. Standard
data set, even panel data sets, do not permittcdestonation of the individual parameters.
The objective of the estimation is to charactetize distribution of the model parameters
across the considered farmer population. Theseorangarameter models can be used to
design simulation models in which a parameter veigd'statistically calibrated” for each
sampled farmer, providing reliable alternativedhe calibrated mathematical programming
models usually used for investigating the effedtagyicultural policy instruments.

We illustrate these points through the specificatamd the estimation of a multicrop
econometric model with random parameters. The Maftial Logit (MNL) framework

proposed by Carpentier and Letort (2014) is chadem to its simplicity, to its parameter



parsimony and to the easy interpretation of itsapeters. The specified model being
parametric, we rely on the Maximum Likelihood (Mftamework for its estimation. More
specifically we use estimators and optimization cpoures specifically designed by

statisticians for the estimation of a class of mede which random parameter models belong.

Econometricians mostly use Simulated Maximum Liketid (SML) estimators for estimating
random parameter models when the probability distion of the random parameters is
continuous (Jank and Booth, 2003). SML estimatfiosvasolving the integration problem of
the sample likelihood function of such models wgimulation methods. But they are
intractable for our application due to the compiexaf the sample simulated likelihood
function.

A Simulated Expectation-Maximization (SEM) algonttallows overcoming this problem.
The Expectation-Maximization (EM) algorithm propdséy Dempsteret al (1997) is
particularly well-suited for maximizing likelihoofdinctions involving missing variables such
as random parameters. It consists in iteratingxgeation step (E step) and a Maximization
step (M step) until numerical convergence. The Salybrithms proposed in the statistics
literature allow computing estimators having thgnagtotic properties of SML estimators.
Because they split a large and complex maximizgpiarblem into a sequence of simple —
very simple in our case — maximization problem®ytlare empirically tractable in cases
where SML estimators are very difficult to obtain.

The algorithm we propose is a Stochastic ApproxiomaEM (SAEM) algorithm (Delyon
et al, 1999) using a Conditional M (CM) step (Meng angbR, 1993) and the importance
sampling simulator usee,g, by Caffoet al (2005) or Train (2007, 2008). It is fairly easy to

code and only involves simple operations.



The empirical application considers a sample oh&mecrop producers observed from 2004 to
2007. Obtained results demonstrate that unobsdmtniogeneity matters for the modeling of
micro-economic agricultural production choices,rewethin a small area. Key parameters of
farmers’ choice models are significantly affected unobserved heterogeneity effedts.

exhibit significant variability across farmers. V@so show how random parameter models
can be used to “statistically calibrate” a multgreimulation model based on a sample of
heterogeneous farms. Simulation results show thatimportant for the estimated models to

allow farmers to respond heterogeneously to homegeneconomic incentives.

The general features of random parameter modelprasented in the first section, together
with their main advantages and limitations. Theoséc section presents the multicrop
econometric model that we consider in order to stigate the advantages of accounting for
unobserved heterogeneity in agricultural productidmice models. Identification and
estimation issues are discussed in the third gecfidhe estimation results and their

interpretations are provided in the fourth section.

1. Unobserved heterogeneity and random parameter model

This section presents the main features of randaranpeter models of agricultural
production choices. It also introduces importaetrednts to be used in the presentation of the
estimation issues. We consider short run productimices of farmersi-e. an acreage (share)
demand system and a vyield supply system in the rezapiapplication — and we take for
granted that farmers’ choices rely on heterogenetisrminants. We consider the use of

panel data so that observations are indexedsly...N (farm/farmers) and =1,....,T (year).



A random parameter model is composed of two pdre first part of the model, the
“behavioral model® formally describes the causal process of intesesl defines its
statistical characteristics conditional on the od&ied random parameters (and on the
exogenous variables). In our case the “behaviodaleti is a standard agricultural production
choice model in which some or all parameters aoseh to be farmer specific. Of course, this
requires a careful examination of the statistiegtronships between the random parameters
and the other elements of the modlel, its explanatory variables and error terms. Theséc
part of the model defines the distribution chanasties of the random parameters
(conditional on the exogenous variable®),the “mixing” distribution of the model according

to the terminology used in statistics.

1.1. Behavioral model and “kernel” likelihood function

The equation

(1) ¢ =r(z.8:9)

describes the production choicgsof farmeri in yeart as a known response functioto the
determinants of these choicés,,g ), whether these determinants are observed or het. T
term z,, respectivelyg,, is observed, respectively unobserved. The respéunsctionr is

parameterized by a farmer specific parameter veqtoPr Note that if the random terms

! Or the “kernel model” according to Train’s (20@D08) terminology.
2 The use of latent variables provides an altereativrandom parameter models. In this case thevimehh

model can be defined a5 =r(z,,¢,,7,;0) where@ is a parameter vector to be estimated ands a vector of

latent variables aimed at characterizing heteragerseich as productivity indices. These models &ddnt
variables aiming at capturing unobserved heterdgeréfects in standard models. “Pure” random pastem
models are defined as standard models with indalidpecific parameters. Random parameter modelsireap

unobserved heterogeneity in a flexible way but lmeomore unobserved variables. Latent variable nsode



(e,,q) are unobserved to the econometrician, they arevikno farmeri in t and partly

determine its choices through their effects.ifcquation (1) is a deep structural model, or an

“all causes” model. It defines how the choice afrfari, c,, is caused by its determinants

i
(z,,€ ) up to the characteristics of this farmer and sffarm, g, . Equation (1) can be any
agricultural production choice model where the lifixad parameters, at least some of them,
are replaced by farmer specific parameter veptér

In a short run production choice context, the rangmrameter vectog, mainly captures

the effects of the farms’ natural or quasi-fixedtfat endowments, of the farmers’ production

technologies and of farmers’ characteristics. Tlogerthese effects vary across farms in the

considered population, the more likely is the distion of ¢, to exhibit significant

variability. Our application considers short-rumgrmproduction choices and relies on a short

panel data set,e. with T =4. Farms and farmers’ production technology gengmolves

slowly over time. This allows assuming that thegpagetersg, of the production choice model

remain constant over a few years.

Equation (1) is completed by statistical assumpgtiam order to define the “behavioral

model”. It is assumed here tha; and e, are independent conditionally o . l.e. it is

assumed that controlling for the farms’ and farmehsracteristics ensures that can be

require assumptions related to the sources of @mebd heterogeneity and on how this heterogenéitgta the
considered choices.

% The functional form of can also be defined up to a fixed parameter veotbe estimated, as in our empirical
application. The response function can also depenavailable variables describing the farmers arfantheir

farms (these may also be included in the veador. These extensions are technically straightforwamd are

ignored here to reduce the notational burden.



interpreted as purely exogenous factors — suchaskemnprices or climatic events — affecting

farmers’ choices. It is further assumed tltgt and e, are statistically independent. This
assumption relies on the idea trgyt captures the permanent unobserved charactergdtics
farmeri affecting x, while e, mostly represents the effects of idiosyncraticcksoonc, —
I.e. e, basically is a “standard” error term.

We assume that the probability distribution gf is characterized by the parametric
probability density functiong(e,;p,), implying that the considered “behavioral moded” i
parametric. The termp, is a parameter vector to be estimated. The prbtyabiensity
function of e, and equation (1) allows computing the probabitignsity function ofc,

conditional on(z,,q,) parameterized by,, f(c, |z,.q ;1 ).*

Equation (1) and the independence assumptionsidedabove define a “behavioral model”
which can be used with cross-section data. Withepalata additional assumptions are

required in order to describe the potential dynafeatures of the considered choices. It is

assumed here that the modeled choice processeistiedly static in the sense that ande,

are independent conditionally ap for any pair of yeargs, t) 2 This condition simplifies the

exposition and is assumed to hold in our empiaggilication.

* Assuming that the response functiois invertible ine, , i.e. thate, = r™(z,,¢,;q), this probability density
function is given by
F(C 12,,q:m)=|det(2r e, & a4 )| gein) where g =1(z,,6:q),
the functionr ™ denoting the inverse function & of the response functian
®le. z, is assumed to be weakly exogenous with respea, taccording to the panel data econometrics

terminology.
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The production choices considered in our empir@gaplication are modeled as static
choices because the main dynamic aspects of crogugtion choices are due to crop
rotations. Such dynamic effects can be suitably@pmated by farmer specific parameters
because crop rotation effects imply highly persistiynamic effects in the crop production
choices when farmers base their production choices few rotation schemes. Short run
production choices are repeated each year andwfdlie same scheme as long as the

production technology and the quasi-fixed factate@mment do not change.

These elements also provide arguments for assuthaigthe e, terms are independent
acrosst. Under these assumptions the joint density ofvéior ¢ =(G,,....G; ) conditional

on (9;,z), wherez; =(Z,...,Z; ), is given by:

@  fElz.am)=[].f6G 1% .9mn)
where p =(p,,...,n; ). Of course, farmers’ choices are linked acrose titue to their relying
on the same parameter vecir. But these choices are assumed to be independerdsa

time conditionally ong; .

