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Abstract: Federally subsidized crop insurance has expanded in recent decades, with annual 

premium subsidies increasing from roughly $1 to $7 billion dollars between 2000 and 2013. The 

2014 Farm Act further expanded crop insurance, making it the main conduit of financial support 

to farmers. Although designed for non-environmental goals, subsidized insurance may affect the 

use of land, fertilizer, and agrochemicals and therefore environmental externalities from 

agriculture such as nutrient and chemical runoff into lakes and streams. We use a newly 

constructed farm-level panel data set to examine farmer responses to changes in insurance 

coverage. Identification comes from an instrumental variable approach that exploits program 

limits on coverage, which constrained the response of some farmers to increasingly generous 

subsidies more than others. Our estimates indicate that expanded coverage had a small, if any, 

effect on farm decisions such as fertilizer and chemical use. 
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The decisions of crop farmers such as how much fertilizer and pesticide to use can affect 

biodiversity and water quality. Hendricks et al. (2014), for example, find that demand for corn-

based ethanol expanded the so-called dead zone in the Gulf of Mexico by encouraging farmers to 

plant more corn and use more fertilizer. Federal crop insurance may have similar unintended 

effects. Although designed to reduce farm income variability, crop insurance may cause farmers 

to take more risks and apply more fertilizer, plant crops on erodible lands, or specialize in fewer 

crops, thereby exacerbating environmental externalities from agriculture. 

 Whether crop insurance has such effects is an increasingly important empirical question; 

the program expanded dramatically since 2000 and with the 2014 Farm Act is now the main 

conduit of financial support to farmers. The expansions include increasing the number of eligible 

commodities, offering products to insure both price and yield risk, and increasing premium 

subsidies. Total premium subsidies paid by the Federal government increased from 1.2 billion 

dollars in 2000 to nearly $7 billion in 2013 (Figure 1). Farmers responded by enrolling more 

acres at higher coverage: acres enrolled beyond the most basic coverage increased from 158 

million acres in 2000 to 280 acres in 2013.  

 We study how changes in insurance coverage affected farm-level crop choices and 

fertilizer and chemical use. Our empirics are based on a newly created panel data set constructed 

from 18 years of the annual USDA Agricultural Resource Management Survey, which is the 

only nation-wide data source on the finances, production practices, and resource use of U.S. 

farms. Observing the same farm twice allows us to control for time-invariant characteristics 

correlated with the level of insurance coverage, such as land quality, climate, and farmer risk 

aversion.  
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 Though an improvement over many past studies that rely on cross-sectional variation in 

insurance coverage, an empirical approach that controls for time-invariant factors alone may not 

provide credible estimates of the causal effect of expanded coverage. Suppose for example that 

changes in relative crop prices led some farmers to shift to more input-intensive insurable crops. 

This would cause a spurious correlation between insurance coverage and input use. For 

exogenous variation in insurance coverage, we exploit the long-standing maximum coverage a 

farmer can have. As premium subsidies increased over time, farmers who initially had little 

coverage could greatly expand coverage; farmers already close to the maximum level could not. 

Instrumenting the change in coverage with each farm’s initial coverage ratio – its actual coverage 

relative to its farm-specific maximum coverage possible ‒ allows us to identify the effect of 

coverage on production decisions.  

 Our OLS estimates from a first-differenced model show a positive relationship between 

coverage and fertilizer and chemical use, though much smaller than some prior estimates using 

cross-sectional data. Our instrumental variable estimates, however, show that coverage has little 

effect on crop specialization or input use. The standard errors are sufficiently small that even the 

upper bounds of a 95% confidence interval represent environmentally negligible effects. Thus, it 

does not appear that more generous crop insurance programs by themselves encourage 

specialization and greater fertilizer nutrient and chemical use as several prior studies have found. 

 

Agriculture and the Environment 

Farmers are the chief managers of arable lands around the world, and their decisions affect 

environmental quality on their lands and beyond (Tilmen et al., 2002). In the U.S., crop 

agriculture primarily affects the environment through land use decisions, such as whether to till 
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or which crops to plant, and through runoff from fields which carries soil, fertilizer nutrients, and 

pesticides into streams or lakes. 

 Switching marginal land from pasture or other passive uses into cultivation generally 

reduces its value as wildlife habitat. Marginal lands are also typically more prone to soil erosion 

when cultivated, which leads to the sedimentation of lakes and streams (Shortle, Abler, and 

Ribaudo, 2001). For land already in cultivation, a less diverse crop mix is associated with less 

biodiversity and greater insect and disease problems (Sulc and Tracy, 2007).  Landis et al. (2008) 

all find that the switch to more corn acreage in the 2000s reduced the biological control of 

soybean aphids, costing farmers in four Midwestern states nearly $240 million in reduced yields 

or greater pesticide cost. 

 The consequences of fertilizer nutrients running into surface water or leaching into 

groundwater are substantial. The U.S. Environmental Protection Agency has identified 

agricultural nonpoint source pollution as one of the leading sources of impairment of the 

country’s water resources (U.S. EPA, 2015). Studies have shown that 30 to 40% of nitrogen 

fertilizer applied to crop fields seeps into ground or surface water, with losses of 70% on the 

margin (Cambardella et al., 1999; Randall and Mulla, 2001; Li et al., 2006).  

 Nutrient loss can also affect human health. A 1990 nation-wide survey by the EPA found 

nitrates to be the most commonly occurring pollutant in drinking water wells and identified 

inorganic fertilizers as a major source (EPA, 1990). Excess nutrients in turn increases costs of 

making water fit for human consumption. Ribaudo et al., 2011 estimated that a 1% decrease in 

nitrate concentrations would reduce U.S. water treatment costs by $120 million per year.   

 Pesticide runoff from agriculture also has extensive environmental and health 

implications. Pimentel (2005) estimated that pesticide use in the early 2000s had an annual 
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environmental and health cost of roughly $10 billion. A ten-year study by the U.S. Geological 

Survey found widespread occurrences of pesticides in the streams and groundwater of the U.S., 

often at concentrations deemed harmful to aquatic life and fish-eating wildlife (Gilliom, 2007). 

The same EPA survey mentioned in the prior paragraph found that 10% of community water 

systems and 4% of rural domestic wells contain at least one pesticide (EPA, 1990).  

 

The Federal Crop Insurance Program and Farmer Decisions  

The Risk Management Agency (RMA) of the U.S. Department of Agriculture oversees Federal 

crop insurance by operating and managing the Federal Crop Insurance Corporation. RMA sets 

the terms and conditions in which private insurance companies provide insurance to farmers. 

