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Abstract† 

There is an emerging literature estimating the marginal cost of carbon mitigation in China 

using distance function approaches; however, empirical estimates vary widely in magnitude 

and variation, which undermines support for policies to curb carbon emission. Applying three 

commonly used distance functions to China’s provincial data from 2001 to 2010, we show 

that the variability can be partially explained by the difference in the input/output coverage 

and whether the estimated marginal abatement cost (MAC) is conditional or unconditional. 

We also argue that the substantial heterogeneity in abatement cost estimates could be related 

to an economic interpretation that radial measures reflect the short-run MACs while non-

radial measures reflect the long-run MACs. Our mean short-run MAC for carbon is 20 US$ 

per tonne, an amount that is very close to the carbon prices observed in China’s recently 

launched pilot markets.  
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The Marginal Abatement Cost of Carbon Emissions in China 

 

Introduction 

Climate change continues to be high on the international political agenda. As the world’s top 

carbon emitter, China is a key player in climate negotiations and has been facing mounting 

domestic and international pressure to commit to a mandatory emission target. A sound 

understanding of the level and heterogeneity of marginal carbon abatement cost (MAC) 

across localities, sectors or even firms would inform policy makers about the potential cost 

advantage of a market based approach over the traditional command and control approach 

(Newell and Stavins, 2003).  

The literature on the mitigation costs of greenhouse gases (GHG) has been extensively 

reviewed (Repetto and Austin, 1997; Weyant and Hill, 1999; Lasky, 2003; Fischer and 

Morgenstern, 2005; Kuik et al., 2009). A large part of this existing literature is based on the 

use of integrated systems forecasting models that derive the MAC of GHG emissions as 

shadow prices representing the economic growth that would be forgone in the pursuit of a 

Kyoto-based mitigation or stabilization target. These prices are often estimated for various 

future time horizons and for different sets of constraints and assumptions about the economic 

system. Such shadow price information is most useful for long-term planning and policy-

making.  

Another strand of the literature estimates the MACs as the shadow price of pollution 

mitigation within a distance function framework. These models use historical data and do not 

need to make widely varying and strong assumptions about future economic development and 

technological progress. As these estimates reflect recent evolutions in marginal abatement 
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costs (MACs), they are more useful for identifying existing low cost opportunities for carbon 

reduction and for evaluating the potential cost savings from market-based policy instruments. 

That is, they are more relevant for immediate use or policy design exercises.  

However, existing empirical estimates of the MAC of GHG mitigation in China obtained 

from these approaches vary widely and range from a few to thousands of US dollars per 

metric tonne. This variability in cost estimates undermines the scientific support for policy 

change as policy makers are usually reluctant to implement a mandatory GHG mitigation 

policy without a firm understanding of the true costs. In the last few years, there have 

appeared a few studies investigating China’s GHG MAC estimates. Du et al. (2013) provides 

a thorough review of this literature which has mainly focused on carbon dioxide with a minor 

proportion of it investigating sulfur dioxide mitigation costs. Our study builds on this 

literature but makes a number of original contributions. We show that such variability can be 

explained by the differences in the coverage of inputs and outputs, the set of assumptions 

made on the production technology, the constraints imposed by various distance functions, 

and whether the MAC estimated is conditional or unconditional. We also compare estimated 

MACs with observed carbon prices from China’s recently piloted carbon trading markets. 

Firstly, given China’s heavily coal-dependent energy structure and the way that carbon 

emissions were calculated in empirical literature, one would expect energy consumption and 

carbon emissions to be highly correlated. This high correlation would have significant 

distorting impact on the MAC estimates in studies including energy as a good output and 

carbon as a bad output. In cases where the correlation is high, it would be difficult to reliably 

estimate MACs. However, one can always get around the problem by aggregating inputs or 

removing the energy variable to allow for estimation and comparison across different 

approaches. 
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Secondly, all previous studies have either used primary energy use as the energy input or not 

provided a clarification of their energy input definitions. In this paper, we define energy input 

as the final rather than the primary energy consumption. It is important to make this 

clarification and use final rather than primary energy as the former is a more appropriate 

measure of the actual energy contributing to production. Using primary energy would 

overestimate the actual energy input in some provinces and underestimate it in others because 

energy demand and supply are not well matched across Chinese provinces. Some provinces 

produce and export while others import substantial secondary energy. In energy exporting 

provinces, primary energy used to produce secondary energy that is then exported should be 

counted as a raw material rather than as energy input. At the same time, imported secondary 

energy should be counted as part of actual energy input use in energy-importing provinces. In 

short, it is the final consumption, not the primary use, which defines the amount of energy 

that contributes to the final economic production of a province. Studies also differ in the 

calculation of GHG emissions. Some only account for energy-related GHG emissions while 

others also include emissions from production processes. The scope of emissions considered 

also influences the estimated MAC. 