1.2. Mixing probability distribution

The second part of a parametric random parametelehdescribes the distribution of the

farmers’ specific parameterg, conditional on the explanatory variables. It is assumed
here thatz, and q, are independent becauge contains exogenous determinants of the
production choicec, , i.e. prices and year specific effeétét implies that one just needs a

statistical model for the probability distributia@f g,. As in the empirical application, we

® In the empirical application presented in the neattions,z, contains price variables which mostly vary

across years and year dummies, ensuringdfetd z, can be considered as independent variables.
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define a parametric model by using the probabdiysity functionh(q,;n) which is defined
up to the parameter vectprto be estimated. The probability distributionaf describes the
distribution of g, across the considered famers’ population. The rtieeey, varies across

farmers, the more heterogeneity matters to modeldes’ choicesc, .

Specification of the role ofj, in the model ofc, depends on how unobserved heterogeneity
effects are expected to affect farmers’ choicean&rd panel data models generally assume
that the effects of g, and of e are additively separable i, with e.g
rz,.e.;q)=p()+q +e . In this case the so-called “individual effec}’ does not affect
the effect ofz, on c,, implying homogeneous responses @f to changes inz,. Keane
(2009) discusses this point and highlights a baside-off. Econometric models defined as
the sum of a deterministic pap(z,) and of random terms), +e, are relatively easily

estimated by using semi-parametric estimators.d8ah models do not suitably account for

the effects of unobserved heterogeneity when théisets are not additively separable in the
considered response functions, when %V(Zn,en ;¢ ) actually depends og, . By adopting
a random parameter framework we allow interactloetsveenz, andq, inr(z,.e,;q).

Keane (2009) also argues that the use of relativelglved inference tools as well as
parametric assumptions on the distribution of eredom termge,,q) may be a reasonable

price for buying the opportunity to introduce righobserved heterogeneity effects in micro-
econometric models. Of course, this trade-off iseanpirical issue and depends on the
modeled choice process. But empirical evidencesimaatated in other applied economics

fields suggest that it is worth investigating thiade-off for agricultural production choice
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modeling. This is the main object of this articl&hwa particular focus on the unobserved

heterogeneity effects on farmers’ responses toa@oanincentives.

Of course the choice of the “mixing” probabilitystibution,i.e. the parametric family of the

probability distribution ofq;, is crucial to suitably capture the unobservecetogteneity

effects in the considered model. Being relatedntobgerved variables, this choice basically is
an empirical issue. It can be based on trials ditferent parametric models. Using flexible

parametric model®.qg.finite discrete mixtures of Gaussian models, ar parametric models

appears to be difficult in practice. Such models ealy be used when the dimensiongpfis

very small and with very large samples.

1.3. Likelihood function and statistical calibration of individual parameters
The probability distribution of the dependent vhha c conditional on its observed
determinantsz, is a key concept for estimation purposes. Its itherisnction defines the
likelihood function to be used in the ML framewoilhe density ofc. conditional onz, is

the mean of that of, conditional on(z;,q,) integrated over the distribution qf :

@)  fclz:0)=]fEIz.anh@m)dq.
The term® = (p,,....n; M) is the “complete” parameter vector of the congdeparametric

random parameter model. The integral in equatiprcdanot be solved analytically in general
but this issue is ignored for the moment.

Statistical estimates ob allow the investigation of the distribution of thr@andom
parametery; . First, these estimates can be used to test tpe&ieah relevance of the random
parameter specification by checking whetlgr actually exhibits variations or not. B

contains “variance parameters” then simple paramdésts can be used. Second, the
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estimates ofd can also be used to interpret the empirical caraémthe g, terms.E.g, the
statistical relations among the elementgjofmay suggest interpretations of their variations.

The statistical estimates @f can also be used to “statistically calibrate” mndation

model based on the considered random parameter nidae simulation model can be based

on estimates of the parameters for each sampletefaiThe probability distribution of, is
anex anteor prior distribution of the random parameter. It descritesdistribution ofg; in
the considered farmer population. The minimum m&guared error estimator of for any

farmer taken at random in the considered populagosimply the mean of},, E[q]. Of

course, conditioning on the information set avddator farmeri provides more accurate

estimates,.e. to condition on the information provided bfg.,z) allows defining more
precise estimates af, . By application of Bayes'’ rule the probability dégsunction of q;
conditional on(c,, z) is given by:

) 1@ 12.6:0)=w(C 2,9 9)NQ ) where &, 7,q:0)=- E‘C(clT;_qB;l)

The probability density function(q; |z ,G;0) — which is designated as tle postor a
posteriori density of g, conditional on what is known about farmer can be used to
integrate E[q;|c,z], the best predictor ofy, conditional on(c,,z) according to the

minimum squared prediction error criteribrNote that the “weight term’aw(c;,z,q;0)

" Even a single observatid(g, , z,) for farmeri is valuable.
& We use the term “statistical calibration” instesfd‘estimation” or of “calibration” to refer to theomputation

of the individual parameter estimates for two reasdAn estimate of E[g;|G,Z] is not an estimate ofj;
because its individual features only relies onlimited information available on farmémrovided by(c,,z) .

But, contrary to the calibrated value gf considered in mathematical programming models,etenates of
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directly links theex anteandex postprobability density functions of the random parsne

vector g,. This term plays a crucial “technical” role in athfollows because it allows

defining h(q; |z ,G;0) from h(q;;n).

2. Arandom parameter multicrop model

The multicrop model considered here is a randorarpater version of a model proposed by
Carpentier and Letort (2014). This model combin&teated MNL acreage share model with
guadratic yield functions. This section presentsitiain features of the model to be used in
the empirical application.

The considered multicrop model assumes that farmmeeemize their expected profit in
two steps. First they maximize the expected retoir@ach crop under the assumption that this
return doesn’'t depend on the crop acreages. Sefamigrs allocate land to different crops to
maximize their expected profit provided that thegur implicit acreage management costs.
These management costs provide incentive for cnogrgification.

The crop setk ={0,1,...,K} is partitioned into mutually exclusive crop groupy, for
g0¢={0,1,...,.G}.° The cardinality of Ky is denote byK,. This partition is defined to

account for the fact that different crops requirfecent management efforts and compete
more or less for.g, quasi-fixed input uses. The groups are defirmethat any crop compete

more in the land allocation process with the otlreps of its group than it does compete with

Elq,|c,z] are statistical in the sense that they dependha@stimate o0 as well as on the considered random

parameter model. This model basically is a statistnodel structured by a few micro-economic asgiang.

° This partition allows defining a two-level Nest&tiNL acreage choice model. Further partitioning ¢hep

groups allows defining multi-level Nested MNL aggeachoice model.
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crops of other groups. Group 0 contains a singde,acrop 0. As shown below, crop 0 plays a

specific technical role in the model.

2.1. Multicrop behavioral model
The “behavioral” model of the considered multicrmpdel is an equation system composed
of a yield supply sub-system

(58)  Yii =B+ O~/ 2xy, (W, B )+, for kD% andg= 0,1,.G

and of an acreage share sub-system

a0y
ex T (Z/ exp(p U ))
p(pg,| k,|t) UK g g,i" %t § forkDKg andg: 1'G

(5b) Sit = 4i
Z(fDKg eXp(pg,iﬂ-[,it )thg(ZEDKh exp(,Oh'iTQ’it )) .

where:

(5¢) 7, =p,uB; t12xywWp, —{, +u, fore0%, andg= 0,1,..C.

The yield supply function of crokis obtained by maximizing in the aggregate variable input
level the expected margin of créqunder the assumptions that the considered vyield function
is quadratic in the aggregate variable input level. Appendixe&gnts how the yield supply
functions given in equation (5a) and the expected gross margitidiugs given in equation
(5¢) are derived and linked.

Equation (5a) defines the yield supply function of ckags a function of the (anticipated)

price of cropk, p, ;. of the price of an aggregate variable inpu, , and of a centered error
term, v, . This yield supply function also depends on crop specific yéaeted, ,, and on a

farmer specific random paramefgr. The mean off5 ; being left unrestricted, the year

specific fixed parameterg, , are normalized by the constraiE’E”Tzldkyt =0. Provided that the

16



fixed curvature parametgr, needs to be positive for the yield function to be strictly coacav
the farmer specific paramet#, ; can be interpreted as the maximum expected yield oficrop

on farmi. This term depends on the natural endowment of the farm, eopribduction
technology used by the farmer as well as on his ability.
Equation (5b) defines the acreage share optimal choices based on ¢ute@xprofit

maximization problem given by:
(6) max(sK:kDK)ZO{ZkDK ST it~ Cit (% : kDK) S-t-zkm = }
The optimal acreage shares maximize the expectss gevenue of the farmszKsKnk,it,

minus the implicit management costs of the acredgsce, C, (s : KOK) under the total

land use constrainEkDKs( =1. This constraint defines the crop 0 acreage shar¢he a

function of the other acreage shares wath :l—z::l% . The implicit management cost

function C plays a crucial role here. Under the assumptian ithis strictly convex in the

acreage share vectds, : kOJX), it formally defines the diversification motive tifie crop

acreage. It is defined by Carpentier and Letortl@2®014) as the sum of the unobserved
costs and the shadow costs related to binding @nt due to limiting quasi-fixed factor
quantities or to bio-physical factot3Since these endowments are highly heterogeneuiss, t
cost function needs to be specified as farmer fpedihe functional form of the acreage
share models in equation system (5b) are obtaiyechbosing the following Nested MNL

management cost function:

Cu(skOK) =2 > $0i = W)

(7) -1 -1 = -1
Dy QAL B D, 8B

191t can also be interpreted as a penalty functisrdéviations from some reference acreage vectowtiich the

quasi-fixed factor endowment of the farm is be#esl
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up to an additive fixed cost (Carpentier and Letd@14). The terns, = ka s defines the

acreage share of grogp The strict convexity ofC, is ensured ifp,; 2@, >0 for gOg . All

parameters ofC, are assumed to be farmer specific to ensure ilgyato capture the

heterogeneity of the farms’ capital endowments (aidfarmers’ characteristics as is
discussed below). The heterogeneity of theand p,; parameters plays a crucial role in this
respect’ As shown by equation (5b), these terms largelyerigine the acreage choice

elasticities. The larger they are, the more acredgeces of farmeii are responsive to

economic incentives.