RMA sets premiums at actuarially fair levels, meaning that over time total premiums should 

equal total indemnities paid. Through premium subsidies the Federal government pays a share of 

the premium for farmers, and the share has increased over time, from 37% in 2000 to almost 

63% in 2013. 

 With greater support of crop insurance, more attention is being paid to the potential 

unintended consequences of subsidized crop insurance, as Goodwin and Smith (2013) note in 

their aptly titled article “What Harm is Done by Subsidizing Crop Insurance?” There are several 

reasons why greater premium subsidies and insurance coverage could influence decisions like 

how much fertilizer to apply. According to the moral hazard argument, greater insurance 

coverage increases a farmer’s incentive to make riskier production choices. An increase in 

coverage, therefore, could induce farmers to use more risk-increasing inputs and fewer risk-

decreasing inputs (Pope and Kramer, 1979; Leathers and Quiggin, 1991; Horowitz and 

Lichtenberg, 1993; Babcock and Hennessy, 1996). Sheriff (2005), for example, argues that 
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farmers over- apply nitrogen fertilizer to reduce the risk of very low yields, in which case 

subsidized crop insurance would reduce nitrogen use.  Whether an input is risk-increasing or 

risk-decreasing, and consequently how insurance affects input use, is an empirical question.  

 A similar logic applies to other production decisions that affect profit variability. With 

greater coverage, a risk-averse producer could shift to riskier crops or specialize in one or two 

crops (O’Donoghue, Roberts, and Key, 2009). At the farm household level, less farm income 

risk may encourage households to spend less time at off-farm jobs and more time at the farm. 

Shifting time or money to the farm could result in marginal land being planted in crops and more 

fertilizer used per acre (Chang and Mishra, 2012).  

 The potential effects of crop insurance on production via moral hazard should not be 

overstated. The structure of insurance contracts, which include deductibles and premiums that 

depend on yield histories, likely attenuate moral hazard. Historically, most federal crop insurance 

contracts have provided coverage with a significant deductible – usually between 25 and 30%. 

The premium a farmer pays also depends his claim history. A claim in one year increases the 

premium for following years and reduces the guarantee at which insurance pays, effectively 

increasing the deductible. 

 But, there are other reasons why crop insurance might alter production decisions. The 

ineligibility of some crops for insurance can encourage farms to switch to insured crops. Because 

Federal crop insurance is heavily subsidized, the program confers economic benefits to farmers, 

thus increasing the risk-adjusted returns to insured crops. By encouraging farmers to shift to 

insured crops, which may require more inputs, additional insurance could increase input use at 

the farm or regional level, even if it lowered input use on individual crops (Wu, 1999; Wu and 
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Adams, 2001; Young, Vandeveer, and Schnepf, 2001; Goodwin, Vandeveer and Deal, 2004; 

Walters, Shumway, Chouinard, and Wandschneider, 2012). 

 Crop insurance may also influence production decisions by relaxing financial constraints. 

Banks may lend to insured farmers at more favorable terms, making it cheaper to finance 

investments in equipment or inputs to increase yields, or to expand production on the extensive 

margin (Cornaggia, 2013).  

Past Empirical Studies 

Much of the earliest empirical work examining the production effects of crop insurance used 

cross-sectional data and focused on fertilizer and pesticide application rates. Horowitz and 

Lichtenberg (1993) show large, input-increasing effects of adopting crop insurance, with 

Federally insured farms applying 19% more nitrogen and spending 21% more on pesticides than 

uninsured farms. Two other empirical studies around the same time find that insurance reduced 

chemical use, Quiggin, Karagiannis, and Stanton (1993) for Midwestern corn and soybean 

farmers and Smith and Goodwin (1996) for Kansas wheat farmers. Babcock and Hennessy 

(1996) take a different approach and use data from field experiments to estimate how fertilizer 

use affected crop yield distributions. In a simulation with their parameterized model they find 

that insurance would cause small reductions in nitrogen fertilizer use. 

 Later empirical work estimated the effect of insurance on both crop mix and input use. 

Wu (1999) show that in Nebraska crop insurance shifted land away from hay and pasture into 

corn, which increased chemical use. Wu and Adams (2001) simulate the acreage responses for 

different revenue insurance programs and show that greater coverage should shift land into 

insurable crops. In their study region (the U.S. Corn Belt) they argue that much of the shift in 
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cropping patterns would occur in counties with more hills and lower quality land and therefore 

more prone to runoff and excessive use of fertilizers. Goodwin, Vandeveer, and Deal (2004) 

simultaneously estimate the effect of insurance on output and input intensity and find that 

increased participation in insurance programs caused modest changes in acreage. Defining input 

use as combined fertilizer and chemical expenditures per cropped acre they also find that corn 

insurance is associated with more input use while soybean insurance is associated with less input 

use.  

 More recently, Walters et al. (2012) use insurance contract data and find acreage 

responses to insurance for some crops and regions but not others. Chang and Mishra (2012) 

examine the effect of crop insurance and off-farm work on fertilizer and chemical expenses. 

Using cross sectional data and a categorical variable for crop insurance coverage per acre, the 

authors find that crop insurance increased chemical usage and off-farm work decreased it.  

 The weak foundation for distinguishing the effect of crop insurance from confounding 

factors may explain the diversity of findings in the literature. Many studies use cross-sectional 

data or assume that insurance decisions are unrelated to unobserved factors that affect what type 

of crops to plant or how much fertilizer to use. As noted in the introduction, this is a tenuous 

assumption: it is easy to imagine a scenario where, for reasons unrelated to crop insurance, a 

farmer decides to plant more acres of corn, which then affects decisions about fertilizer use and 

insurance coverage. 

 

Empirical Approach 



10 

 

Our empirical approach uses a novel unbalanced panel data set (described in the next section) 

with rich farm-level information. The base model relates changes (or log differences) in various 

outcomes to changes in crop insurance premiums per acre while controlling for initial farm 

characteristics, county fixed effects, and the years when the farm was observed: 

(1) 𝑦𝑖,𝑡 − 𝑦𝑖,𝑠 = 𝛽0 + 𝛽1(ln𝑃𝐴𝑖,𝑡 − ln𝑃𝐴𝑖,𝑠) + 𝑿𝑖,𝑠𝜽𝑥 + 𝑻𝑠𝜽1 + 𝑻𝑡𝜽2 + 𝜈𝑐(𝑖) + 𝜂𝑖𝑡, 

where 𝑦𝑖,𝑡 − 𝑦𝑖,𝑠 is the change in the production variable for farm 𝑖 between the first year the 

farm was observed 𝑠 and the second year 𝑡 (or in the case of farms observed three or more times, 

the second and third time and so forth). To measure the allocation of land to crops, we look at the 

share of total acres operated that are harvested; to capture crop specialization, we use the share of 

total acres harvested accounted for by the most harvested crop. For fertilizer and chemical use, 

we look at the log of fertilizer expenses per acre, the log of chemical expenses per acre, and the 

log of the sum of fertilizer and chemical expenses per acre. To capture overall intensity of land 

use, we look at the log of the value of production per acre. 

