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A New Estimator for Multivariate Binary Response Data 

Abstract 

There is growing interest concerning the analysis of correlated binary data in the study of 

consumer behavior. The Multivariate Probit model is widely regarded as the preferred 

estimator of correlated binary response variables. Unfortunately, exact maximum 

likelihood estimation of the Multivariate Probit requires the evaluation of an M
th 

order 

integral when there are M correlated binary responses. Simulation estimators are 

computationally demanding and results may be sensitive to the number of random draws. 

This study proposes a new estimator for multivariate binary response data. This study 

considers binary responses as being generated from a truncated multivariate discrete 

distribution. Specifically, the discrete normal probability mass function, which has support 

on all integers, is extended to a multivariate form. Truncating this point probability mass 

function below zero and above one results the multivariate binary discrete normal 

distribution. This distribution has a number of attractive properties. Monte Carlo 

simulation and empirical applications are performed to show the properties of this new 

estimator; comparisons are made to the traditional Multivariate Probit model. Because 

multivariate binary response modeling is frequently required in areas such as marketing, 

household behavior, crop selection, and conservation practices, among others, we believe 

that our findings are of interest to both econometricians and practitioners. 

 

Key words: Multivariate binary response, discrete normal distribution, Multivariate Probit 

JEL classification: B23, Q13, D1 
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1. Introduction  

There is growing interest concerning the analysis of correlated binary data in the study of 

consumer behavior. The purchase of specific products and/or brands, the choice of shopping 

venues, and the selection of certain activities are amenable to binary response modeling. 

The Multivariate Probit (MVP) model is widely regarded as the preferred estimator of 

correlated binary response variables. Unfortunately, exact maximum likelihood estimation of the 

Multivariate Probit requires the evaluation of an M
th

 order integral when there are M correlated 

binary responses. Thus considerable research has been undertaken to evaluate simulation 

estimators for this model. It appears that the Geweke-Hajivassiliou-Keane (GHK) smooth 

recursive simulator (Geweke 1989; Hajivassiliou and McFaddem 1998; and Keane 1994) 

dominates all the simulation methods proposed to date. Yet this estimator is computationally 

demanding in large systems and results may be sensitive to the number of random draws. 

This study considers binary responses as being generated from a truncated multivariate 

discrete normal distribution. The discrete normal distribution – as defined by Kemp (1997) – has 

support on all integers. The discrete normal probability mass function is extended to a 

multivariate form.  Doubly truncating this joint probability mass function below zero and above 

one results the multivariate binary discrete normal distribution for a system of binary response 

variables. Maximum likelihood estimation is straightforward because for M response variables, 

only 2
M

 support points need to be evaluated to obtain the normalizing factor for the multivariate 

binary normal probability mass function. We term this new estimator for multivariate binary 

response data as Multivariate Binary Discrete Normal (MVBDN) Estimator. 

The multivariate binary discrete normal distribution has a number of attractive properties: 

it is a member of the quadratic exponential family; it nests a system of independent binary logits; 
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it does not require conditioning to eliminate nuisance parameters; and exact maximum likelihood 

estimation is feasible since the normalizing factor only requires the evaluation of 2
M

 support 

points for a system of M response variables. Monte Carlo simulation and empirical application 

are performed to show the properties of this new estimator and comparisons are made to the 

traditional Multivariate Probit model. 

The remainder of this study is organized as follows: section 2 derives the new estimator 

from the Multivariate Binary Normal distribution and discusses its maximum likelihood 

estimation. Section 3 explains the simulation setup and compares MVBDN estimates to the 

traditional Multivariate Probit model. Section 4 reports empirical applications. Finally, section 5 

concludes with a discussion. 

 

2. Multivariate Binary Discrete Normal Estimator 

2.1 The Discrete Normal Distribution 

Kemp (1997, p.224) characterizes the probability mass function (pmf) of a discrete normal 

random variable Y with parameters (λ, q) as 

(1)  (   )  
    (   )  

∑     (   )   
    

 , y =…, −2, −1, 0, 1, 2, …; λ>0 and 0< q <1. 