The x, ,—u,, terms represent short run fixed costs per uniaofl of cropk. The y,
terms are defined as random parameters capturopyspecific costs such as fixed costs per
unit of land or unobserved variable costs of ckoghe u,, terms are defined as centered

error terms. These last terms capture the effetteamdom events occurring before the

planting date and affecting the crop planting coste random parametey, ; is part of the

{.; parameter of the gross margipy, (see equation (5c) and Appendix A).

The interpretation ofC, given above relies on the theoretical backgroumdrgin Carpentier

and Letort (2014). In empirical applications, tregmeters of this function may also capture
the effects of other diversification motives of gracreagest.g., it may partly capture the
effects of risk spreading motives (Chavas and H&§0) or of crop rotations (Howitt, 1995).

This provides further arguments for its specificatbased on farm specific parameters. In

" The termp,; equalsa; if groupgis a singletonk.g, we havep,; =a; . If p,; =a; for g0g then equation

(5b) reduces to the Standard MNL acreage sharelrmode=quation (11) reduces to the correspondinepae

management cost function.
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particular, farmers may have heterogeneous atstudevard risk, financial constraints or
personal wealth levels. This basically implies tiet empirical estimates of tig, functions
need to be interpreted as reduced form functiomgudag various diversification acreage
motives while accounting for the heterogeneity loé effects of these motives among the
considered farmers’ population.

Many multicrop models proposed in the literature osore flexible functional forms than
the one considered here (segy, Chambers and Just, 1989 ; Oude Lansink andifrgzrl
1996 ; Moro and Skockai, 2006). As far as shortmicro-economic choices are concerned,
our viewpoint is that it may be more important tw@unt for heterogeneity in the considered
model than to use a highly flexible functional fofior this model. Roughly speaking, if
heterogeneity really matters it may be preferablede a first order approximation for each
sampled farm rather than to use a second ordexippation defined at the sample level.

Note also that the total land use constraints inipdy the terms’, ; and u, , are defined up

to an additive term. The term§; and u,, are normalized at 8.

Additional notations are required to present thstridiutional assumptions defining the
parametric model considered in the empirical apgilbm. The following system level vectors
are obtained from the corresponding crop level ades: s, =(s, :kOX),
Yo =V ' KOK), P =P KOK), V=M, kOK), u, =, kOK\{d}),
B = (A KOK), p;=(p,,:906\{0}), & =({, ' kOK\{O) ., 8 =(5, kOK), and
v =().:kOK). The vectord = (5, :t =1,...T ) contains the year specific effects of the yield

supply functions.

2 These normalization constraints imply that fie, andu, , terms are to be interpreted as differences with

their counterparts for crop 0.
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2.2. Mixing probability distribution density function an d “kernel” likelihood
function

In order to relate the multicrop model of this smttwith the generic choice model in the

preceding section, we finally define the farmerichovectorc, =(y,,s ), the exogenous
variable vector z, =(p,,w,.d,), the error term vectore, =(v,,y,) and the random
parameter vecto, =(Inp,,Ina;,Inp ,§ ). The exogenous variable vecta; includes the
year dummy variablel, .

The response functionconsidered in the preceding section is given lyagqgns (5). It is

parameterized by the random parameter veqgforThe counterpart of in the considered
multicrop model is also parameterized by the fipadameter vectofy,8). As argued in the
preceding section, the tern®, e, and g, are assumed to be mutually independent for
t=1,...,T. Provided that the stochastic events affecting thap qroduction process are
unknown at the time acreage choices are madenibeaassumed that the terms and u,

are also independent foF~1,....T .

As is standard for error termg, and u, are assumed to be normal with ~ N'(0,A) and
u, ~N(0,%¥). The mixing distribution of the model is also assad to be normal with
g, ~ N(a,€). This probability distribution imposes no restiact on the relationships among

the elements ofy,. Due to the log transformation @, a; and p, in q,, these terms are

indeed assumed to be jointly log-normal. This eestineir strict positivity.
Once again, in order to related the multicrop manteisidered here to the more general

framework elements of the previous section, thediparameter vectdty,8) and the distinct
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elements of the parametestss A and ¥ are collected imu. The distinct elements & and

Q are collected im. Finally, 8 = (u,n) defines the “full” parameter vector to be estindate

The inverse function af is required to determine the likelihood functiafsthe considered

model. The elements of, can easily be recovered from equation (5a) wiéedlements of

u, can be obtained by application of Berry's (1994dyide:

Ui = ai‘lx[ln Sit —IN 9y _(1_01/%_;1)’( (In s —In"s, )}
"{k,i ~ P (Bk,i +5—k > 1/2<ykvvizt pil.t * R (goi +5—0 )ia 1/2<yovl‘f Ijo%

(8)
if KOK, .

The density ofc. conditional on(z,,¢ ) can be obtained by applying equation (2) and by
using the density of normal random vectors. lg€ti;B) denote the probability density
function of ¥ (0, B) at u. The density ofy, conditional on(z;,q,) is given by:
9a)  f(yilz.q:n)=¢V,:A)
and that ofs, conditional on(z,,q ) is given by:
©0)  F(512,9:m)=0° ([, A0 ) ([T 53 <0G ).

The mutual independence 8f andu, conditional on(z,,q ) for t =1,...,T yields:
9c) flz.qm)=1¢ 12.90)f& |z.0n)
Finally, the random parameter vector density igily:

(9d)  h(g;im) =¢(q, -&,Q).

3.  Estimation
Estimation of a random parameter model such astieepresented in the preceding section

requires specific estimators due to its specifiacitire. From a theoretical viewpoint, the
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parameters of this fully parametric model can Heciehtly estimated according to the ML

principle. But the ML estimator o® is practically “infeasible” because the individual
likelihood functions,i.e. the f(c |z;0) terms given in equation (3), cannot be integrated

our case, neither analytically, nor numericallye$é likelihood functions must be integrated
with simulation methods, implying that the estintatof @ must be simulated counterparts of

the standard ML estimator.
Furthermore, maximizing the “true” sample log-likelod function,.e. ZiNzlln f(c1z,0)

, in @ would be very difficult in practice, due to thenfitional form of the individual
likelihood functions and due to the dimension6af Specific extensions of the Expectation-
Maximization (EM) algorithm of Dempsteat al (1977) have been proposed in the statistics
literature to compute the ML estimators of randaagmeter models with continuous mixing
probability distributions. We employ a Simulated EEM) algorithm to compute an
estimator whose asymptotic properties are basitiatige of the infeasible ML estimator &f
(see, e.g, McLachlan and Krishnan (2008) for a recent revief the numerous SEM
algorithms proposed in the statistics literature).

This section presents the main features of our coatipn strategy for estimating. The
particular design of the SEM algorithm we use wasnhy based on practical considerations.
Other SEM algorithms may be more efficient fromuanerical viewpoint or may require less
computing time. But this algorithm is relativelysgao code, has good theoretical properties
and seems to perform well in practice, at leasdiaas our limited experience proves this.

Our estimators are built by approximatirfdc, |z ;0) with simulation methods. Provided
that the §;,(m) terms are independent random draws fréwfg;n) for s=1,...,S, the

simulated term:

(10) fy(c;12:0)=S">" f(c 1z.a, @)m)
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is a consistent simulator df(c, | z ;0) whose accuracy increases3nwhile econometricians

usually employ Simulated ML (SML) estimators instlwontext, statisticians usually prefer to
rely on SEM algorithms. These algorithms allow commy estimators which differ from
SML estimators but which basically share the sagyengtotic properties &8andN grows to
infinity, with S rising faster thanN*? (Jank and Booth, 2003). The SML estimatoreds

obtained by directly maximizing the sample simulatdog-likelihood function

In ES,N(G)EZiN:l fs(ci|zi;9). This maximization problem is intractable in oyphcation.