Thirdly, in recent years, economists have started to move beyond evaluating regulatory 

effects on a pollutant-by-pollutant basis since the interaction between different pollutant 

mitigation activities is important (Greenstone, 2003; Burtraw et al., 2003; Gamper-

Rabindran, 2006; Considine and Larson, 2006). However, all previous studies on China’s 

MAC of GHG mitigation have focused on a single undesirable output – either carbon dioxide 

or sulfur dioxide. Environmental policies often require simultaneous reduction of several 

pollutants. The MAC estimated from a distance function including a single bad output would 

be less informative about the overall compliance cost of such policies. The MAC estimated as 

such is unconditional marginal abatement cost and it is not appropriate to consider the sum of 
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MACs estimated individually as the overall compliance cost of simultaneous mitigation 

targets. Some airborne pollutants are highly correlated (i.e. jointly produced). For example, 

given China’s heavily coal-dependent energy structure, a policy aiming to mitigate carbon 

emissions will often have the co-benefit of mitigating other pollutants such as sulfur dioxide, 

soot and dust. This will have a significant impact on the estimation of MAC. If multiple 

pollutants are jointly produced then the productivity impact that we associated with one 

pollutant should also be associated with other pollutants. The unconditional MAC of a 

pollutant may be very different from the MAC estimated conditional upon the emissions of 

other correlated pollutants remaining unchanged. A distance function including multiple bad 

outputs, on the other hand, allows estimation of conditional marginal costs and the overall 

cost of meeting simultaneous mitigation targets.  

Lastly, the choice of distance function in the empirical literature is largely arbitrary. 

However, the MACs estimated are shown to be very much sensitive to the parameterization, 

the assumptions and constraints imposed, and the mapping schemes which are the paths in 

which the inputs or outputs are scaled toward the technology frontier in various distance 

functions (Vardanyan and Noh, 2006). Studies that do provide justifications for their choices 

often fail to consider the nature of the policy environment and associated interpretation of 

their results. Because the estimated MACs can be interpreted as the value of a pollution 

permit or allowance in a market environment (Coggins and Swinton, 1996), one can always 

compare estimated MACs with observed carbon prices in the market to assess the 

appropriateness of the production technology specification and other parameters of an 

empirical estimation. This was impossible in the past but is feasible now because of China’s 

recently piloted carbon trading markets. This study provides the first comparison between 

observed and estimated carbon prices and reflects on the implications of the choice of 
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production technology specification and mapping schemes within the distance function 

framework for shadow price estimation. 

The paper is organized into five sections. The next section presents a review of the literature. 

The methods and data used in the study are described in the third section. The final two 

sections discuss the results and provide conclusions. 

 

Literature 

In spite of the size of China’s carbon emission contributions and the significance of 

compliance cost that mitigation policies could impose, there is only a small number of studies 

investigating the MAC of carbon mitigation using a distance function approach. Table 1 

summarizes empirical estimates of China’s MAC for carbon obtained using various distance 

functions. As shown in Table 1, all studies were conducted fairly recently. The results from 

these studies are not directly comparable as the studies differ in the chosen distance function, 

the period covered and the level of decision management unit (DMU). Nevertheless, the 

empirical estimates of the MAC of carbon emissions in China based on the distance function 

approach vary widely from merely a few US dollars into the hundreds and thousands of US 

dollars per metric tonne. 

