

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Commodity Effects of Food Away From Home

James K Binkley
Purdue University
Email: jbinkley@purdue.edu
Yuhang Liu
Purdue University
Email: liu103@purdue.edu

Selected Poster prepared for presentation at the 2015 Agricultural \& Applied Economics Association and Western Agricultural Economics Association Joint Annual Meeting, San Francisco, CA, July 26-28

Copyright 2015 by James K Binkley, Yuhang Liu. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Commodity Effects of
Food Away From Home James K. Binkley
Yuhang Liu
PURDUE

Objective
of food away fro
To estimate the effect of food away from home (FAFH) on the
commodity composition of demand.
Background
Food away from home, defined as food from full-service and fast Food restaurants coafeterias and bars, accounted for 25.9 percent of
ootal housenold food spending at 1970. By 2012, the share hat risen total household food spending at 1970 . By 2012 , the share had risen
to 43.1 percent. There is ample evidence that over the period of FAFF. growth there have been changes in the consumption of some
basic food commodities. For example between 1970 and 2012 per basic food commodities. For example, between 1970 and 2012, per
capita milk consumption fell from 31.1 gallons to 19.6 gallons, while capita milk consumption fell from 31.1 aallons to 19.6 gallons, while
per capita chicken consumption rose from 22.4 pounds to 46.2 per capita chicken consumption rose from 22.4 pounds to 46.2
pounds. Changes such as these have been attributedto increase pounds. Changes such as these have been attributed to increase
nutrition concerns, changing price relations, and generally "structural change.", But ititle fif any research has investitiated the possibility that the growth of FAFH, certainly a form of structural
change, may have been a factor. That is the purpose of this study.

Results
With the replacement of FAFH by FAH, chicken consumption dectines by decreases by 11 .
eases by 5.
Dairy
ases by 5.91\%.
Dairy

$$
\begin{aligned}
& \text { Darry } \\
& \text { nd yoourt are consumed at home. Thus } \\
& \text { uid milk consumption by } 6 \% \text { and yogurt }
\end{aligned}
$$ More than 99% of fluid mes consumption by 22%. Cheese is the only dairy commodity to decline decreasing by 15

Vegetables
We find that 39.58% of potatoes and 41.73% of lettuce are consumed as
FAFH. When FAFH is eliminated potato consumption decreases by 22.48% FAFH. When FAFH is eliminated, potato consumption decreases by 22.48%
while lettuce consumption declines by 24.86%. Because of this, total While lettuce consumption declines by 24.86%. Because of this, total
vegetables consumption declines with the elimination of FAFH. A somewhat surprising result.
Fruits
Because full-service and fast food restaurants rarely provide fruits on Because full-service and fast food restaurants rarely provide fruits on
their menus, most fruits are consumed at home. As a result, if FAFH is eliminated, virtually all fruit commodities increase. Apples, bananas and oranges are the top three gainers, each
Drinks
If FAFH is eliminated, the most significant change is 13% decrease in soft drink consumption. Alcoholic drinks decrease by 8.4%,
\longrightarrow

Data
We employ two data sets. The first is the National Health and Nutrition Examination Survey (NHANES). The second data set
is the USDA Food Intakes Converted to Retail Commodities is the USDA Food intakes Converted to Retail Commodities
Database (FICRCD). FICRCD was des igned specifically to convert intake data from NHANES and similar sources to oretai equivalents. We use NHANES 2003-04, 2005-06, and 2007-08, the latest for which there are specific FICRCD data sets
Foods are grouped into 8 categories and 52 specific Foods are grouped into 8 categories and 52 specific
commodities. In this poster we focus on the 2007 -08 survey.

Respondents were grouped by those who did not eat FAFH Respondents were grouped by those who did not eat FAFH
during the two day survey period and who did. To obtain estimates, we make an assumption about how consumers who this initial anally sis, we assume they replace total $F A F H$ gram with an equivalent amount of FAH grams. To allocate this to
individul fods wdividual foods, we matched their current FAH patterns. This analysis was conducted separately for children and teens
(age=<18), and adults (age >18), and for liquid and solid foods. Results from these were aggregated to obtain final esproximately the same. A more refined analysis may need to the same. A more refined anal
account for any differences.
account for any differences.

When FAFH is eliminated, changes
are similar for adults and children. he one majo change is children's change is ch
soft drink consumption consumption
decreases by 19%
while Adult's soft while Adult's soft rink consumption
only de
10%.