The discrete normal distribution has a number of attractive properties: 1) the discrete normal 

distribution is analogous to the normal distribution in that it is the only two-parameter discrete 

distribution on (−∞, ∞) for which the first two moment equations are the maximum-likelihood 

equations; 2) the distribution is unimodal like the normal distribution; and 3) the distribution is 

log-concave like the normal distribution (Kemp 1997, p.225). 

Let      ((     )   )  and      (     )  such that −∞< μ <∞ and σ
2
 >0. The 

discrete normal may now be represented as  
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(2)   (   )  
    (    (   )    )

∑    (    (   )    ) 
 

where y = … , −2, −1, 0, 1, 2, …; −∞ < μ < ∞ and σ
2
 > 0. 

The discrete normal can handle binary data by doubly truncating outcomes below zero 

and above one. Since location and not scale is of interest we set σ
2
=1. Then P(Y=0)=1−P(Y=1) 

and  

(3)   (   )  
    (    (   )   )

   (    (   ) )    (    (   ) )
 

    (     )

      (     )
. 

It is obvious that this model is indistinguishable from the conventional binary logit model under 

the parameterizations μ=Xβ when X contains a constant. This feature indicates that the binary 

discrete normal distribution may be more applicable to data with thicker tails than the normal 

distribution. 

The univariate discrete normal distribution can be generalized to the multivariate case of 

M integer responses using the following representation for a single observation: 

(4)  (                   )  
    (    (   )   (   ) )

∑     (    (   )   (   ) )       

 

ym = …, −2, −1, 0, 1, 2, … ∀ m=1, 2, … M.  

where Σ is assumed to be a positive definite M x M symmetric matrix and  y  and μ are  1 x M 

vectors. The summation term in the denominator represents all points of support of the 

distribution.  

 

2.2 Multivariate Binary Discrete Normal Distribution 

For multivariate binary responses, the random variables are doubly truncated below zero and 

above one so that the support becomes ym = 0, 1 ∀ m=1, 2, … , M. The diagonal elements of Σ 

are constrained to unity for identification, and under independence (σij=0; i≠j), it clearly nests 
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independent binary logit models. We term this model the multivariate binary discrete normal 

(MVBDN) estimator and its probability mass function is  

(5)   (                   )  
    (    (   )   (   ) )

∑     (    (   )   (   ) )       

 

ym = 0, 1 ∀ m=1, 2, … M.  

Note that because of the truncation, the number of points of support needed to calculate the 

normalizing factor in the denominator amounts to just 2
M

. Thus exact maximum likelihood 

estimation of multivariate binary response models is quite feasible on systems with M as large as 

20. 

To show that the discrete normal distribution is a member of the exponential family recall 

the pmf in terms of parameters μ and σ
2
 as expressed in Equation (2). It can be rewritten as  

(6)   (   )  
   (       )    (            )

   (       )∑    (            ) 
. 

Then the canonical representation of the pmf is 

(7)   (   )  
   (       

 )

∑    (        ) 
 , where         and          . 

This representation has the form a(θ)exp(θ´T(y)) where a(θ) is the normalizing factor and  T(y) = 

[y|y
2
]', then the discrete normal distribution is a member of the exponential family. Consequently 

if we define κ(t) = ln(exp(tY)a(θ)
-1

), then the derivatives of κ(t) with respect to t evaluated at t=0 

are the cumulants of y.   This is particularly important because a truncated distribution from the 

exponential family merely has the domain of Y restricted to a subspace and remains a member of 

this family (Lindsey 1996, p.37).  