 We measure crop insurance coverage 𝑃𝐴𝑖,𝑡 using the premium paid per acre of land 

operated. This is a better measure of coverage than a binary variable indicating enrollment of 

some acreage in Federal crop insurance and a better measure than share of farm acres insured ‒ 

the measures most prior studies have used. Premiums are proportional to the liabilities covered 

by the insurance policy. Because coverage is expressed as premiums per acre operated by the 

farm, the measure increases with the share of acreage enrolled in crop insurance. It also increases 

with the level of coverage chosen for the enrolled acres since farmers pay higher premiums for 

higher coverage levels.  
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 The vector 𝑋𝑖,𝑠 contains farm-specific characteristics observed in the first year used in 

calculating the difference in the dependent variable (subscript s in equation (1)). We control for 

the initial level of crop insurance coverage as measured by premiums per acre. To capture farm 

size and life cycle effects we include a linear and quadratic term for the farm operator age and 

the initial total value of production. To account for differences in crop specialization, we control 

for the initial share of harvested acres accounted for by soybeans, corn, and wheat, all separately. 

 The vector 𝑇𝑠 contains binary variables indicating the first year the difference; the 

variables in 𝑇𝑡 indicate the second year. The year dummy variables control for shocks unique to 

those years and that affect the change observed over the time spanned by the two years. The term  

𝜈𝑐(𝑖) is a county fixed effect. It captures local unobserved conditions such as the possibility that 

changing crop prices encouraged agricultural intensification in some areas more than others 

because of differences in land suitability. On average there are about 6 sample farms per county.  

Identification 

By controlling for additive time-invariant characteristics and the initial level of crop insurance 

coverage, the specification in (1) is more robust than several models estimated in prior research 

on crop insurance and production decisions. Horowitz and Lichtenberg (1993), for example, rely 

on variation across farms in an empirical model relating the level of input use to whether or not a 

farm has crop insurance while conditioning on a variety of farm and county characteristics and a 

sample selection term. Smith and Goodwin (1996) also rely on cross-sectional variation to 

estimate the correlation between a binary crop insurance variable and input use. Neither 

approach is robust to time-invariant unobservable variables correlated with crop insurance 

participation and the level of input use such as land quality, climate, and risk attitudes. 
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 Cornaggia (2013) takes a more promising approach by using county-level panel data and 

exploiting the introduction of new insurance policies in some counties and not others. However, 

the data he uses only permits examining the effect of insurance on yields, not input use or 

specialization. Moreover, his identification strategy rests on 14 insurance policy events such as 

the introduction of new insurance products or the inclusion of new crops. By the beginning of 

our study period (2000), all but one of his 14 crop insurance events already occurred. The policy 

changes that occurred afterwards either applied too broadly (increasing premium subsidies for all 

existing program crops) or too narrowly (expanded coverage to marginal crops), precluding an 

event-study approach.  

 As illustrated by the example in the introduction, the first-differenced model in equation 

(1) may be inadequate to identify the causal effect of crop insurance participation on farm 

decisions. To do so, we need temporal variation in crop insurance coverage unrelated to the 

decision to expand or intensify crop production. Our empirical approach leverages two facts: 

first, the cost of crop insurance to farmers has declined over time because of increases in crop 

insurance premium subsidies in the Agricultural Risk Protection Act of 2000 and the 2008 Farm 

Act, and second, the Federal crop insurance program has always had a maximum coverage level 

(85% for an individual level policy; 90% for an area-based policy). The growing incentive to 

purchase more crop insurance and the presence of a maximum coverage level suggests a negative 

nonlinear relationship between a) a farms initial coverage relative to the maximum coverage 

possible and b) their change in coverage in response to a decline in the cost of insurance. This is 

because farms that initially had coverage close to the maximum coverage were more limited in 

how much they could respond to the declining cost of insurance compared to farms that initially 

had less coverage. 
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 To illustrate, consider a decline in the cost of insurance (brought about by an increase in 

premium subsidy) from period 1 to period 2 (Figure 2). Measuring insurance coverage as farmer 

premiums paid per acre operated, we expect a negative nonlinear relationship between the ratio 

of the period 1 premium to the maximum premium possible in period 1 (horizontal axis in Figure 

2) and the ratio of the second period premium to first period premium (vertical axis). A farmer 

paying the maximum premium in the first period cannot increase coverage in response to the 

decline in insurance cost, which is why the ratio of the second and first period premium equals 

one when the first period premium equals the maximum premium. A farm with a low premium 

in the first period, in contrast, may double or triple coverage as the cost declines, which is basis 

for the nonlinear relationship.  

More formally, assume the relationship between the two ratios can be described with an 

exponential function of the form: 

(2)    
𝑃𝐴𝑖,𝑡

𝑃𝐴𝑖,𝑠
= (

𝑃𝐴𝑖.𝑠

𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠
)

𝜙

, 

where 𝜙 is presumably negative. Taking logs of both sides gives 

(3)   ln(𝑃𝐴𝑖,𝑡) − ln (𝑃𝐴𝑖,𝑠) = 𝜙𝑙𝑛 (
𝑃𝐴𝑖.𝑠

𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠
).   

 Equation (3) motivates using an instrumental variable approach to estimate (1), where the 

log of the initial premium divided by the maximum premium, which we call the coverage ratio, 

is used as an instrument for the change in coverage as measured by premiums per acre. The first 

stage in this IV regression is: 

(4) ln(𝑃𝐴𝑖,𝑡) − ln(𝑃𝐴𝑖,𝑠) = 𝛾 + 𝜙ln (
𝑃𝐴𝑖.𝑠

𝑀𝑎𝑥 𝑃𝐴𝑖,𝑠
) + 𝑿𝑖,𝑠𝜹𝑥 + 𝑻𝑠𝜹1 + 𝑻𝑡𝜹2 + 𝜈𝑐(𝑖) + 𝜀𝑖𝑡  
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 The nonlinear relationship between the coverage ratio and changes in coverage allows for 

estimating 𝜙 while controlling for the initial coverage level (included in X). In a later section we 

show the statistical strength of the instrument despite this control variable.    