The non-parametric data envelopment analysis (DEA) approach is known to be less suited for 

the estimation of shadow prices due to its non-differentiability. For distance functions using a 

DEA approach, it is possible that some of the efficient observations are located on the 

inflection points or vertices, which means that there is no unique slope at those points. The 

choice of the slope inevitably affects the scale of the MAC estimated (Lee et al., 2002) 
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Table 1 – Empirical Estimates of China’s MAC for Carbon (Distance Function Based 
Estimates) 

Studies Approach Period DMU US$/ Tonne†  

Wang et al., 2011 DEA 2007 Province 77 

Choi et al., 2012 DEA 2001-2010 Province 7 

Lee & Zhang, 2012 Input Distance 2009 Industry 3 

Yuan et al., 2012 DEA 2004; 2008 Industry 33~19561 

Wei et al., 2012 DEA 1995-2007 Province 19 

Wei et al., 2013 Directional Output†† 2004 Plant 335 

Wei et al., 2013 Directional Output†† 2004 Plant 100 

Du et al., 2014 Directional Output 2001-2010 Province 163~341 

†All monetary values converted to constant 2010 US dollars; ††Wei et al. (2013) have 
estimated a deterministic directional distance function using linear programming and a 
stochastic directional distance function using maximum likelihood. 

We thus focus on parametric distance functions which can be grouped into radial (Shephard) 

output or input distance functions and the relatively new directional distance functions. All 

output distance function values provide a measure of efficiency or productivity. In the 

presence of undesirable outputs, however, this measure can become ambiguous and the 

Shephard output-based measure ceases to be a meaningful measure of productive efficiency. 

This is because the output-distance measure is defined in terms of proportional expansion in 

outputs. But a proportional expansion in outputs is beneficial only if the expansion in 

desirable outputs will more than offset the damage caused by the accompanying expansion in 

undesirable outputs. While the directional output distance function allowing for simultaneous 

expansion of desirable outputs and the contraction of bad outputs does provide a meaningful 

measure of productivity (Chambers et al., 1998), Vardanyan and Noh (2006) show that the 

results can be sensitive to the chosen direction vector.  

The directional distance function has been preferred over other parametric distance functions 

in estimating China’s MAC (Table 1). The choice is often justified on the ground that the 

directional output distance function is a more appropriate metric for measuring performance 
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in the presence of bad output under regulation (Färe et al., 1993; Färe et al., 2005). However, 

China’s environmental regulation is mostly specified in terms of desirable inputs or outputs. 

In particular, before the pilot markets for carbon trading were introduced, China’s regulations 

for mitigating carbon emissions were mostly specified in terms of the reduction in energy 

intensity. Energy intensity targets can be achieved by reducing energy consumption or 

increasing GDP growth with no binding power on carbon reduction. It is thus unclear 

whether the justification from the policy perspective is valid or not in the Chinese context.  

Compared with output-based measures, input-based measure always provides a meaningful 

summary of efficiency because a proportional savings in inputs, with or without undesirable 

outputs present, is an unambiguous indicator of changes in social benefits (Hailu and 

Veeman, 2000). Lee and Zhang (2012) is the only paper on China that uses an input distance 

function and produces the lowest MAC for carbon in this literature as shown Table 1.  

Radial and directional distance functions differ in the way the observed input/output vector is 

projected onto the frontier. Radial measures (i.e. Shephard output distance function and input 

distance function) keep the output or input mix fixed at observed (individual specific) 

proportions while non-radial measures (directional distance functions) apply the same 

direction vector to all data points and don’t preserve the mix in the projection to the frontier. 

Drastic adjustments in the output structure are more likely in the long run than in the short 

run. Similarly, the long-run elasticities of inter-fuel and inter-factor substitutions are greater 

than the short-run ones. Thus one could think of radial distance function based measures as 

better approximations to short-run scenarios involving small adjustments while non-radial 

measures can be more useful for representing long-run situations where the input/output mix 

is transformed greatly. In this sense, it could be argued that the MACs estimated using radial 

and non-radial measures could have rather different interpretations.   
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In this study, we estimate China’s MAC using three parametric distance functions – namely 

the input distance function (IDF), the output distance function (ODF), and the output 

directional distance function (ODDF). To ensure comparability, we apply all three to the 

same dataset and derive abatement cost estimates which are then compared with observed 

carbon prices in the pilot markets. Below, we describe the methods and data used in the 

study. 

Methods 

Like production, cost and profit functions, distance function provide a way of representing 

the underlying production technology (Shephard, 1953, 1970; Färe, 1988; Färe and Primont, 

1995; Chambers et al., 1996). Some of their key attractive features are that they: can be used 

to model multi-output production processes; require only quantity data to estimate; do not 

require behavioural assumptions of cost, revenue or profit maximisation;  have function 

values that are measures of (in)efficiency; and can be used to generate shadow prices or 

marginal abatement costs for undesirable outputs. 

