

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Short- and Long-Run Analysis of Factors Affecting Electricity Consumption in Sub-Saharan Africa

Nyakundi M. Michieka

Assistant Professor Department of Economics California State University, Bakersfield 9001 Stockdale Hwy, 20 BDC Bakersfield, CA 93311 Email: nmichieka@csub.edu Tel: 661-654-2465

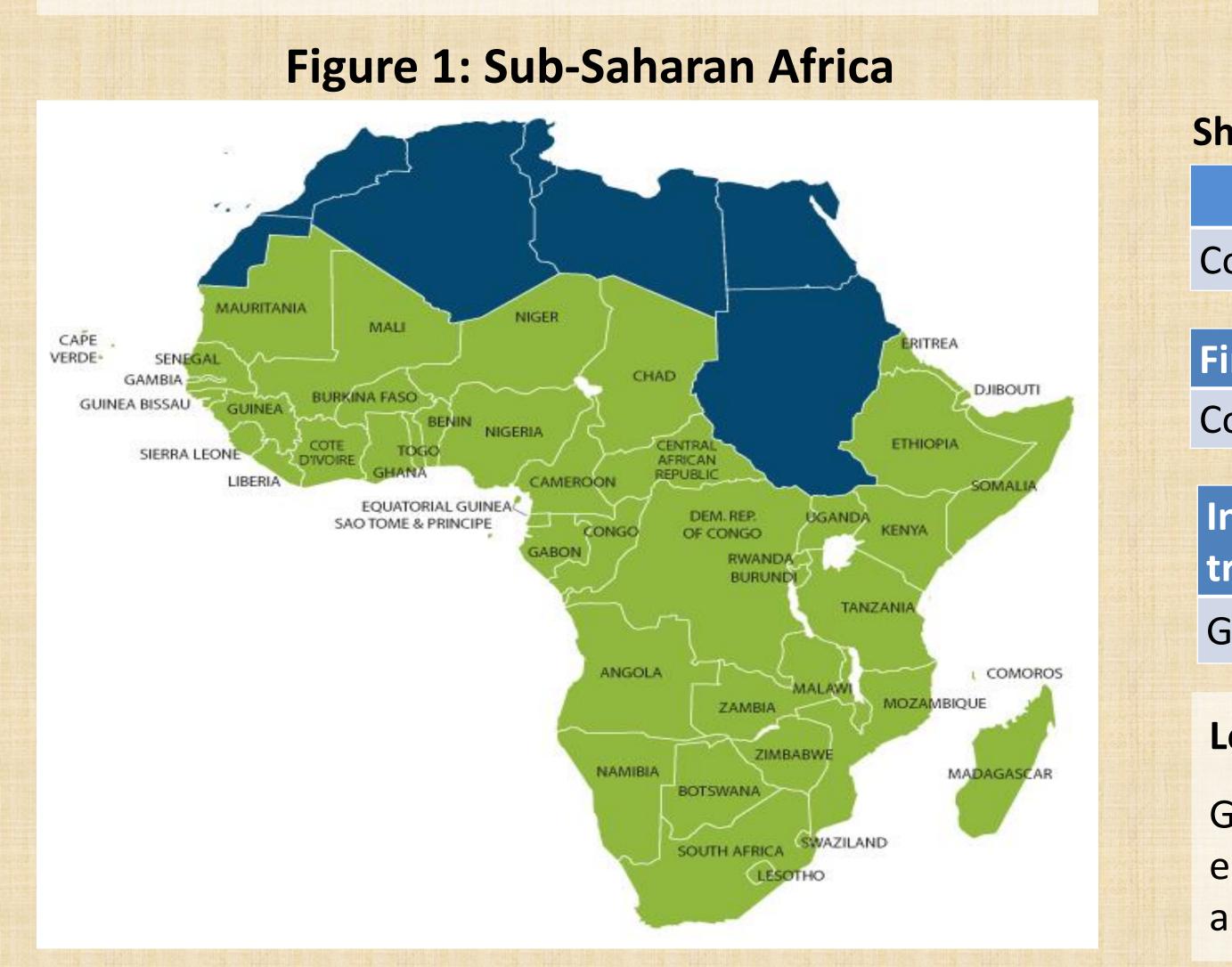
Selected Poster prepared for presentation at the 2015 Agricultural & Applied Economics Association and Western Agricultural Economics Association Joint Annual Meeting, San Francisco, CA, July 26-28.