 We calculate the coverage ratio by dividing the initial per acre premium paid by the 

farmer by her maximum premium. The maximum premium – and therefore maximum coverage 

– varies by county and crop mix. We calculate it using producer premium data from the Risk 

Management Agency’s Summary of Business data, which are county-level data aggregated from 

all individual policies issued in the county. We find the crop-specific plan and coverage level 

with the highest per acre premium in each year and each county. Then we multiply this 

maximum premium per acre by the number of harvested acres of each crop for a given farm. 

This gives the total premiums the farm would have paid had it enrolled each crop in the most 

expensive plan observed in the county. We refer to this amount as the farm’s maximum 

premium.
1
 

 

Creating a Panel Data Set from the Agricultural Resource Management Survey 

Empirical research on the causal effects of U.S. agricultural policy has been constrained by a 

lack of farm-level panel data. The only nation-wide source of detailed and comprehensive farm-

level data is the Agricultural Resource Management Survey (ARMS), which is a cross-sectional 

survey. The National Agricultural Statistics Service (NASS), which administers the survey, 

                                                           
1
 While we call this a maximum premium it is based in part on the average premium per acre associated with the 

most expensive plan and coverage level observed in the county. For example, two farmers with the most expensive 

plan in the county may pay different premiums because of different claim histories. If these were the only two 

farmers with the most expensive plan, we would use the average of the two for the per acre premium associated with 

the most expensive plan and coverage level. Also, note that this maximum is based on the most expensive insurance 

option chosen in a county, which may be different than the most expensive option available if that option is not 

selected by anyone in the county.   
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draws a new sample of farms each year, sampling roughly 30,000 farms out of a population of 

2.1 million.
2
  

 Although designed as a cross-sectional survey, farms surveyed more than once over the 

years can be identified and their records linked. If a simple random sample were drawn the 

probability of observing the same farm twice would be very low. This is not the case with 

ARMS. Because the USDA definition of a farm is so broad, many farms have little production 

and are undersampled while farms with much production are oversampled. Having been 

conducted annually since 1996, the many years of ARMS samples combined with the 

oversampling of large farms has caused many farms to be surveyed two or more times.  

 Using the unique principal operator identifier, a number assigned to each farm that does 

not change over time, we identified all farms appearing at least twice in the ARMS. Because the 

survey questions necessary for our study were not present prior to 2000, we focus on the data 

sets from 2000 to 2013. Over this period, 202,127 distinct farms were sampled and responded to 

the survey, of which 16 percent, or 32,498 farms, appear at least twice (Table 1). Roughly 4 

percent of farms appear at least three times.  

 Farms appearing at least twice in ARMS, which we label repeat farms, may be quite 

different from the typical farm. Because larger farms are sampled with a higher probability, 

repeat farms tend to be large farms. For each year of ARMS we compare the median value of 

production and acreage operated of all respondent farms with that of repeat farms observed for 

the first time in that year. We calculate the unweighted median since we are interested in 

comparing repeat farms with the typical ARMS respondent farm, not repeat farms with the 

                                                           
2
 For an overview of ARMS along with detailed documentation, visit www.ers.usda.gov/data-products/arms-farm-

financial-and-crop-production-practices. 

http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices
http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices
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general population. As expected the median repeat farm consistently has more acres and 

production than the median respondent farm (Table 2).  

 The oversampling of large farms arguably suits our purposes better than a sample 

representative of the U.S. farm population. We are not interested in the observing the typical 

farm in the population, which ‒ because of the broad USDA farm definition ‒ has little 

agricultural production and is unlikely to participate in Federal crop insurance programs. For 

environmental and land use issues we are most interested in what happens to the typical acre. 

Because large farms account for most acres enrolled in crop insurance, a sample reflecting the 

large farm population provides more information on how crop insurance affects practices on the 

typical acre.  

 Nonetheless, it is unclear how representative repeat farms are of all large farms. We 

therefore construct a random subsample of ARMS respondent farms that matches the farm size 

distribution of repeat farms and compare the two groups for a variety of characteristics (provided 

in the appendix). In considering the comparability of treatment and control groups, Imbens and 

Wooldridge (2009) suggest that linear regression may be misleading when the normalized 

difference in group means is larger than 0.25 standard deviations. The largest difference we 

observe is 0.23 and the average absolute difference is 0.04, indicating substantial comparability 

across the two groups.  

Sample farms 

We narrow our sample of repeat farms to those most relevant for studying the effects of crop 

insurance. We focus on farms that participated in Federal crop insurance in at least one of the 

years observed and whose primary outputs are insurance-eligible, which we define as farms 
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where at least half of the value of production in the first year observed came from crop insurance 

eligible crops. This gives a sample of 6,681. 

 In the first year observed the average farm in the sample was operated by a 52 year old 

whose farm had nearly $854,000 in production or about $380 per acre (in 2011 dollars) (Table 

3). The farm had 23 percent of its acres planted to corn, another 30 percent to soybeans, and 20 

percent to wheat. It also harvested close to 85 percent of the acres it operated and had fertilizer 

expenses of $51 per acre and chemical expenses (e.g. herbicides and insecticides) of $45 per 

acre.  

Weighting, standard errors, and zeros 

The sample statistics are based on unweighted data. The ARMS uses a stratified sampling design 

and each observation has a weight based on its probability of selection. In the typical cross-

sectional use of ARMS data the weights permit using sample data to estimate population values. 

Because ARMS is designed to create a nationally representative cross-section of farms rather 

than a panel of farms, the weights associated with repeat farms do not expand to a meaningful 

population. We therefore ignore the weights in estimation.  

 Researchers using ARMS normally account for sample design in estimating variances 

using a jackknife method with replicate weights provided by the USDA/NASS (e.g., Katchova, 

2005; Ahearn et al., 2006). This is an unattractive option because the replicate weights (like the 

base weights) are designed uniquely for each cross-sectional sample, not for the subsample of 

repeat farms. Facing a similar problem of needing to account for sample design without using 

weights, Weber and Clay (2013) cluster standard errors by each farm’s survey stratum or 

location. The intuition is clear – clustering by stratum amounts to summing variances from 

mutually exclusive and exhaustive subpopulations. They show that clustering by strata or by 
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location gives standard errors of similar magnitude, both of which are about two-thirds larger 

than unclustered standard errors. Because we use county fixed effects, we cluster our standard 

error by county.   