 

Given an underlying production technology Y(t) for period t, which is the set of technically 

feasible input (xit) and output (uit) vectors for producer i, or 

{ } )1(:),()( tperiodinuproducecanxxutY itititit=  

Shephard’s (1953, 1970) radial input distance function is defined as the maximum amount by 

which an input vector can be radially (proportionally) contracted while still being able to 

produce the output vector: 
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The IDF value is by definition the reciprocal of the input-based measure of technical 

efficiency. A value of one for the input distance function indicates that the observed input-

output vector is technically efficient (on the isoquant) while a value greater than one indicates 

that it is inefficient. That is, input-oriented technical efficiency (TEx) is equal to: 

)3(
),,(

1

txuIDF
TE

ititx =  

The function is a non-decreasing and continuous function of x for a non-negative vector of 

outputs u; it is concave and homogeneous of degree one in x; and it is a quasi-concave 

function of u (Shephard, 1953, 1970). And it is non-increasing in desirable outputs and non-

decreasing in undesirable outputs (Hailu and Veeman 2000). Finally, the input distance 

function provides a complete representation of the production technology in the sense that 

  )(),(1),,( tYxutxuIDF itititit ∈⇔≥ . 

The radial output distance function is defined as the minimum amount by which an output 

vector can be radially (proportionally) deflated and still be producible with a given input 

vector: 
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The ODF value is the same as the output-based measure of technical efficiency. A value of 

one for the input distance function indicates that the observed input-output vector is 

technically efficient (on the production possibility frontier) while a value less than one 

indicates that it is inefficient. The output distance function has the following properties: it is a 



 

10 

non-increasing function of x; it is convex and homogeneous of degree one in u; and it is a 

quasi-convex function of x (Shephard, 1970). The function is non-decreasing in desirable 

outputs but non-increasing in inputs and undesirable outputs (Färe et al., 1993) and 

characterizes the technology fully, or )(),(1),,( tYxutxuODF itititit ∈⇔≤ . Output oriented 

technically efficiency (TEy) is given by the value of the function: 

)5(),,( txuODFTE
itit

y =  

For empirical applications, the translog functional form has been used for radial distance 

functions. With the translog, the homogeneity property can be imposed globally as a 

restriction on the translog coefficients (e.g. Hailu and Veeman, 2000). In this study, the radial 

distance functions are specified as: 
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where:  output and input vector subscripts have been suppressed for simplicity; DF represents 

either IDF or ODF; n indexes the vector of inputs 1,2,...,N;  m indexes the desirable and 

undesirable output vector 1,2,…,M;  and t denotes the time trend variable.  The translog 

function in (4) can be estimated using mathematical programming to minimise the sum of 

deviations from the frontier (distance function value of 1) subject to the appropriate 

monotoncity and homogeneity restrictions. To save space, we will not provide the details 

here as the reader can read the details in Fare et al. (1993) for output distance functions and in 

Hailu and Veeman (2000) for input distance functions. 
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The output directional distance function is defined in terms of translation or as the maximum 

amount by which an input/output vector can be translated along a chosen direction and still 

be technically feasible (or be a member of the technology set, Y(t)): 

( ){ } )7(),(:max),;,,(
,

RtYgxguggtxuODDF x

it

u

it

xu

itit ∈∈++= θθθ  

Where: ug is the output translation vector and would include positive value for desirable 

output and negative values for undesirable outputs; and xg is the input translation vector and 

is negative. Like the radial functions, the ODDF generalizes the input and output distance 

functions (Chambers et al., 1996) and fully characterises the technology,

)(),(0),;,,( tYxuggtxuODDF itit

xu

itit ∈⇔≥ . In all cases, the ODDF takes a value of zero 

when the observed point is efficient. A positive ODDF value signals that the point is 

inefficient and the directional measure of efficiency could be simply defined as the negative 

of the ODDF value: 

)8(),;,,( xu

itit

d ggtxuODDFTE −=  

ODDF satisfies the following translation property which is useful in the estimation of the 

function (as is the homogeneity property in radial functions): 

)9(),;,,(),;,,( ααα −=−+ xu

itit

xux

it

u

it ggtxuODDFggtgxguODDF  

Other key properties of the ODDF include: it is non-increasing in desirable outputs but non-

decreasing in inputs and undesirable outputs; it is concave in (u,x); and is homogeneous of 

degree -1 in the direction vectors, i.e.: 

),;,,(),;,,( 1

xu

itit

xu

itit ggtxuODDFggtxuODDF −= λλλ .  