The dimension ob is quite large andh Lg (0) is highly non linear irp .*°

3.1. Basic EM algorithm
The EM algorithm is particularly well suited forroputing ML estimators in cases where the
model of interest involves hidden variables suchaaslom parameters. It consists in iterating
two steps, the Expectation step (E step) and thervzation step (M step), until numerical
convergence. It basically replaces a large ML mobby a sequence of simpler maximization
problems-*

In our case the EM algorithm involves the followitensity:

(11) «(c.,q1z:0)=f@G |z.9 rh@ m)

13 E.g., Train (2009) reports that the variance matrixzafussian mixing probability distribution is nos#éa
recovered by SML estimators, leading to the retitricthat this matrix is diagonal or block-diagoimamany
empirical studies.

“ The EM algorithm also increases the sample logfifiood at each iteration, implying that it genréads to

a (local) maximum of the considered likelihood ftion. SEM algorithms do not necessarily monotomycal
increase the simulated sample log-likelihood dueh® simulation noise. The main drawback of the EM
algorithm is that, albeit it moves quickly into theighborhood of ML estimator df , it numerically converges

slowly within this neighborhood.
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The term «(c,q |z ;0) is the probability density function of the “comi@é dependent

variable vector(c,,q ) conditional on the exogenous variatale As a resulin(c,,q |z ;0),

is the log-likelihood function a@ of (c,q) conditional onz, . At iterationn, provided that

0., is the value ofd obtained at the end of iteration-1, the EM algorithm iterates the

following steps until numerical convergence:

E stepIntegration of the conditional expectations
(12a) E[ln«(c,q17;0)17 .G ;ﬂn_llfflnk(q a1z 0N@lz ¢ 8 _,)q fori=1..N.
M step. Update of the value éf

(12b) 0, =argmaxQ, 0 P,, whereQ,(016,.)= 3" Elln(c,q 12:0) |z G 9, I

The E step thus consists in integrating the indialdog-likelihood functionsnk(c,q, |z ;0)
over theex postdensity h(q|z ,G;0,_,). This integration yields the expectation of log-
likelihood function at@ of the “complete” dependent variable vector ofrfari conditional

on what is known on this farmere. (z,,G), and assuming tha&, _, is the true value of the
interest parameter. The updated value@fis then defined as an ML estimator of based on

the individual expected log-likelihood functionsngputed in the E step.
Equation (11) is specific to models involving hiddeariables. It is used to split the M step

into two maximization problems:

(13a) p,=argmax > E[nf€ Iz a R)E § 6.

and:

(13b) m,=argmax >, E[lnhg )k & 0,
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where®, =(n,,n,). The parameters of the “behavioral model” on the band, and those of
the “mixing” probability distribution model on thether hand can be separately updated.
Moreover, as is shown below, to solve the maxinanaproblems involved in equations (13)
is much simpler than to maximize the correspondsngulated log-likelihood function

In L (6).

3.2. Simulation methods: SEM algorithms

The EM algorithm described above would lead to NHe estimator of @ but it cannot be
implemented. The expectations in equations (12)-(&&8nnot be computed neither
analytically, nor numerically. The SEM algorithm®&ne proposed to extend the use of the
EM algorithms in cases where the E step requiresyiation by simulation method3The
expectations in equation (13) were integrated ly@ortance sampling simulator proposed
by Caffo et al (2005) or Train (2007, 2008). This simulator, fateesignated as theeX
Antdex Post Importance Sampling (APIS) simulator , was usedstimate the conditional

expectations in equations (12)—(13) as well asatibate the farmer’s specific parameters in

our empirical application. It allows integrating yanfunction of (q,,z,G), say
7,(0;) =7(q,,z ,G ), over theex postdensity of the random parametér®), |z ,G ;0) by only
using independent random drawsapffrom theex antedensity h(qg;n), i.e. by simply using
the g, ;(n) draws. Equation (5) allows showing that

(14)  El7(a)17.6:0]1= [t (@ha|7,¢:0)ds = [¢ O)5 @)hasm)dy.

It is then easily seen that

15 Note that equations (3) and (4) show that theghaiigon problems encountered either when usindeifle

algorithm or when considering direct ML procedunase the same roate. it is difficult to compute

h(g; |z ,G ;0) because it is difficult to computé(c, | Z;0) .
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f(c12.8. )in)
sy, f(c 12,3, ()n)

(15) S*Y.° @.(0)7,(d,.(n)) where @, (6)=

is a consistent simulator d[t,(q,)|z,6;0]. The APIS simulator allows approximating the
objective function in equation (13b) by

— n-1NON IS~ ~ .
(16.8) Hg y(n0,,)=N"Y " S~ @.@,.)In {g, ™, )in).

Given the panel structure of the data the objecfivection in equation (13a) can be

approximated by
(16.b) Fg\(r10,,)=N"Y 1SS ° 31 @.0,.)In f(c, 2,8, @,0)n)-
To (separately) maximize the functiokk; ((n[0,,) andFg ((n[0 ;) in n andp is much

easier than to directly maximize the simulatedlikghhood function
17) InCg(0)= N‘lz;ln(slz;ﬂll f(c12.9, (n);u))

in0=(n,p).

Our estimates were computed by using an algorithnthé class of the SEM algorithms
proposed by Delyonet al (1999). These algorithms, designated as the Sdéticha
Approximation EM (SAEM) algorithms, have two maimdvantages. First, they are
numerically stable despite their requiring inteignag by simulation methods at each of their
iterations.

Second, SAEM algorithms allow using simplified vers of the M step. In the M step

given in equation (12bp, is assumed to maximiz€,(0]0,_,). Indeed, 8, can just be
selected as a value @& such thatQ(0,]0.,)>Q.®.,10,.,), if possible. We used the

simplification of the M step proposed by Meng andbR (1993),i.e. the sequence of
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Conditional Maximization (CM) steps of their Expattbn—Conditional Maximization (ECM)
algorithm.

We finally end up with a SEM algorithm for whichetlelements ofy, are computed as

weighted empirical means and covariances whereaselbments ofp, are defined as

weighted empirical covariances or as weighted BéasiGeneralized Least Squares

estimators. A detailed presentation of our algamnghs provided in Appendix B.

3.3. Identification issues
The multicrop model presented in the precedingi@edbasically is a standard multicrop
model with random parameters. It is composed of@guations sub-systems, the yield supply
equations sub-system and the acreage choice egsigtit-system. This specific structure of
our model is exploited for designing the SAEM altjon discussed above (see also Appendix

B). The parameters of the yield supply equatiorssistem —.e. y, 8, A, and the mean
and variance off; — can be estimated separately. This is a systemegréssion equations

with random individual effects (see,g, Biorn 2004). The likelihood function of the aage
choice equations sub-system depends on the pamsnoétgeld supply equations sub-system
and allows estimating¥, the parameters of the probability distributiontb& remaining

random parametersi-e. the mean and variance {,p.,§) — as well as the covariance of

these parameters wifh.

Two identification issues arise in our empiricapbgation. These mostly come from the fact
that netput prices mainly vary across time while amey consider a short time period. This

implies that price effectsy() can hardly be distinguished from time-relatectet 6 ) in the

yield equations. We decided to keep the price &ffecthe yield supply equation specification
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because their empirical estimates are quite sraallexpected (see,g, Scott (2013) for a
discussion on the estimation of yield price eladtsis). Introduction of variables capturing the
effects of climatic events would only partly solve problem as the year specific parameters
may also capture the technological progress emtadiseeds or in cropping practices.

The probability distribution of the farm specifiajameters of the acreage management
cost function(a;,p;,§ ) is identified by the variations @ , x (8, +1/2xy,w/ p;) in the
crop gross margins given in equation (5c). Sinee ¢ariations in the(p, ,w,) prices are
limited, identification of the probability distriion of (a,,p,,5) largely relies on the
variations of thep, terms. Of course the probability distribution pf is identified by the
yield supply equations sub-system. But, the choicthe “mixing” probability distribution,
i.e. the choice of the probability density function .,a,.,p.,§), partly ensures the
identification of the probability distribution ofa;,p,, ). This distributional assumption
implicitly constrains the functional form of thercelation betweerg, and (a;,p,;,§ ). Hence,
the parametric probability density functidn(q;;n) partly ensures the identification of the
characteristics of the probability distribution @f,,p,,§ ), according to an “identification by

functional forms” mechanism.

As a matter of fact, the identification issues dgsed here are not specific to our application.
The main observed exogenous factors affecting altpi@l production choices are the netput
prices. But these mainly vary across tifids a result, identification of the characteristids
the probability distribution of the random paramgtevith proper “exogenous variables
variations” would require observations coveringy&rperiods. But in this case the probability

distribution of the random parameters could notassumed to be constant along the

16 Notwithstanding that this variation may be duaétput quality effects.
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considered period because farmers’ technology esoand quasi-fixed factor endowments

are impacted by netput prices.

4.  Empirical application

As an illustrative application of the approach megd in this paper to account for farm
heterogeneity, we use a set of French data to asithe multicrop model presented in the
second section. These estimations allow an inwastig of the distribution of the random
parameters of the model, which comes to illustrdte importance of unobserved
heterogeneity in farmers’ production choices. Basedhese estimation results, we perform a
“statistical calibration” of the model parameters fach sampled farmer in ordej fo
evaluate the performances of the estimated moddl @h to reveal some potential
determinants of the heterogeneity in farmers’ beltayvWe then perform some simulations in
order to study the impacts and potential impliaagicof the modeling of heterogeneous

behaviors on simulation results.