 Because farms sometimes have zero insurance coverage in one of the years observed, our 

key dependent variable – the log difference in premiums per acre – is undefined for about a 

quarter of sample farms. We take the common, though arbitrary, approach of adding a very small 

number to observations with a zero premium. To allow for a discrete effect of this arbitrary fix, 

we include in all models a dummy variable for whether the farm had zero premium in the first 

year observed and another one for whether it had a zero premium in the second year observed. In 

the robustness section we also present results for when these observations are excluded.  

 

Results 

Ordinary Least Squares 

Estimating equation (4) with OLS suggests that greater insurance coverage encourages farms to 

harvest a larger share of their acres and use more fertilizer and chemicals per acre (Table 4). A 

10% increase in insurance coverage (measured by premiums per acre) is associated with a 0.11% 

increase in the share of acres harvested and a 0.44% increase in fertilizer and chemical expenses. 

Unsurprisingly, the value of production per acre also increased with greater coverage.  

 Qualitatively, these first-differenced OLS results fit the farm-level cross-sectional 

findings of Horowitz and Lichtenberg (1993) and Chang and Mishra (2012) as well as the 

county-level panel data findings from Goodwin, Vandeveer, and Deal (2004), all of which show 

a positive association between insurance and fertilizer and chemical use. Yet, as highlighted 
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before, such correlations may reflect unobserved factors that encourage a farmer to both intensify 

production and expand coverage.   

Using the initial coverage ratio as an instrument for changes in insurance coverage 

Figure 2 depicts a nonlinear relationship between the initial coverage ratio and the ratio of the 

second and first period premiums. Using the sample data, we plot the linearized relationship as 

described by equation (3) (Figure 3). The slope of the line corresponds to 𝜙 in equation (3). It is 

negative as predicted: farmers with a larger log coverage ratio had a smaller proportional change 

in premiums per acre. The line runs through the point (0,0), which corresponds to the point (1,1) 

in the hypothesized nonlinearized relationship in Figure 2.  

 We more formally establish the strength of the excluded instrument – the log of the 

coverage ratio – by estimating equation (4). A first-stage regression for the full sample shows 

that a 1% increase in the logged ratio was associated with 0.73% less growth in premiums per 

acre (coefficient of 0.724, standard error of 0.022). When testing whether the coefficient on the 

logged ratio is zero the Kleibergen-Paap rk Wald F statistic, which is the heteroskedastic robust 

version of the standard Wald F-statistic, is above 1,100. This is far above the thresholds provided 

in Stock and Yogo (2005) for the reliability of t-tests based on IV estimates and for a sufficiently 

low probability that the bias of the IV point estimates is less than 10 percent of the bias of OLS.  

 In contrast to OLS, the Instrumental Variable approach shows that crop insurance 

decreased the share of acres harvested and had little effect on input use. Compared to the 

statistically significant coefficients in the OLS regressions, the IV coefficients are multiple times 

smaller and yet with standard errors of roughly similar magnitude. OLS, for example, gives a 

coefficient of 0.044 on the change in premiums when looking at total input while the IV estimate 

is only 0.011.  
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 The one case where both OLS and IV give similar results is for crop specialization as 

measured by the share of acres harvested accounted for by the most planted crop. In both cases 

the coefficient is positive, however, both point estimates indicate extremely small effects and 

only the IV result is statistically different from zero.  

Robustness 

We re-estimate the IV model in three ways. First, we exclude farms that had a zero premium in 

one year and for whom we arbitrarily added a small number to permitting taking the log of the 

premium. Second, we estimate different effects based on a farms initial crop specialization. It’s 

possible that crop insurance primarily encourages farmers to switch to more input-intensive 

farms such as corn as Wu (1999) suggests. We divide the sample based on how much corn a 

farm had in its original crop mix, with corn farms categorized as those where 25 percent or more 

of the value of production comes from corn. Farms initially less specialized in corn may have 

had a larger change in crop mix and input use. In the last robustness check we split the sample 

based into small and large farms based on having more or less acreage than the median farm. Our 

sample consists primarily of large farms, and one might expect those operating smaller farms to 

be more risk averse and therefore respond more to changes in insurance subsidies. This last 

check provides insight on how our results might change if our sample had better representation 

of the smaller farm population. 

 The results are surprisingly stable across samples with a few exceptions. When splitting 

the sample based on corn specialization, we find that insurance had a positive but statistically 

weak effect on fertilizer expenses, with a 10 percent increase in insurance associated with a 0.5 

percent increase in fertilizer expenses. In all other cases, the effect of insurance on fertilizer 
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expenses was very small (or negative) and statistically insignificant. When splitting the sample 

by farm size, we find that insurance increased the value of production, however, this was not 

associated with greater input use. One interpretation is that insurance encourages smaller farmers 

to switch to higher value crops that require more investment but not more fertilizer or pesticide.  

Discussion  

Can economically important effects be rejected?  

In many instrumental variable applications, large standard errors may prevent a rejection of the 

null hypothesis of a zero effect, but they also preclude ruling out economically important effect 

sizes. This is not the case for our results.  The coefficient estimates suggest very small economic 

effects of changes in crop insurance coverage on our outcomes. Table 7 presents the upper bound 

on the 95% confidence interval for the effect of crop insurance on each outcome (column 2). For 

sample farms, premiums per acre nearly doubled from 2000 to 2013 in real terms, going from $6 

to $11 dollars per acre. This is also true for all participating farms as calculated from the 2000 

and 2013 cross sections of the ARMS. A doubling of premiums would translate into a 0.70 

increase in the log premium per acre (log(12/6)). We multiply this change in log premiums by 

our upper bound estimate (column 3).  

 For the share of land accounted for the most planted crop, upper bound estimates indicate 

that a doubling of crop insurance coverage would increase the share by 0.7 percentage points. 

For a 100 acre farm, this means less than one more acre allocated to the most planted crop. The 

upper bound estimate of the effect on the value of production is slightly larger, at 2.2%, though 

this is arguably still an economically small effect.  
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 For fertilizer and chemical use, we draw from existing studies to translate an upper bound 

estimate of use into a percent increase in externality. For fertilizer, our upper bound estimate 

suggests that doubling coverage would cause a 1.3% increase in fertilizer nutrients leaving the 

field (column 5 of Table 7). This estimate comes from multiplying our upper bound estimate of 

the increase in fertilizer expenses (1.9%) with the estimate of fertilizer loss from Li et al. (2006). 