The ODDF is estimated using mathematical programming with the translation imposed on the 

estimated parameters. The flexible functional that is linear in parameters and also allows for 



 

12 

imposing the property globally is the generalized quadratic (Färe and Lundberg, 2005; Färe et 

al., 2010; Hailu and Chambers, 2012). The generalized quadratic has the same structure as the 

translog function except that the input and output variable values are in levels (not logs). Its 

parameters are estimated using mathematical programming methods and constraints similar 

to those described in Hailu and Chambers (2012). In our case, we suppress the input direction 

vector (gx=0) and estimate an output directional distance function with gy vector that has 

positive elements for desirable and negative ones for bad outputs. 

Finally, shadow prices for bad outputs can be derived from the different distance functions as 

implied marginal rates of transformation between a good output and a bad one transformed 

into dollar values using the market price for the good output (e.g. Fare et al., 1993; Hailu and 

Veeman, 2000). In our case, the shadow price rj for a bad output uj expressed in terms of a 

good output ui, derived from an input distance function would be given by: 

)10(
(.)

(.)

.
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where pi is the market price for a good output while the good output is GDP as discussed 

below and this price would be unity.  Similar formulae are used in the case of the radial 

output and the directional distance functions. 

 

Data and Variables 

Existing studies on the MAC of carbon dioxide all include energy as a separate production 

input variable. These studies typically calculate energy-related carbon emissions based on the 

IPCC reference approach (IPCC, 2006). Wei et al. (2013) also calculated emissions from the 

production of cement. Emissions calculated as such will inevitably exhibit high correlation 
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with energy consumption (top left, Fig.1). Adding the carbon emissions from the production 

of cement will not reduce the correlation by much as the proportion of emissions from 

cement production is usually small compared with energy-related emissions (top right, Fig.1). 

In fact, the correlation is so high as to make the estimation of marginal effects via the radial 

measures extremely difficult and unreliable if not totally impossible1. Fig.1 plots provincial 

CO2 emissions in million tonnes (Mts), CO2 emissions (with emissions from cement 

production) in Mts, SO2 emissions in 10,000 tonnes, soot emissions in 10,000 tonnes against 

provincial final energy consumption in million tonnes of standard coal equivalent (Mtce).  

 

Fig. 1 – Provincial Final Energy Consumption and Emissions (2001-2010, 30 Provinces) 

                                                 
1 Although not reported here, results from estimated distance functions with energy included as an additional 
input are available from the authors upon request. 
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To make results comparable across all distance function, we include two inputs (labor and 

capital), one good output (provincial Gross Domestic Product (GDP)), and three bad outputs 

– carbon dioxide (CO2) emission, sulfur dioxide (SO2) emission, and total provincial soot 

emission. We use Chinese provincial data for the 10-year period from 2001 to 2010.  Table 2 

presents the definition and summary statistics of these variables. Below we explain how the 

data was collected and constructed.  

Inputs 

Labor data was collected from China’s Statistical Yearbooks (CSYs) (NBSCa, 2002-2011). 

Provincial capital data were collected from Wu (2009) with updates for recent years obtained 

from the author. 

Outputs 

Provincial GDP were collected from China’s Statistical Yearbooks (CSYs) (NBSCa, 2002-

2011). Emission data on SO2 and soot are available from China’s Environmental Statistical 

Yearbooks (NBSCb, 2002-2011). China’s statistical authority does not report emission or 

inventory data on carbon dioxide. Most existing literature follow the IPCC reference 

approach to estimate carbon emissions based on energy consumption. We followed the same 

practice to calculate energy-related carbon emissions; however, we calculate CO2 emissions 

based on final energy consumption rather than primary energy consumption as noted 

previously. We also calculated carbon emissions from the process of cement production. 

Carbon emission factors for the burning of coal, oil and natural gas and the production of 

cement are available from the IPCC (2006). Emission factors for heat and electricity were 

calculated as share-weighted emission factors of individual energy carriers. Energy shares of 



 

15 

coal, oil and natural gas used in heat provision and electricity generation were collected from 

China’s Energy Statistical Yearbooks (NBSCc, 2002-2011)2. 