4.1. Data

The data set used to estimate our model is a pitalsample of 391 observations of French
grain crop producers in the large (geological) $drasin over the years 2004 to 2007,
obtained from the Farm Accountancy Data NetworkR¥. It provides detailed information
on crop production for each farm: acreage, yield pnce at the farm gate. The aggregated
input price index is made available at the regiolealel by the French Department of
Agriculture.

In our application yield levels and acreage shaneioes are considered for three
(aggregated) crops: soft wheat (crop 1), otherater@nainly barley and corn, crop 2) and,

oilseeds (mainly rapeseed) and protein crops (ymaehks) (crop 0). Crop aggregates are
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based on agronomic considerations. The basic ootatheme of the French grain producers
is a sequence with three crops as: rootcr@pg. potato or sugar beet) or protein crop or
oilseed é.g rapeseed or sunflower) — winter wheat — secondargal é.g barley or wheat).
This scheme is adapted to soil and climatic comiéti Rootcrops require good quality soils
which are found in the north of France. Sunflonergrown in the south of France while
rapeseed, the other main oilseed crop is growrhénntorth half of France (our region of
interest). Sugar beet and potato acreages wereédeoed exogenous due to production quotas
for sugar beet and production contracts for potatoe

The considered sample only includes observatiorth strictly positive acreages. This
selection rule doesn’t lead to significant attritithanks to the crop aggregation procedure.
Our sample covers the French regions specializedram production, with the notable
exception of the south-west of France where cormauolture is the dominant cropping
system. The 108 farms of our sample are observe8 tw 4 years. We assume that farms’
attrition is exogenous because the French FADMNmsitucted as a rotating panel seeking to
collect data for 4 years for each sampled farm.hSan exogenous attrition is easily
accommodated in our modeling framework. Farms’ lilaod functions are computed

according to the observed choice sequences.

4.2. Estimation Results
Our estimations were conducted by using the SASvaoé (IML procedure). The recursive
step of simulation of SAEM algorithm was implemehigsing 1000 draws. The algorithm
converged without difficulties after 244 iteratio®esults were not significantly affected by

the use of alternative starting values or by theeafdarger number of draws.
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Selected estimation results are reported in TaldadLTable 2, the complete results being
available from the authors upon request. Thesdtsestiow that the model fits relatively well

to the data. Indeed, most parameters, especiallyettpectations and covariances of the

random parameterg, and the variance matrices of the error terms apfwede precisely

estimated. The fixed parameters representing gfigeand time ¢ ) effects appear to be less
precisely estimated. This is due to the lack ofatem in the netput prices in our sample as
discussed above. This identification issues dohawe a significant impact on the estimation
of the other parameters of the model. The pricecesfcaptured by the parameters are fairly
limited when compared with those represented byé#ae effectss . Indeed, results similar to
the ones presented here were obtained for a mgdeling the price effects in the yield

equations.

The probability distribution of the yield equatiorxdom parameters (reported in Table 1) is
precisely estimated. This was expected since e&dl gquation basically is a regression

equation with individual random terms. The paramegtimates lie in reasonable ranges. The
estimates of the probability distribution pf show that thes, ; parameters significantly vary
across farms while being strongly positively catetl to each other. This was expected
because yield potentials vary across regions, anduse good growing conditions for a grain
crop are also good for the others. The variancggfis higher or close to that of ; for
wheat and other cereals, but the variance,qf is twice that of error terms in the oilseeds

case. This may reflects at least two points: fisstarge part of the heterogeneity in cereals,
and notably wheat, yields is due differences inbseovable characteristics of each farm or

farmer; second, provided that rapeseed is by farriost important oilseed in northern
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France, these results may be due to the fact hieatapeseed yield is more risky than the

cereal yield, mostly due to bugs and diseasesdaado its sensitivity to climatic conditions.
The acreage share equation parameter estimatesrté@pin Table 2) also range in

reasonable ranges. The estimated meaninaf,, respectively ofinp, equals —2.357,

respectively —2.186. Importantly, the estimatehef mean ofp, is higher than that o, . This

is a sufficient condition for the entropic acreaganagement cost function, lying at the root
of the Nested MNL acreage share function, to beseonAccording to the estimates of their

respective variances, the and p parameters significantly vary across farms. Tagult is
important for simulation studies because thesempet@rs largely determine acreage price
elasticities in MNL acreage share models. The higheand o are, the more reactive the
acreages are to price changes. The elemerfis appear to be positively correlated with.

A possible interpretation of this result is asdals. High levels off; indicate good farming

conditions for grain crops in farm and/or farmeri technical ability. This implies that the
farm operation is sufficiently profitable to alloguitable machinery investments which, in
turn, implies a high level ofr, and, finally, relatively unconstrained acreageicé® between
cereals and oilseeds. The results are differenhvith@mes to acreage adjustments within the

cereal nest: the elements @f are not positively correlated witp, which tends to show that

the flexibility of acreage adjustments between wlaal other cereals is associated to other

factor than the one advocated previously.

4.3. Statistical calibration of individual parameters

As explained in the first part of the paper, theinested parametric model allows a

computation of the (randong, parameters for each farm/farmer of the sampleyrdang to
the logic “tell me what you do, I'll tell you whay are”. Once thex antedistribution ofqg;
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in the population has been estimated we “statidticalibrate” the specific parameters for
each individuali based on thex postdensity ofq, . This is easily done by applying equation
(15) with 7,(g,) =q, . Theex postandex antedensity of the random parametdks a, and o

are represented on Figure 1. The two distributi@nsost superimposed for all parameters,
which reflects a good specification of our modelafi, 2007). We can also notice that the
distributions of thep, parameters, representing maximum potential yielfithe farms,
appear to be more spread for other cereals thathéotwo other crops, reflecting a higher
heterogeneity of yields between farms for that ciidpat might be due to the fact that “other
cereals” is an aggregate of various crops (maioigh and barley), whereas “wheat” is a
single crop and “oilseeds” is essentially composkhpeseed in our sample. The probability
distributions a; and g reflects the fact thatr, parameters generally take lower values than
o parameters (this is actually the case for 73%hef farms/farmers, the remaining 27%
individuals having o values almost equal ta, values), which reflects more flexible
adjustments between wheat and other cereal acréagedetween oilseeds and other crops
and is a sufficient condition for the acreage managnt cost function to be convex. Figure 2
reports the calibrated values of tfg a; and p parameters together with their confidence
intervals for each farm/farmer of the sample. We sae from these graphs that confidence
intervals of parameters do not overlap for all widiials: these parameters do actually take
different values from one individual to anotherisThomes to illustrate the heterogeneity in
potential yields across farms and in the way fasmeme able to adjust their acreages in
response to economic incentives.

Having calibrated individual parameters for eaaimifarmer, we are able to compute the

individual yields and acreages predicted by the NIvihbdel.
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Based on these predictions, we can then compugitfoiR® ” criteria corresponding to the
share of the variance of interest variables preditty the model, and compare the observed
values of these variables to their predicted valldwe fitting criteria of the model are

reported in Table 3 below. Once again, the modeVgs to fit well the data, especially for

wheat and other cereals with “psetRfd around 60% for yields and 70% for acreage shares.

Up to this point, our estimation results have shomwat farmers’ behaviors do actually rely on
heterogeneous factors. It thus seems crucial toustdor heterogeneity in micro econometric
production choice models. If the sources of thistetogeneity were known to
econometricians, they could be controlled for tigroe.g. the use of control variablés.
However, if some of them are identifiable, hetersgty sources are multiple and most of
them can certainly not be reduced to farm/farmavservable characteristics.

This point is illustrated by Figure 3 and TableMaps reported on Figure 3 show the
calibrated values of three parametefs; for wheat,a; and p, *® for each farm of our sample.
The top left map clearly shows that the distributod potential wheat yields exhibits a spatial
pattern, the highest yields being located in thetiNof France. This is in total accordance
with what is known about the different agronomidegmials of French regions. Introducing
spatial farm characteristics in the model coulglecounting for some heterogeneity. Farms’

localization is however not the only source of hageneity in agricultural production

choices. This is reflected by the two other map&igire 3: the distribution of the; and p
parameters across space is different from thathefZ , parameters. No specific spatial

pattern seems emerge from these maps.

7 Of course the use of control variables is allowedur modeling approach. But it is omitted for plivity as
well as for investigating the potential of randoargmeter models.