They found that a 1% increase in the fertilizer application rate on Iowa corn and soybean fields 

leads to a 0.7% increase in nutrients leaving the soil (column 4 in Table 7).
3
 It is reasonable to 

apply these numbers to our study, which has many Midwestern corn and soybean farms, and 

assume that a 1% increase in fertilizer expenses per acre would translate into a similar increase in 

the fertilizer application rate.   

 The implied (upper-bound) elasticity between crop insurance coverage and fertilizer loss 

is 0.013 (=1.3/100). By comparison, Higgins et al. (2014) find an elasticity between corn prices 

and nitrogen loss of 0.074, almost six times the effect of doubling crop insurance coverage. 

 Our finding for chemical usage suggests an upper bound increase of pesticides in nearby 

waterways of 1.1%. The most common component of chemical expenditures is pesticides. Using 

data from the National Water Quality Assessment program, Tesfamichael et al. (2005) estimate 

that a 1% increase in the application rate of atrazine led to a roughly 0.5% increase in the 

concentration of atrazine in streams. (Atrazine is one of the most commonly used pesticides and 

was the second most commonly found pesticide in a nation-wide survey by the EPA (U.S. EPA, 

1990)). Our upper-bound estimate suggests that a doubling of crop insurance premiums would 

cause a 1.9% increase in chemical expenses. Supposing the increase in chemical expenses is 

associated with a similar increase in quantity of pesticide applied, our estimate multiplied by that 

                                                           
3
 Gowda, Mulla, and Jaynes (2008) also conduct a farm level study in the Midwest and find a similar results: a 1 

percent decrease in the fertilizer rate was associated with a 0.85% decline in nitrate losses.  



23 

 

of Tesfamichael et al. (2005) suggests a 1.1% (=2.2% x 0.5%) increase in the concentration of 

pesticide in streams.  

What our empirics capture and what they don’t  

Our measures of fertilizer and chemical use are per acre operated by the farm. It’s possible that 

insurance subsidies caused marginal lands to be brought into cultivation. If the land was 

originally part of the farm (e.g. in pasture) and crop insurance encourage the farmer to convert it 

to crop land, we would observe increases in the value of production per acre, the share of land 

harvested, and fertilizer and chemical expenses per acre. If, however, crop insurance encouraged 

the farm to acquire the land, our outcome variables would only increase if the farmer used more 

fertilizer on it (or had a more specialized crop mix and so forth) than the average acre already in 

operation by the farm. Otherwise, we would not capture the effect. 

 We do not know how land acquired between the first and second time observed may have 

differed from land already in the farm. But we can test if crop insurance caused farms to acquire 

more land. Using the log difference in the total acres operated as the dependent variable, we find 

that greater insurance coverage was not associated with an increase in acres operated (coefficient 

of -0.01, standard error of 0.007). This result combined with the lack of an effect on the value of 

production suggests that insurance did not lead participating farmers to intensify production on 

marginal lands.  

 Still, it is possible that both high and low coverage farms acquired land at similar rates, 

with farms with high coverage tending to acquire marginal lands (and intensify production on 

them) while low coverage farms tended to acquire better lands. This would require that high 

coverage farmers replaced high quality land with marginal land such that the total acres operated 

did not change, which seems an unlikely scenario. 
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 Our findings are also based on expansions of crop insurance, not the introduction or 

elimination of it. A nonlinear relationship between risk and input or land use could mean that the 

presence of crop insurance has environmentally important effects while marginal changes in 

coverage do not.  

 Our empirics capture the effect of expanding crop insurance coverage while more or less 

holding other farm programs constant, not the effect of replacing one program with insurance. 

Crop insurance premium subsidies and plans increased over our study period while the main 

farm income support program, the direct payment program, remained in place, paying around $5 

billion each year to qualified farmers. With the 2014 Farm Act, Congress eliminated the direct 

payment program in favor of strengthening crop insurance. The replacement of programs, 

however, may have minimum environmental effects. The direct payment program appears to 

have not affected production or acreage harvested (Weber and Key, 2012). And although farmers 

had to comply with conservation provisions to receive payments, with the 2014 Act Congress 

transferred similar provisions to crop insurance. To be eligible for premium subsidies, the 

provisions require that farmers with highly erodible land or wetlands maintain conservation 

practices in line with the National Resources Conservation Service guidelines. 

 

Conclusion 

Policies with non-environmental goals can cause unintended environmental harm. Using a novel 

dataset and identification strategy, we find that Federal crop insurance does not appear to fall 

into this category despite more than a few past studies suggesting otherwise. Farmers who 

expanded crop insurance coverage during the 2000 to 2013 period had changes in their land use, 

crop mix, and fertilizer and chemical use similar to farmers with smaller or no changes in 
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coverage. Our finding is striking because the changes in crop prices over the period caused 

farmers to plant more corn, a high value and input intensive crop. One may have expected 

increasingly generous insurance subsidies to accentuate this shift.  

 Although our results are based on the 2000-2013 period, they arguably hold under the 

2014 Farm Act in which policy makers linked premium subsidies to conservation compliance. 

The negligible effects of crop insurance coverage on farmer decisions combined with the 

recently linking to conservation requirements suggest that the Federal crop insurance program 

has fairly benign environmental implications moving forward. 
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Figures 

 

Figure 1. Enrolled Acres and Total Premium Subsidies, 2000-2013. 

Note. The data are from the USDA-Economic Research Service. Enrolled acres corresponds to the number of acres 

enrolled in a plan beyond the basic catastrophic level. Premium subsidies are in 2010 dollars.  
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Figure 2. The Initial Coverage Ratio and the Response to Cheaper Insurance 
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Figure 3. The Log of the Coverage Ratio is Negatively Related to the Change in Coverage 

Note: The line represents the results of a kernel-weighted local polynomial regression of the log difference in 

coverage on the log of the initial coverage ratio. For the figure, the log of the coverage ratio is truncated at -6, and 

only observations with nonzero premiums are used.  
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Tables 

Table 1. How Often is the Same Farm Observed in ARMS?  