The total energy consumption is the sum of the final consumption of five energy carriers: 

coal, oil, natural gas, heat and electricity. China’s Energy Statistical Yearbooks (NBSCc, 

2002-2011) report three different provincial energy statistics: total consumption by energy 

carrier, total primary energy supply and total final energy consumption. The first two are 

similarly defined as the total energy resources that are available and consumed by a province 

in a given year, which includes both resources used for energy transformation and raw 

materials, and resources actually used by the economy as final energy consumption. As we 

argued in the introduction, it is the final consumption, not the primary energy that defines the 

amount of energy that contributes to the economic production. We have thus collected total 

final energy consumption by energy carrier. All energy consumption data were converted to 

standard coal equivalent (SCE) – the standard energy metric used in Chinese energy statistics. 

China’s Energy Statistical Yearbooks also provide conversion factors for all energy carriers 

based on equivalent calorific values. However, we chose to convert heat and electricity 

consumption to SCE based on coal equivalent in heat supply and electricity supply (i.e. 

supply efficiency factors) rather than calorific values. This is because the former is a better 

reflection of the energy transformation efficiency and the actual primary energy consumed in 

heat provision and electricity generation.  We collected province-year-specific efficiency 

factors for heat and electricity provision from various issues of Statistical Compilation of 

China’s Electricity Industry (CEC, 2001-2010). 

 

 

                                                 
2 As this is the common practice of constructing the emission data of carbon dioxide, we do not report the 
detailed calculation process. Data is available from the authors upon request. 
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Table 2 – Summary Statistics for Data Used in the Analysis (2001-2010, 30 Provinces) 

Variables Definition† Unit Mean S.D. Min Max 

Inputs 
      

Labor Total employment 10^6 persons 23 15.2 2.4 60 

Capital Total capital stock 10^6 $US†† 436 358 41 2138 

Outputs 
      

GDP Gross Domestic Product 10^9 $US†† 135 120 7 694 

CO2 Energy related CO2  10^6 metric tonnes 184 131 10 738 

CO2
c CO2 with cement  10^6 metric tonnes 204 147 12 813 

SO2 SO2 emission 10^4 metric tonnes 75 46 2 200 

Soot Soot emission 10^4 metric tonnes 34 24 1 112 

†All variables defined as annual provincial statistics; ††all monetary variables converted to 
constant 2010 prices and RMB is converted to US dollar at 1US$=6.6227RMB. 

Carbon Prices 

China has already launched seven regional pilot markets for carbon trading in a bid to gain 

experience ahead of a nationwide scheme. The pilot markets include Beijing, Shanghai, 

Tianjin, Guangzhou, Shenzhen, Hubei and Chongqing. Daily trading prices for these pilots 

are available from http://k.tanjiaoyi.com/ . 

 

Results and Discussions 

Input and Output Coverage 

We estimated MACs using different distance functions and with different input and output 

coverage levels. Fig.2 presents the 10-year provincial mean MACs estimated using an input 

distance function for the following four cases: 1) Single Bad which includes only energy-

related CO2; 2) Single Bad WC which also includes CO2 from cement production; 3) 

Multiple Bads which include CO2, SO2 and soot); and 4) Multiple Bads WC where carbon 

emissions from cement production are also included.  
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The provinces are sorted in increasing order by the last (i.e. Multiple Bads WC) MAC values.  

A broader sectoral coverage reduces the marginal abatement cost estimates. The MAC for 

carbon is consistently lower if carbon from cement production is included. This is true for 

both the calculations with only carbon (solid and dashed curves) and those with multiple bads 

(dotted and long-dashed curves). 

As indicated in the introductory section, the MACs estimated with a single bad output and 

multiple bad outputs can be interpreted as, respectively, unconditional and conditional 

marginal abatement cost. From a policy perspective, unconditional MAC is less informative 

when policy makers today are more interested in knowing the overall compliance cost of 

simultaneous mitigation targets. For a country like China which is heavily dependent on coal 

consumption, a policy aiming to mitigate carbon emissions often has the co-benefit of 

mitigating other pollutants such as sulfur dioxide, soot and dust. Conditional MACs should 

therefore be lower than unconditional MACs in this case. This is also confirmed by our 

results in Fig.2. The MACs estimated with multiple bad outputs are consistently lower than 

their counterparts with single bad outputs. Although not reported here, these same 

observations hold for output distance function and output directional distance function as 

well. 
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Fig.2 Provincial MAC Curves (US$/Tonne) 