18 Maps corresponding to other parameters are avaifedm the authors upon request
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In a further attempt to qualify the potential smgof farmers’ behavior heterogeneity, we
have computed the correlations between the indalitharameters and some observable
farms/farmers characteristics considered as exagefo the model: the amount of farm
capital, the root crops acreage and the age ofeidfnThese correlations are reported in Table

4. Farm capital is positively and significantly celated with thes, ; parameter for oilseed,
the a; parameter, and to a lesser extent ye parameter for wheat. This reflects one

argument previously advocated: farms endowed witlientapital are the more productive
ones and also own enough machinery to easily atliest acreages. Different explanations

can lie at the root of the positive and significantrelations between root crop acreage and

the B, and a; parameters: root crops are good preceding crapalieat and other cereals

which explains the positive correlation with thewtential yields; furthermore, a good soill
guality is necessary to grow root crops and thisdgquality also benefits to other crops like

wheat and other cereals but also oilseeds, heregadhitive correlation with all thes, ;

parameters; finally, root crops can be used adtamative to oilseeds as preceding crops for

wheat and other cereals and thus relax some conistran acreage adjustments which

translates into a positive correlation with tlie parameters. The positive and significant

correlations between farmers’ age and potentiddgienight be due to the role played by
experience in farmers’ skills and abilities, or ¢pgnerational differences in the intensity of
inputs, notably pesticides, use. All the aforenmred exogenous variables could thus help
controlling for part of farm heterogeneity in ouoguction choice model. However, none of
the correlations presented in Table 4 is high ehotagconclude that using these control

variables would be sufficient to capture all tharses of heterogeneity.

19 Other variables such as the number of labor howutise total acreage of the farm have been testeddne of

them were significantly correlated to any of thdividual parameters.
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4.4. Simulation Results
This last subsection is devoted to the presentati@ome simulation results: we simulate the
impacts of changes in crop prices correspondinthdse that have been observed in France
since 2007, namely a 20% in wheat and other cemets and a 50% increase in oilseeds

prices. As mentioned earlier, the and 6 parameters representing the effects of price and

time on yields are not very precisely estimatederéfore, we focus here on the impacts of
price changes on acreages and assume that thedes slwonot impact yields, which are thus
held constant in the simulations.

Table 5 reports the distribution characteristicshaf elasticities of acreages to changes in
crops prices in our sample. These elasticities kag parameters determining farmers’
responses to price shocks. We can first notice dliahese calibrated elasticities have the
expected signs: own price elasticities are posiéiad cross price elasticities are negative.
They also lie in a reasonable range and reflechtbker flexibility of acreage adjustments
within the cereal nest: wheat (respectively otlereals) acreage responds more to a change in
other cereals (respectively wheat) price than thange in oilseed price. Furthermore, the
reported quantile values reflect a significant drsgon of elasticities within our sample. One
can thus expect each farmer to react differentlthéoprice changes we simulate here, which
IS not surprising given the variances of the medetiom parameters.

The first column of Table 6 reports the effectsamneages of the changes in crop prices
simulated using our “statistically calibrated” iadiual parameters model. The relative
increase of oilseeds price compared to wheat ahdrotereals prices lead farmers to
reallocate part of their land to this now more patifle crop: among the 10168 ha devoted to
crops in our sample, 159 ha of wheat (representgof the initial wheat acreage) and 183

ha of other cereals (representing 6% of the intidler cereals acreage) are reallocated to
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oilseeds which acreage thus increases by 342 paefenting 12% of the initial oilseeds
acreage). This represents average variations &, 2 tha and 4 ha for respectively wheat,
other cereals and oilseeds acreage. However, ags¢ions significantly vary from one farm
to another: the increases in oilseeds acreage Igotaty between 1 ha and 13 ha in absolute
term, and between 3% and 38% of the initial oilseadreage, depending on the farm. These
contrasting results come to illustrate the hetemegg in farmers’ response to economic

incentives.

In order to further assess the potential impacthefapproach proposed here to account for
heterogeneity on the overall simulated effectsrafepchanges, two alternative versions of the
NMNL model have been estimated and used to simthateame shock. In the first model, all
parameters are fixed. This model is estimated usgisgandard ML approach. In the second
model, thea and p parameters, representing the flexibility of acemsa@djustment, are
fixed, thep,, and{, are random. This last model can thus be consideseftked individual
effect model. It is estimated using the SAEM altjon. The estimation results of these two
models are not presented here due to space liomt&tt are available upon request. Two
main elements come out of these resuiljsin(the fixed effect model, the estimated valugs o
a and p are closed to estimated their means in the ranolmameter model with 0.100 for
a and 0.122 forp. This is not the case with the fixed parameter ehechere the estimate
value of a equals 0.017 while that gb equals 0.045.ii) The log likelihood of the fixed
effect and fixed parameter model respectively equat1005.4 and —940.27, compared to —
816.35 for the random parameter model. The likeltheatio test thus clearly indicates that
the random parameter model significantly better tte data than the fixed parameter model
(378 for the test value with 28 restrictions) ahd tixed effect model (248 for the test value

with 13 restrictions) at the 1% level.
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The impacts of price changes on acreages simwhatbdhese two models are reported in
the second and third column of Table 6. The overalbacts on acreages are clearly
underestimated with the fixed parameter model: changes in wheat, other cereals and
oilseeds acreages are respectively equal to —443hlaa and +48 ha, which represent 72% to
98% lower effects than the ones simulated with oamgbarameter model. This can certainly

essentially be attributed to the lower estimatddesofa and p. However, despitér and

0 values close to their “expectation equivalentthe fixed effect model, overall simulated

impacts also tend to be underestimated in this meden if to a lesser extent (2% to 40%
lower effects). These results are clearly illugtdabn Figure 4 which reports the individual
simulated effects on oilseeds acreage using tlee tmodels and taking the random parameter
model as reference: the higher the impacts on atilseacreages are, the more they are
underestimated by the two alternative models. Theréhus a risk, by partially or totally
ignoring the heterogeneous determinants of farniesisaviors in micro econometric models,

to generate biased simulation results.

Concluding remarks
Many unobserved heterogeneous factors can impantefa’ production decisions. The
approach we propose in this paper allows accoumtinthis heterogeneity in the econometric
estimations of agricultural production models ifaaly flexible way. We rely on a random
parameter modeling framework: the distribution loé tmodel parameters across the farmer
population is estimated, which allows the paransetiehe farmer specific in order to account
for unobserved heterogeneity effects.

Using specific estimators and optimization procedudesigned by statisticians, we are
able to estimate a random version of the multi@opnometric model proposed by Carpentier

and Letort (2014). This empirical application issed on a sample of French crop producers
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observed from 2004 to 2007. We find that the kenapeeters of the model exhibit significant
variability across farmers. Furthermore, our randoodel proves to better fit the data than its
counterpart fixed or “quasi-fixed” versions. We shdind evidence that heterogeneity
significantly matters for the modeling of micro-@omic agricultural production choices.

We also show how random parameter models can e taséstatistically calibrate” a
simulation model based on a sample of heterogenoos and use this “calibrated” model
to simulate the impact of crop price changes oeages. This allows us to further illustrate
the potential role of heterogeneity in micro ecoetnm production choices models, and to

show that ignoring it can lead to misleading sirtiataresults.

Of course, our empirical framework has many limitas calling for improvement and further
research.

The limited size of the sample we consider is @nas This sample was selected so as to
only contain farms highly specialized in grain pwotion,i.e. with homogeneous production
choices, in order to investigate the importancarafbserved heterogeneity effects. The use of
larger data sets poses additional challenges. tawvers mostly specialized in grain crops have
different crop setsk.g, some of them produce wheat, barley and rapesdwié others
produce wheat, corn and surgarbeets. Specificatimhestimation of multicrop models with
corner solutions remain open research questionthenagricultural production economic
literature.

To consider crop aggregates is not satisfactopeaally when specific features of the
agricultural production technologg,g crop rotation effects, are to be considered. @frse
the difficulties due to the occurrence of corndusons arise when considering single crops
instead of crop aggregates as in our applicatiamr. €@op aggregates were mainly built for

avoiding the occurrence of null acreages.
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Our application only considers three crops or caggregates. In the random parameter
multicrop model presented here the number of paenmdo be estimated quadratically
increases in the crop number, due to covariancéiseofandom parameters. This calls for an
for an adaptation of the “full random parameterfgmaeter approach adopted here.

Our considering a small time period and our focgin short run choices lies at the root
of our modeling the random parameter according tanaue, and stable across time,
probability distribution. As discussed above, thainmobserved exogenous factors affecting
agricultural production choices are the netput gmievhich mainly vary across time. This
suggests that identification of the characteristicghe probability distribution of the random
parameters with proper “exogenous variables vanati require observations covering long
period. But Farmers’ technology choices and quasidf factor endowments being impacted
by netput prices, the probability distribution éetrandom parameters cannot be assumed to

be constant along the considered period in this.cas
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Table 1. Selected parameter estimates, yield suppdguations

Vi E[B, ] CoMA,,. 5] Varly, ]
Wheat Cereals Oilseeds
(=1  (=2) (1=0)
Wheat (k =1) 0.710 7.952 0.992 0.807 0.555 0.595
(0.116) (0.092) (0.119) (0.121) (0.072) (0.038)
Cereals(k =2) 0.140 7.167 0.807 1.215 0.509 1.077
(0.098) (0.103) (0.121) (0.173) (0.081) (0.040)
Oilseeds(k =0) 0.174 5.265 0.555 0.509 0.428 0.852
(0.105) (0.061) (0.072) (0.081) (0.057) (0.035)

Note: standard errors are in parentheses

Table 2. Selected parameter estimates, acreage sbaquations

Expectation Covariances with

Ina, Inp Ing, In g, InB,,
Wheat Cereals Oilseeds
Ina, -2.357 0.196 0.112  0.008 0.019 0.010
(0.042)  (0.027) (0.02) (0.005) (0.007) (0.005)
Inp, -2.186 0.112 0.279 -0.012 0.007 -0.005
(0.050) (0.026) (0.039) (0.005) (0.008) (0.006)

Table 3. Fitting criteria of the model: pseudoR?