 

Number of Times Observed Farms Percent of Distinct Farms Observed 

1 169,629 84  

2 25,548 13  

3 5,449 3 

4 1,239 1 

5 230 <0.1 

6 24 <0.1 

7 8 <0.1 

Total 202,127 100 

Note: The data are from the USDA, Economic Research Service and USDA, National Agricultural Statistics Service, 

Agricultural Resource Management Survey (ARMS), 2000-2013. The percents in the third column do not add to 100 because of 

rounding. 
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Table 2. How Do Repeat Farms Compare to the Typical ARMS Respondent Farm? 

 

  

Farms  

(number of) 

Acres Operated 

(median acres) 

Value of Production 

(median $) 

Year Repeat  All Repeat  All Repeat All 

2000 2,862 9,863 748 440 382,148 151,126 

2001 1,999 7,343 840 416 474,014 131,190 

2002 2,925 11,926 720 397 367,400 114,503 

2003 4,398 17,782 620 395 320,628 142,233 

2004 4,376 19,468 445 300 369,739 133,307 

2005 4,213 21,564 412 250 339,560 105,583 

2006 3,584 20,351 466 264 355,012 125,529 

2007 2,314 17,465 650 360 560,727 239,878 

2008 2,126 20,469 576 340 435,519 153,940 

2009 1,700 19,877 450 300 292,288 111,103 

2010 1,242 20,661 400 250 258,473 100,000 

2011 661 19,441 300 280 300,694 181,221 

2012 98 20,561 555 323 159,123 147,634 

All 

Years
* 32,498 243,378 550 310 369,834 135,293 

Note: “All Years” contains 2013 data in the “All” categories while there is no row for 2013 since any repeat farms would, by 

definition, have to have been observed prior to 2013. 
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Table 3. Descriptive Statistics for the Sample Used in Estimation 

        

Variable Mean S.D. Median 

 
Farm characteristics  

Operator age 52 11 52 

Off-farm income 44,600 116,000 26,250 

Value of production 854,000 1,508,000 489,000 

Wheat acres to total acres harvested 0.2 0.31 0.01 

Corn acres to total acres  harvested 0.23 0.25 0.14 

Soybean acres to total acres harvested 0.3 0.27 0.32 

Change in premium per acre 2.48 11.2 1.2 

Change in log premium per acre 0.31 3.8 0.28 

Premium per acre in 2000 6.17 7.86 3.7 

Premium per acre in 2013 11.3 11.59 8.64 

 
Farm outcomes  

Share of acres harvested 0.84 0.25 0.92 

Max share accounted for by one crop 0.42 0.36 0.35 

Value of production per acre 382 281 331 

Fertilizer expenses per acre 51 47 40 

Chemical expenses per acre 45 42 32 

Fertilizer and chemical expenses per acre 96 77 78 

Note: The farm-level statistics are based on the first year the farm was observed. There are a total of 6,681 farms in 

the full sample. The premium per acre statistics are based only on farms observed for the first time in the reference 

year  (n=752 for 2000 and n =1,199 for 2013).



36 

 

Table 4. OLS Estimates of the Effect of Crop Insurance Coverage 

              

  

Share of 

acres 

harvested 

Max share 

accounted for by 

one crop 

Value of 

production  

Fertilizer 

expenses 

Chemical 

expenses  

Fertilizer and 

chemical 

expenses 

Δ log premium per acre 0.011*** 0.003 0.033*** 0.039*** 0.044*** 0.044*** 

 
(0.002) (0.002) (0.006) (0.009) (0.009) (0.008) 

Initial premium per acre 0.000 -0.000 0.000*** 0.000 0.000*** 0.000 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 
(0.030) (0.032) (0.081) (0.101) (0.110) (0.085) 

Intercept -0.003 -0.181*** -0.032 -0.299 -0.580 -0.461 

 
(0.105) (0.068) (0.191) (0.275) (0.423) (0.294) 

Observations 6,681 6,543 6,574 6,368 6,341 6,574 

Note: ***,**,* indicate statistical significance at the 1, 5, and 10 percent levels. Robust standard errors clustered by county are in parenthesis. County and year 

fixed effects are included as well as all the control variables mentioned in the text.  Other than the share variables, the dependent variables are on per acre 

operated by the farm. The different number of observations across regressions is from some farms not having positive values for the outcome variable in at least 

one year.
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Table 5. Instrumental Variable Estimates of the Effect of Crop Insurance Coverage 

              

  

Share of 

acres 

harvested 

Max share 

accounted for by 

one crop 

Value of 

production  

Fertilizer 

expenses 

Chemical 

expenses  

Fertilizer and 

chemical 

expenses 

Δ log premium per acre -0.007** 0.005** 0.014 -0.001 0.006 0.011 

 
(0.003) (0.003) (0.009) (0.014) (0.013) (0.010) 

Initial premium per acre -0.000 -0.000 0.000*** -0.000 0.000** 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 (0.030) (0.032) (0.081) (0.101) (0.110) (0.085) 

Observations 6,681 6,543 6,574 6,368 6,341 6,574 

Note: ***,**,* indicate statistical significance at the 1, 5, and 10 percent levels. Robust standard errors clustered by county are in parenthesis. County and year 

fixed effects are included as well as all the control variables mentioned in the text.  Other than the share variables, the dependent variables are on per acre 

operated by the farm. The different number of observations across regressions is from some farms not having positive values for the outcome variable in at least 

one year.
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Table 6. Estimates of the Effect of Insurance Coverage Using Different Samples 

              

Sample 

Share of acres 

harvested 

Max share 

accounted for by 

one crop 

Value of 

production 

Fertilizer 

expenses 

Chemical 

expenses  

Fertilizer and 

chemical expenses 

Full sample (for comparison) -0.007** 0.005** 0.014 -0.001 0.006 0.011 

 

(0.003) (0.003) (0.009) (0.014) (0.013) (0.010) 

Farms with positive premiums -0.009** 0.005 0.006 -0.011 0.009 0.001 

 
(0.004) (0.003) (0.010) (0.017) (0.015) (0.012) 

Farms specialized in corn  -0.004 -0.001 0.026 0.052* 0.021 0.033 

 
(0.006) (0.004) (0.019) (0.029) (0.028) (0.021) 

Farms not specialized in corn -0.008 0.006 0.017 -0.025 -0.012 -0.004 

 
(0.005) (0.004) (0.012) (0.021) (0.016) (0.014) 

Large farms -0.002 0.003 0.013 -0.005 0.006 0.015 

 
(0.004) (0.004) (0.011) (0.018) (0.019) (0.013) 

Small farms 0.001 0.003 0.077*** 0.003 -0.017 0.010 

  (0.007) (0.007) (0.019) (0.027) (0.028) (0.024) 