 

Cross-Consistency in Efficiency and MAC Estimates 

Here we show results from three distance functions (IDF, ODF and ODDF) with all three bad 

outputs and with carbon emissions from cement production included. Fig.3 plots efficiency 

estimates. There is generally good consistency across all three distance functions, although 

radial measures (IDF and ODF) produce more consistent efficiency estimates. Note that 

larger bubble indicates greater provincial GDP. The fact that we obtain very similar results 

applying different distance functions to the same dataset adds to the confidence that the 

outcomes reflect genuine efficiencies rather than artifacts of the choice of specific distance 

functions. However, this is not the case for the MAC estimates. Fig.4 shows the 10-year 

0
5
0

1
0

0
1
5

0
2
0

0

Q
in
gh

ai

N
in

gx
ia

H
ai

na
n

Bei
jin

g

Tia
nj
in

Xin
jia

ng

In
ne

rM
on

go
lia

G
an

su

G
ui
zh

ouJi
lin

Sha
nx

i

Sha
ng

ha
i

C
ho

ng
qi

ng

Li
ao

ni
ng

H
eb

ei

H
ei

lo
ng

jia
ng

H
ub

ei

Sha
an

xi

Fuj
ia

n

Yun
na

n

Anh
ui

Sha
nd

on
g

Zhe
jia

ng

G
ua

ng
xi

H
en

an

Ji
an

gx
i

Ji
an

gs
u

H
un

an

Sic
hu

an

G
ua

ng
do

ng

Single Bad Single Bad WC

Multiple Bads Multiple Bads WC



 

19 

provincial mean MAC estimates using different distance functions. The provinces are sorted 

by MAC values estimated from ODDF. We make the following observations. 

•  With our data, the two radial measures – IDF and ODF – produce identical MAC 

estimates; however, this is not the case with other data sets. 

• There is a low correlation between MAC estimates from radial (IDF or ODF) and 

non-radial distance functions (ODDF). In fact, the correlation between the two series 

of provincial mean MACs is only 0.37. Comparisons across studies typically focus on 

mean estimates (Table 1) but the ranking and distribution are also important. The low 

correlation suggests that different distance functions could possibly identify different 

provinces as low MAC sources of abatement, which is especially problematic for 

drawing out policy implications. 

• There is also substantial heterogeneity in the variation and magnitude of MACs 

estimated using different distance functions. The variation and magnitude of MACs 

estimated from ODDF are significantly greater than those obtained from IDF or ODF. 

The grand mean MAC estimate from ODDF is 340 US$ which is generally consistent 

with the estimates in Wei et al. (2013) and Du et al. (2014). The mean MAC estimate 

from IDF or ODF is merely 20 US$, which is higher than the estimate (3 US$) in Lee 

and Zhang (2012) but nowhere near the ODDF estimate. Although Lee and Zhang 

also use an IDF, they use industrial data rather than provincial data. 



 

20 

 

Fig.3 Cross-Consistency of Efficiency Estimates 

Market Observations 

Studies using ODDF often justify their choice on the ground that ODDF is a more 

appropriate metric for measuring performance in the presence of bad output under regulation. 

However, for our chosen study period, China did not have any direct regulation imposed on 

carbon. The literature also attempts to reconcile the substantial difference between MAC 

estimates using ODDF and those using IDF or ODF from a methodological perspective. The 

ODDF derives much higher MAC estimates because it places the DMUs on a steeper portion 

of the production frontier than the IDF or the ODF. However, the economic interpretation is 

often unclear.  Given the price levels observed in the European and Australian carbon 

markets and the fact that China remains largely a developing country, the mean MAC of 340$ 

per tonne estimated using ODDF seems too high. 
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It is important to note that radial measures (IDF and ODF) keep the output or input mix 

constant while non-radial measures (e.g. ODDF) don’t. Drastic adjustments in the output 

structure or inter-fuel and inter-factor substitution are more likely in the long run than in the 

short run. We argue that radial measures are most likely approximating the short-run 

scenarios while non-radial measures reflect long-run situations. China has only recently 

launched its seven pilot markets for carbon trading (Shenzhen, Beijing, Shanghai, Tianjin, 

Guangzhou, Chongqing and Hubei). Carbon prices observed in these spot markets therefore 

reflect short-run MACs3. Fig.5 illustrates complete carbon price trends in the pilot markets. 