Pseuddr?
Yields Y, “Acreage sharesS
Wheat (k =1) .73 .79
Cereals(k =2) .65 .84
Oilseeds(k =0) .51 .56
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Table 4. Correlations between random parameters antarmers’ characteristics

B, By, a P,
Wheat Other cereals Oilseeds
Farm capital 0.172 0.126 0.262 0.165 0.003
(0.079) (0.200) (0.007) (0.092) (0.973)
Root crop acreage 0.310 0.195 0.296 0.407 -0.027
(0.001) (0.059) (0.002) (0.001) (0.781)
Farmer’s age 0.308 0.206 0.282 0.157 -0.242
(0.001) (0.035) (0.004) (0.111) (0.013)

Note: Student’s Test p-values are in parentheses

Table 5. Characteristics of the distribution of aceage shares price elasticities

Average Q5 Q25 Q50 Q75 Q95

Wheat Acreage

Wheat Price 0.43 0.24 0.32 0.39 0.49 0.77

Other cereals Price -0.25 -0.61 -0.29 -0.18 -0.15 0.11-

Oilseeds Price -0.14 -0.24 -0.16 -0.13 -0.11 -0.08
Other cereals acreage

Wheat Price -0.48 -1.19 -0.67 -0.36 -0.23 -0.14

Other cereals Price 0.61 0.22 0.33 0.49 0.79 1.33

Oilseeds Price -0.14 -0.24 -0.16 -0.13 -0.11 -0.08
Oilseeds acreage

Wheat Price -0.37 -0.84 -0.45 -0.31 -0.20 -0.13

Other cereals Price -0.23 -0.67 -0.29 -0.17 -0.10 0.0%

Oilseeds Price 0.50 0.17 0.31 0.43 0.65 0.95
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Table 6. Simulated impacts on acreages of the prichock

Random parameter

Fixed parameter

Fixed Individual effects

model model model

Wheat Acreage

Total change (ha) -159 (-3.9%) -44 (-0.9%) -96292)

Average change (ha) -2 (-4.5%) -1 (-0.9%) -1 (-2.3%

Max change (ha) <0.5 (<0.1%) 1 (+0.6%) 1 (+1%)

Min change (ha) -7 (-17.0%) -2 (-2.4%) -5 (-9.3%)
Other cereals Acreage

Total change (ha) -183 (-5.6%) -3 (-0.1%) -178794)

Average change (ha) -2 (-6.3%) <0.5 (-0.1%) -2106).

Max change (ha) +2 (+11.7%) 1 (+1.8%) <0.5 (<0.1%)

Min change (ha) -8.8 (-20.0%) -1 (-2.7%) -8.8 (-20.0%)

Oilseeds acreage

Total change (ha)

Average change (ha)

+342 (+12.1%)
+4 (+13.9%)

+48 (+2.4%)
+1 (+2.4%)

+27(8%)
+3 (8%)

Max change (ha) +13 (+38.2%)

1 (+3.1%)

+1 (+4.0%) +9 (+21.8%)
<0.5 (+1.1%) +1 (+4.5%)

Note: Numbers in parentheses correspond to pecbamniges compared to initial acreages

Min change (ha)
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Figure 1. Ex postand ex anteprobability distributions of the random parameters
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Figure 2. Calibrated values and confidence interval of individual parameters

99% Range

99% Range

Ing wheat

0 20 40 60 80 100

Farmers

Ina

Farmers

99% Range

99% Range

Inp other cereals Ing oilseeds

99% Range

Farmers

Farmers

Inp

Farmers

45



Figure 3. Distribution of selected random parametes across the population sample
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Figure 4. Impacts on oilseeds acreage simulated Wwithe different models
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Technical Appendices

Appendix A. Yield supply and expected gross margifunctions

The yield supply function of crok given in equation (5a) is obtained by maximizinghe

aggregate variable input level ,, the expected margin of crop, 7, under the
assumptions that the yield function is quadratithmmaggregate variable input level:

(A1) Vi =B+ 0 TV L1 2% YA + U, — %) With E[v, ] = Hy, ] =0

and that the random termg , (which may include a year specific effect) areestsed when

the input level is decided. This yield function is parameterized by two fixedrameters, the

curvature parametey, and the crop specific year effedf,, and a random paramefgr, . It

depends on the effects of random events represbugtttee centered error termvg, ando, ;.

The optimal input level of farmerin t on cropk is thus given by:
(A2) X = A = HeoWe B * Ui
and the corresponding expected gross margin isdgiye
(A3) 7 = PiBi +11 2 W By = WA, -
This gross margin level is expected by the farmetha time of his acreage choices.

before the observation of the random events reptedeby v, , and y, ,, and of the year

specific effectd, . Input demand equation (A.2) is not included ie #stimated multicrop

22 Whether the random event effetts , and/or the year specific effect , are observed or not doesn’t matter.

These effects are forgone by the considered (eskral) farmer.
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models because the input use levels are not olzbatwbe crop level in our data set. They are
only recorded at the farm level, unfortunatély.
Due to insufficient variation of the aggregate inptices in our data sét,it is difficult to

separately identify the probability distribution the parametersi, ; and yx, ; empirically.

This explains why the expected gross margin useabdracreage share model (5b) is not that

given by equation (A.3). The terq) ; in equation (5c) is given by, ; = x, , —WA, ;.

%L This aggregation problem can be overcome by defian input use allocation equation as in Carpeatid
Letort (2012). However, this option would have gesed significantly the complexity of the considere
multicrop model and of its estimation.

22 ps well as due to our not modeling input demands.
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Appendix B. Algorithms

This appendix presents the algorithm we used ieetlsteps, after a brief presentation of the
APIS simulator and of its interests and limits sEiwe restate the basic SEM algorithm using
the APIS simulator. Second, we show how the ideaetlying ECM proposed by Meng and
Rubin (1993) can be used for designing a “SECMbatgm simplifying the computations
involved in the SEM algorithm. Finally we presem¢ tSAEM and its interests and show how

the “SECM” algorithm can easily be adapted intGSAECM” algorithm.

APIS simulator
The APIS simulator was employed leyg, Caffoet al (2005) or Train (2007). It allows

integrating by simulation method an expectationrdlre probability distribution of,
conditional on(c,z) by using draws for the marginal probability distdion of g, . It allows
approximating

(B.1) E[lnk(c,q|2:0)|z .6 ;en_l]sjlnk(q alz0h@lz ¢ 8 )

by

(B2) S @grrd NK(C, T cplZ,0)

where the

(B.3) Gisn1=0is(Myy)

terms are independent random draws frof®;n,_,) for s=1,...,S andi =1,... N, and

(612,80 nrites)
ST (612, 8 i)

(84) Q,s,n—l = &)ls(en—l) =

for s=1,...,§ andi =1,... N .
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The APIS simulator can be interpreted as an impogaampling simulator with(q;;n)

as the proposal probability density function. Trisposal probability density function is

inefficient becauséa(q;;n) is unlikely to be close tt(q; |z, ,G ;0) in cases where,
explicitly is a function ofg, and whereg, exhibits significant variability. But the simpltgi
of this simulator allows using very large randorawinumbers for approximatin§i(c. | z ;0)

. This estimator also is fairly easy to code.

Expectations such ag[In «(c,q | z;0) |z ,G ;0,_,] can be integrated by using draws from
h(g; |z, ,G;0). But such draws are more difficult to obtalhg, it is always possible to obtain
Metropolis-Hastings (quasi-)random draws frdnfg; |z, ,G ;0). But this simulation technique

consists in a rather long process to be repeatedgdit iteration of the SEM algorithm. The

APIS simulator appears to be more convenient becéysasi-)random draws frorn(q;;n)

are easily obtained.

The algorithms to be defined rely on the simulatesions of the conditional expectation
of the sample log-likelihood functioi’\l‘lziN:l Eink(c,q1%:0)|z ,6:0,_,] of the complete
data vector:

(B:5) Qua(010,,)= N1 Y00 012 NKC 8100 ]200)

and, usinglnk(c,,q|z,;0)=Inf (c, |z ,qu)+ Inh@m), its decomposition given by
(B6) Qun010,,)=Q 010,.)+,m10,.)

with

(B.7) Qun(r10,)= NS @002 412 T ii)

and:

(88) Qﬂln(n Ien—l) = N_lzi’\il Sr;l ild)i,s, n—lln r(q i,s, H—l;n) '
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SEM algorithm

The APIS Simulator allows designing a simple SENbathm. The “recursive estimator”
proposed by Train (2007, 2008, 2009), as wellasxtensions, are computed by using such
SEM algorithms. The SEM algorithm iterates a seqaasomposed of a SE step and of a M

step.