Copyright 2015 by Nyakundi M. Michieka, All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies

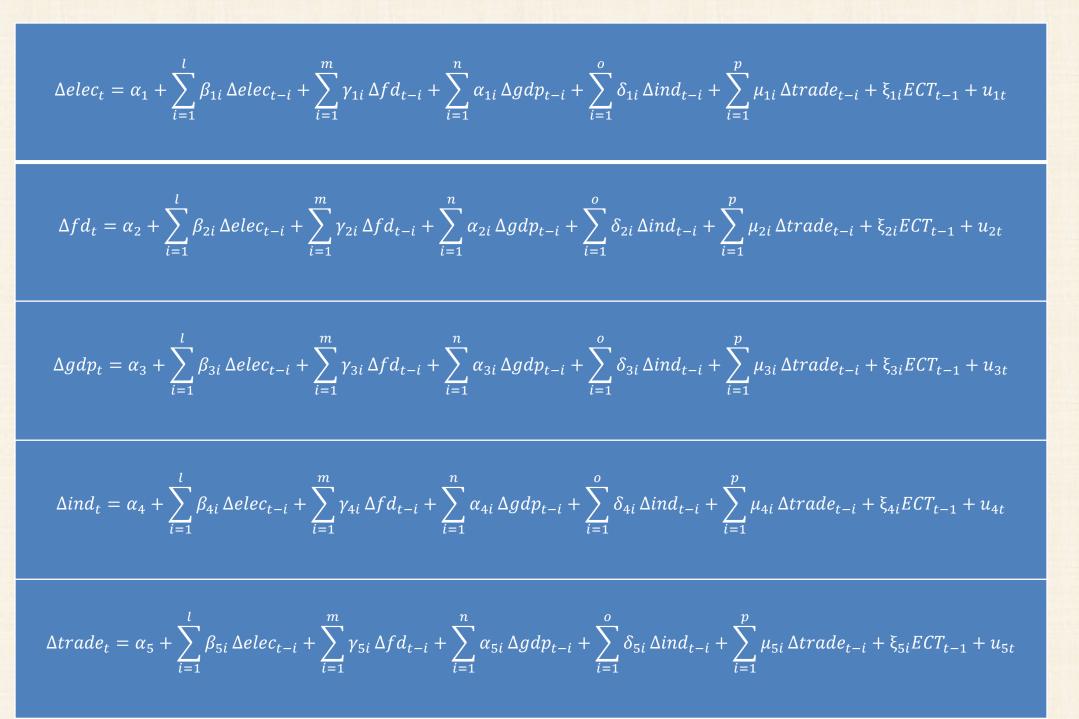
Short- and Long-Run Analysis of Factors Affecting Electricity Consumption in Sub-Saharan Africa Nyakundi M. Michieka

Introduction

- Electricity is a vital contributor to the economy
- It stimulates improvements in many aspects of society including employment, health, food preservation, farming, medical technology and education (Tucker et al. 2014)
- The World Bank reported that in 2012, 621 million people lacked access to electricity in Sub-Saharan Africa


Literature					
Energy Cons.	to	Econ. Growth	Reducing energy cons. affects growth (conservation policies have effect)		
Energy Cons.	None	Econ. Growth	Neutrality hypothesis		
Econ. Growth	to	Energy Cons.	Conservation policies have little effect		
Energy Cons.	either	Econ. Growth	Complement each other		
Energy Cons.	To(-)	Econ. Growth	Energy use constrained by infrastructural, political obstacles – put pressure on poverty		
Econ. Growth	To (-)	Energy Cons.	Increased economic growth; people use less energy; walk, mass transit		