As can be seen from the figure, observed carbon prices mostly lie within the range of 5 to 15 

US$ per tonne. This is much closer to the mean MAC of 20 US$ we obtain from our radial 

distance functions than the directional distance function4.  

                                                 
3 The reference to observed carbon prices is made for comparison purposes only. It is not necessary that the 
estimated prices are similar or close to observed prices since the observed prices might not reflect the true 
opportunity costs of carbon because of low participation. There is also substantial heterogeneity in term of 
participation and liquidity across the seven pilot markets. While recognizing the limitation of liquidity, a report 
recently released at the 2014 United Nations Climate Change Conference held in Lima indicated that carbon prices 
in China have converged to a range between 20 to 70 Yuan per ton after a year of operation, which is strongly 
indicative of future price fluctuation ranges for a national carbon market (Wang et al, 2014). 
4 The fact that our estimate is slightly higher could be due to two reasons. First, our CO2 calculation only 
considers energy-related emissions and emissions from cement production. The CO2 emissions covered in 
China’s pilot trading schemes are much broader. Most schemes cover traditionally energy-intensive and 
emission-intensive manufacturing industries and some also include building and construction and tertiary 
industries. A broader coverage would drive down the marginal abatement cost. 
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Fig.4 Cross-Consistency of MAC Estimates (US$/Tonne) 

 

Fig.5 Carbon Prices in China’s Pilot Markets (US$/Tonne) 
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Because directional distance functions allow structural change in outputs and inputs, they 

may provide long-run MAC estimates. However, the MAC estimates are very sensitive to the 

chosen mapping scheme (Vardanyan and Noh, 2006). More importantly, the economic 

interpretations are rather different with different mapping schemes. Researchers are strongly 

encouraged to interpret their results in the context of the data and the particular methods 

employed to derive shadow prices. Caution needs to be taken when generalizing results or 

comparing across studies.  

Bootstrapped Results 

The mathematical programming approach allows us to impose the theoretical restriction in the 

estimation process and have them satisfied at all data points. To explore the sensitivity of the 

results, we bootstrapped the distance function results for all the models. Fig. 6 presents the 

boxplots of results from 5,000 bootstraps for three distance functions (IDF, ODF and ODDF) 

estimated with all three bad outputs included (CO2, SO2 and Soot). The bootstrapped means 

are very consistent with the grand means of our original estimates and the mean values from 

IDF and ODF are still substantially lower than that from ODDF. We have also presented 

detailed bootstrap results from ODDF for all 300 observations (Fig. 7). Our original MAC 

estimates are very close to the mean values and fit well within the upper and lower 95 

quantiles of bootstrapped results even at the individual observation level.  
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Fig.6  Distribution of Bootstrapped MAC Estimates (US$/Tonne) 
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Fig.7  Distribution of Bootstrapped MAC Estimates by Observation (US$/Tonne) 
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China, for example, empirical estimates of the marginal abatement cost (MAC) of carbon 

mitigation obtained using distance function approaches vary widely. This variability in the 

magnitude and ranking of MAC estimates may undermine the scientific support for policies 

aimed at curbing carbon emission. In the literature, there has been very limited work that 

would shed light on this variability to help governments make sense of the wide gaps 

between estimates and also between these estimates and real-world prices for carbon. In this 

paper, we show that the variability can be partially explained by the differences in the 

input/output coverage of estimated models and by whether the MAC estimated is conditional 

(or unconditional) on simultaneous reduction of other related pollutants. The paper also 

argues that the substantial heterogeneity in cost estimates can be explained in terms of 

inherent differences in the nature (or economic interpretation) of the estimates from different 

studies. In particular, we argue that radial measures imply little change in the input or output 

mix and thus reflect short-run MACs while non-radial measures are evaluated at input/output 

mixes that are a transformation of observed values and therefore are more akin to long-run 

MACs. Finally, we provide short-run estimates that are very close to the carbon prices 

observed in China’s recently launched pilot markets. The findings in our study suggest that a 

promising avenue for future research would be a careful investigation of the economic 

interpretations of abatement cost estimates generated by different methods or mapping 

schemes (radial, directional, etc.); such an exercise would facilitate comparisons across 

different estimates and help policymakers get a better sense of the cost to industry of 

pollution reduction measures. 
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