SE steplntegration of the conditional expectations

Obtain independent (quasi-)random dr%ﬁ/\ﬂ;’&n_l from h(q;n,_,) and compute the weight
termsd, ., for s=1,..,§ andi=1,...N .

M step. Update of the value 6f= (u,n)

Compute:

(B.9) 6,=argmaxQ,, 0 P,
or, equivalently:

(B.10a) p,=argmaxQy, @ P,
and

(B.10b) m,=argmax Q. € P, .

The decomposition of the maximization problen@{n(ﬂ |0,..,) in 0 into the maximization

problems on,f,,n(u |0.,) inp and on,‘j,n(nl()H) in n illustrates the main interest in using

EM algorithms for estimating random parameter med&his decomposition is specific to

models involving latent/hidden variables such asloen parameter models.

23
Pseudo-random sequence
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“SCME” algorithm
With Inh(g;n) =In h(g;a,2) we observe tha® ,(n]0,.,)=Q} @20, is easily
maximized in(a, Q). It is the weighted log-likelihood function of auftivariate normal

variable. Further decomposing f (c, | z, ,q;pn), and thu@ﬁ,‘n(u |0..,), suggest further
simplification for the M step. With

(B.11) Inf(c, |z, ,.qm)=Infy, [z .y s A)+Inf & Iz ay ¥,

the terms

(B12) QU(r.8,A10,,)=N" Y ST @, 0> N6 |2, 800 iy BA),
corresponding to the yield supply function sub-egstand

(813) Qv ¥10,)=N"Y " S0 @Y f6,120 800 uy P),

corresponding to the acreage choice sub-systemveighted log-likelihood function of
multivariate Gaussian linear (ih andy ) regression models. Since these terms both depend

on y, the maximization of

(B-14) Qn(110,1)=Qx o7 A10,,)+ Q00 ¥ B ,,)

in p=(8,y,A,¥) cannot be split into two simpler maximization deshs corresponding to
the yield supply function and acreage choices sstem. Even though, to maximize
X .8,7,A10,.,) in (8,7,A) or to maximizeQ; ,(y,'¥ |0,,) in (y,'¥) requires the use of

nonlinear optimization algorithms. Of course a den@auss-Seidel algorithm, the so-called
Iterative Feasible Generalized Least Squares, earséd here.

The ECM algorithms proposed by Meng and Rubin (1288w simplifying M steps. It is
possible to replace a M stepg the direct maximizatior@,ﬁ,,n(u |0.,) in n, by a sequence

of simpler maximization problems,e. a sequence of Conditional M (CM) steps. This
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sequence of CM steps sequentially updates the wa#lye according to a predetermined

partition of this parameter vector. The objectivéh@se CM steps is to update the valugiof
not by maximizing@ﬁ,vn(ulﬂn_l) in p, but by simply computing a value ¢f such that

Q110,1)> Q% (1,410 ,,), if possible? We used the following SECM algorithm

because it only involves very simple CM steps:

SE steplntegration of the conditional expectations

Obtain independent random drags ,_, from h(g;n,_,) and compute the weight terms
@, fors=1..,8 andi=1,..N.

CM step. Conditional update of the valuedct (u,n)

Compute:

(B.15a) a,=argmaxQl, e, P, .

(B.15b) @, =argmax,Q’, &, P, .

(B.15c) ¥, =argmax, Q\, ¢r1 ¥ Py F argmaxQy Y1800 A ¥ 0],

(B.15d) A, =argmax Qf, ¢,y b A Py F argmaxQy , v(s1 0,0, A ¥, 0,

and:

(r.18.) 1 Q18 AW, 10,,)> @l o 8w ALY, L)
(Y,.4,8,_,) otherwise

(B.15e) (v,.8,) E{

where:

24 |n their seminal article, Dempster al (1997) also considered this extension of the steh step to define

an extension of the standard EM algorithm whicly ttesignated as the Generalized EM (GEM) algorithm.

58



(B.15€) (y.,8.)=argmay, o Q. ¢ A, By 2

In our case, the termg, , ., ¥, , A, and(y,,08,) have analytical closed form solutions:
- S - ~
(Bl6a) a'n = N 1zi'\ilsr:123:1a)|,s,n—lqi,s,n—l
_ N — S ~ ~ ~1 /
(Bl6b) Qn =N ' izlalzszla)l,s,n—lq i,s,n—lq i,s,n—l_a rar
_ N S ~ T ~ . ~ . 1
(B.16c) ¥,=N 1Zi:1 S;lzszla)h& n—lztzlu @isnsY mdUi8isns¥ )
- N S ~ T ~ . ~ . !
(B.16d) A, =N 1Zi:1$:123:1w|,s, n—lztzlv t@isnsYnedn)Vil@isns¥ nad o)
and:
= N T e LI u L T -1 i
(Bl6e) (’Yn’ﬁn) = (Zizlztzlz itAn Zit) Zizlsn Zszla)l,s, n—lztzlz itAn (y it _Bi,s,n—])

with obvious notations.

“SACME” algorithm

When new random term§, ; ., are drawn at each iteration, the numerical coremrg of

SECM algorithm may be difficult due to the simutetinoise. Delyoret al (1999) proposed

the SAEM algorithms in order to attenuate this peob In the SAEM algorithms the M step

% The update ofy,8) given in equations (B.15e) and (B.15f) is usedwercome the maximization of

Qﬁ,n(Y,S,An,‘I‘n [0.,) in (y,8). The solution in(y,8) to this maximization problem has an analyticakeld

form solution in the case considered héee for the “random parameter” model. But the coyméets of this

maximization problem for the “fixed parameters” d@hd “individual effects” models need to be numaitic
solved in(y,8) and in(a,p). The parameterg and é are identified by the yield supply function sulstgm.

The parametey enters the acreage choice model because expeetdsd partly determine these choices. For

the “random parameter” model the updatepf6) could have been defined as:

(’Yn’an) = argma)&,ﬁ)@?\l,n @ 6 An \’I‘n en—l )
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(or the sequence of CM steps) is modified in otdetsmooth” out the objective functions

considered along the SE(C)M iteration procésg., the objective function of the M step of

the SEM algorithm given abovie. QN'n(B |0..,), is replaced by:

(B-172) R, ,(816,,)= (1-9,)%x R 1,010, )+ xQy 0 10 ,.)

or, equivalently, by

(B.17b) B,,(010,)= X ([0 0= 50)) x5, % Qy  010,.)+ 5, % Q.0 1,..)
where s, is a decreasing sequence of positive step sizethat:

(B.18) 8,=1,> "8 =+ andy - (8,)° <+w.

The “SACME” algorithm we used for computing theimsitors of our random parameter

multicrop model is defined by:

SE steplntegration of the conditional expectations
Obtain independent random drags ,_, from h(g;n,_,) and compute the weight terms
Q

for s=1,...,§ andi =1,... N .

,S,n—-1
CM step. Conditional update of the valuedct (u,n)
Compute:

a =(1_19 )xanl

n

(B.19a) PN SIS 6 g
Q =(1-3)x@Q, ,+ad)
(B.19b) +79XN_IZ.1S1 le D onlisndisni—ad,
:(1—,9n)x‘1'n_l
(B.19¢) TR NI SATE-w Sl T SN TON. BRRE Y T« BRI 2
(B.19d)
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=(@1-5,)%A .,
+ﬂ XN_12| =1 1251 |sn—lzt 1 ItqlSn—lyn-lﬁn-l)llthSﬁ-lyﬁlﬁFrl)

and:

(B.19e)

(¥0:9,) = (Z. 1Zt 1Z'tA Z ) z @nz. 1 J j:la{syj-thzgitA;l(yit _ﬁis,j—l)

where

(B.20) qu,nz(nm J+l(1 z9))><z9 for j=1,..n-landg =7,

Monitoring and stopping rule of the algorithm
The calibration of the sequence stefis and a suitable stopping rule for the “SACME”
algorithm are essential criteria for its convergenSAEM algorithms are shown to
theoretically converge if, is a positive sequence steps satisfying condi{Brik8). We used
a standard decreasing sequence of positive steg $seee.g, Jank 2006 ; Polyak and
Juditski 1992) :
(B.21) & =1, 8, =n" with vO(1/2,]
We retainedy = 0.7 after several trials.

We also used a standard stopping rule (Booth arlteiid 999 ; Bootlet al 2001) based

on the relative changes in the values of the estithparameters from an iteration to the next

one. The algorithm stops when the following coraiti

ma @ J .,
(B.22) R

holds for three consecutive iterations for chosesitve values of the convergence

- Jnl

parameterss; and o,. Several iterations need to be considered dueetgitmulation noise
generated by the random draws of gh&erms at each iteration (seeg, Booth and Hobert
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1999). We set up; = 0.01 anda, = 0.001. Because condition (B.22) may hold fey,_,,
8,,_, ande,, even if these parameter values do not (approxigaehieve the maximum of
the considered likelihood function, we checked thatscores were null and that the Hessian

matrix was negative definite at the estimated valige(Gu and Zhu 2001).
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