Objective


This study seeks to analyze causality between electric power consumption, GDP, trade openness, financial development and industry in Sub-Saharan Africa California State University, Bakersfield CA, 93311

Motivation

- Contributes to studies that look at causality between electricity consumption & macroeconomic variables in Sub-Saharan Africa
- Analyzes causality in individual countries
- The inclusion of Industry, trade openness & financial development

Methodological Approach (VECM)

	Cote d'Ivoire	Congo Republic	Kenya	Gabon	South Africa	Zambia
Idependence	1960	1960	1963	1960	1994*	1964
op. (millions)	20.40	4.45	44.35	1.67	52.98	14.54
GDP (current S\$) in billions	31.10	14.09	55.24	19.34	350.63	26.82
GDP growth (annual %)	9%	3%	6%	6%	2%	7%
ectricity prod. 2011 billions (kWh)	6.10	1.23	7.85	1.77	259.60	11.45

Results

Short Run Causality Running from

GDP	\longrightarrow	Elec. Consumption			
ote d'Ivoire, Gabon, S. Africa and Zambia					
inancial Development	\longrightarrow	Elec. Consumption			
ote d'Ivoire, Gabon & S. Africa					
ndustrial growth & rade openness	\longrightarrow	Elec. Consumption			
Sabon					

Long Run Causality Running from

GDP, trade openness, financial development and industry **to** electricity consumption in Congo, Cote d'Ivoire, South Africa and Zambia

Average Growth Rates(%) between 1971 to 2011

	Cote d'Ivoire	Congo Rep.	Kenya	Gabon	S. Africa	Zambia
Electricity Consumption	5.72	7.28	5.11	7.00	4.01	1.67
Export	4.77	5.28	3.79	3.30	2.50	4.41
Imports	4.38	8.16	4.85	5.90	3.63	4.67
GPD	2.76	4.30	4.13	3.70	2.57	2.41
Industry	0.78	4.27	-0.26	1.50	-0.46	-0.39
Urban	4.78	4.05	5.35	4.88	2.77	3.55
Financial Development	-0.42	1.12	2.34	0.64	1.53	2.05

Figure 2: Granger Causality Results					
Null Hypothesis:	F-Stat	Prob.			
EXPORTS_GROWTH does not Granger Cause ELEC_GROWTH	0.4735	0.7924			
ELEC_GROWTH does not Granger Cause EXPORTS_GROWTH	1.5076	0.2232			
IMPORTS_GROWTH does not Granger Cause ELEC_GROWTH	1.5801	0.2021			
ELEC_GROWTH does not Granger Cause IMPORTS_GROWTH	0.8965	0.4986			
GDP_GROWTH does not Granger Cause ELEC_GROWTH	0.4590	0.8028			
ELEC_GROWTH does not Granger Cause GDP_GROWTH	1.5474	0.2113			
INDUSTRY_GROWTH does not Granger Cause ELEC_GROWTH	1.5921	0.1988			
ELEC_GROWTH does not Granger Cause INDUSTRY_GROWTH	0.4644	0.7990			
URBAN_GROWTH does not Granger Cause ELEC_GROWTH	0.2090	0.9556			
ELEC_GROWTH does not Granger Cause URBAN_GROWTH	0.2780	0.9208			
FD_GROWTH does not Granger Cause ELEC_GROWTH	0.7538	0.5913			
ELEC_GROWTH does not Granger Cause FD_GROWTH	0.9112	0.4897			

Summary of Key Findings

- GDP & financial development play an important role in predicting future values of electricity consumption in Cote D' Ivoire, Zambia, and South Africa
- Energy demand projections in these economies that exclude GDP and financial development might provide inaccurate forecasts
- In Gabon, industrial growth & trade openness play a role in predicting future values of electricity consumption
- In Kenya, there are forces outside our model which Granger cause electricity consumption

Weakness of the Study

- Interpretations ought to be treated with caution due to the small sample size
- Non-grid electric power consumption from small and medium sized were not considered
- The use of generators (non-inclusion in official statistics)