Note: ***,**,* indicate statistical significance at the 1, 5, and 10 percent levels. Robust standard errors clustered by county are in parenthesis. County and year 

fixed effects are included as well as all the control variables mentioned in the text.  Other than the share variables, the dependent variables are on per acre 

operated by the farm. Specialization in corn farming is based on having at least 25 percent of the farm’s value of production coming from corn. The large and 

small farm categories are based on being above or below the sample median acres operated. 
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Table 7. The Economic Magnitude of Our Findings 

            

  

Point 

Estimate 

95 % CI Upper 

Bound 

Change for a 100% Increase 

in Premiums Per Acre (%) 

Rate of Loss to the 

Environment (%) 

Increased Presence 

in Waterways (%) 

Share of acres harvested -0.007 -0.000 -0.03 - 

 Max share in one crop 0.005 0.011 0.7 - 

 Value of production  0.014 0.032 2.2 - 

 Fertilizer expenses  -0.001 0.027 1.9 0.7 1.3 

Chemical expenses  0.006 0.032 2.2 0.5 1.1 

Fertilizer and chemical expenses  0.011 0.031 2.2 -   
Note: The doubling of premiums per acre is based on the observed change in premiums per acre from 2000 to 2013 (roughly $6 to $12 per acre). The results in 

column 3 are from multiplying column 2 by 0.70 (=log(12/6)). The loss of fertilizer to the environment (column 4) is from Li et al. (2006); the loss of chemicals 

to the environment refers to the loss of atrazine to waterways estimated by Tesfamichael et al. (2005). Column 5 comes from multiplying column 3 with column 

4.
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Appendix 

1. Comparing repeat farms to the typical respondent farm. 

We break the repeat farm sample into quartiles based on the value of production. There are 8,124 

repeat farms in the bottom quartile of the value of production, which is defined by having 

$116,075 or less in production. We then randomly draw the same number of farms among all 

respondent farms having $116,075 or less in production. We do this for the second, third, and 

fourth farm-size quartiles, thereby creating a subsample of ARMS respondent farms with a farm-

size distribution similar to that of the repeat farm sample.  

The normalized difference – the difference in means for the two groups divided by the square 

root of the sum of their squared standard deviations – is a common metric of comparison. 

Comparing the two groups across 11 variables and four quartiles for each variable, the absolute 

normalized difference is just 0.04. By comparison, Imbens and Wooldridge (2009) suggest that 

linear regression to estimate treatment effects may be misleading when it is larger than 0.25 

standard deviations.  

Across most of the variables explored in Table A1, the mean differences between the two 

samples are more pronounced for the smaller farms (the first quartile) and tend to disappear by 

the fourth quartile. This is likely because the full ARMS respondent sample includes many very 

small farms – often without any agricultural production at all, which lowers the average values 

within the first quartile. The differences in the second and third quartiles, though sometimes 

statistically significant, generally diminish and by the fourth quartile, the two samples tend to 

have very similar means across the variables explored.  
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Table A1. How do repeat farms compare to a random subsample of respondent farms? 

  Repeat Farms 
Subsample of Respondent 

Farms Normalized Difference 

in Means 

  Mean S.D. Mean S.D. 

Farm Characteristics 

Acres 
     

Quartile 1 (Q1) 530 1,780 370 1,460 0.07 

Q2 1,470 3,650 1,240 2,700 0.05 

Q3 1,960 6,460 1,750 4,380 0.03 

Q4 2,160 5,800 2,250 7,470 -0.01 

Value of production 

(VOP)    
  

 

Q1 37,430 35,400 26,650 31,700 0.23 

Q2 259,250 90,800 245,200 91,300 0.11 

Q3 701,500 178,400 689,900 176,000 0.05 

Q4 2,883,500 3,880,500 3,027,400 11,620,700 -0.01 

Crop farm (0/1) 
     

Q1 0.49 0.5 0.47 0.5 0.03 

Q2 0.62 0.49 0.61 0.49 0.01 

Q3 0.58 0.49 0.62 0.48 -0.06 

Q4 0.42 0.49 0.47 0.5 -0.07 

Share of acres 

harvested      

Q1 0.41 0.65 0.38 3.34 0.01 

Q2 0.65 0.35 0.66 1.37 -0.01 

Q3 0.69 0.38 0.71 0.37 -0.04 

Q4 0.64 0.42 0.66 0.41 -0.03 

VOP/acre 
     

Q1 590 3,120 485 2,710 0.03 

Q2 2,720 16,100 2,760 13,500 0.00 

Q3 6,770 29,750 6,600 31,800 0.00 

Q4 23,700 99,400 30,300 337,700 -0.02 

Debt to asset ratio 
     

Q1 0.12 1.71 0.18 9.55 -0.01 

Q2 0.25 7.53 0.17 1.28 0.01 

Q3 0.31 8.67 0.31 8.69 0.00 



42 

 

Q4 0.87 48.4 0.35 3.49 0.01 

Has acres in crop 

insurance (0/1)      

Q1 0.22 0.41 0.17 0.37 0.09 

Q2 0.49 0.5 0.5 0.5 -0.01 

Q3 0.49 0.5 0.54 0.5 -0.07 

Q4 0.41 0.49 0.45 0.5 -0.06 

Operator and Household (HH) Characteristics 

 Operator age 
     

Q1 56 12 59 13 -0.17 

Q2 53 12 54 12 -0.06 

Q3 52 11 53 11 -0.06 

Q4 52 11 52 11 0.00 

Operator experience 
     

Q1 25 15 27 16 -0.09 

Q2 27 13 28 14 -0.05 

Q3 26 12 27 13 -0.06 

Q4 25 13 25 13 0.00 

Off-farm income 
     

Q1 76,300 129,200 82,700 186,800 -0.03 

Q2 51,200 115,700 56,550 137,100 -0.03 

Q3 52,400 139,600 52,500 133,500 0.00 

Q4 59,400 178,200 59,600 224,800 0.00 

Total HH income 
     

Q1 81,200 161,500 83,200 190,500 -0.01 

Q2 96,000 177,300 97,800 207,500 -0.01 

Q3 154,100 279,100 162,100 271,500 -0.02 

Q4 373,200 950,000 420,200 1,397,400 -0.03 

Note: The subsample of respondent farms is a stratified random selection of all respondent farms such that the 

resulting sample has the same basic farm size distribution as repeat farms. This is done by selecting a certain number 

of farms in each size quartiles, where the quartiles are based on the repeat sample.  