By analogy to the continuous multivariate normal distribution, the joint discrete normal 

pmf has, upon canceling the common term exp(–1/2
-1
'), the canonical form as below:  

(8)  (   )     [∑   ( )  
    

( )     ( )] 
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where Θ is a k=m+m(m+1)/2 parameter vector ; c(Θ)´={μ´Σ
-1

,-1/2 Σ
11

, -Σ
1m

, …, -1/2Σ
22

, -Σ
23

 ,…, 

-1/2Σ
mm

 } where Σ
ij
=[ Σ

-1
]ij ;  T(y)´=={y', y1

2
, y1y2, …, y1ym, y2

2
, y23, …, ym

2
};  and  ( )  

∑    
∑    ( ( )  ( ))  

 is a finite, real-valued function which does not depend on y. 

Therefore this joint pmf is a member of the exponential family. 

The MVBDN model is a special case of the quadratic exponential models developed by 

Prentice and Zhao (1990) and Fitzmaurice and Laird (1993) for the analysis of multivariate 

binary observations. As such, the maximum likelihood estimator can possess attractive properties 

even under distributional misspecification (Gourieroux, Monfort, and Trognon, 1984). Worthy of 

note is that as a result of double truncation, the variance of the MVBDN model is not identified 

because ym
2
 in T(y) reduces to be ym, given the only possible values for ym are 0 and 1. This is 

why we constrain the diagonal elements of Σ in Equation (5) to unity for identification.   

 

2.3 Maximum Likelihood Estimation of MVBDN Estimator 

It can be shown that for the multivariate binary discrete normal distribution the first two moment 

equations are the maximum likelihood equations when we have identical regressors across 

equations.  

The multivariate binary discrete normal joint probability mass function can be rewritten 

as  

(9)  (   )  
   (                                )

∑    (                                ) 
 . 

The log likelihood for the i
th 

observation (suppressing subscripts) is as follows: 

(10)  ( )                                   (∑    (                       

         ))  
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Let's first illustrate through a simple case where μ is a vector of constants. Solving for the 

maximum likelihood estimators: 

(11) 
  ( )

  
      

∑          (                ) 

∑     (                ) 
 

(12) ∑
  ( )

    ∑        
 ∑        (                ) 

∑    (                ) 
   

The first-order condition for the estimator of µ is: 

(13)  ̅  
∑     (                ) 

∑    (                ) 
 

which is the definition of the mean of the vector y over the sample. Note that is µ not the 

estimator of  ̅ even when Σ  is an identity matrix. This result stems from the representation in 

Equation (3).  

Solving for the ML estimator of Σ, we get: 

(14) 
  ( )

  
        (       )                  

 
∑ (       (       )                )     (                ) 

∑     (                ) 
 , and  

(15)  ∑
  ( )

          [(∑   
      

∑       (                ) 

∑    (                ) 
) 

   (∑      
∑      (                ) 

∑    (                ) 
)  (∑      

∑      (                ) 

∑    (                ) 
)
 

 ]     . 

Upon simplification and using the previous first order condition in Eq. (9) and defining     

∑   
      , we have that the ML estimator of Σ satisfies  

(16)   
∑       (                ) 

∑    (                ) 
     

which is the definition of the un-centered sample variance-covariance matrix Syy. 
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With Equations (13) and (16), it is obvious that the MLE estimate of the correlation 

matrix from MVBDN model equals sample correlation matrix, since we have    ̅  ̅  

 (   )  (  )   . 

Let's generalize by defining μi=(Xiβ)´, Xi=diagonal(x1i, x2i, …, xMi), and β=[ β1, β2, …, 

βM]´, where xmi ∀m=1, 2, …, M is a 1 x km vector, containing a constant term and (km −1) 

explanatory variables for the m
th

 response. Xi is a (M x ∑   
 
   ) matrix and β is a  ∑   

 
    

elements column vector. Then the first-order conditions with respect to β and Σ are as follows, 

respectively: 

(17) 
 

 
∑ (   

    )  
 

 
∑  (  ) 

        

(18)     
 

 
∑

∑       (   
              ) 

∑    (                 ) 
                

Where   
 

 
 ∑   

 (     (  ))  and  (  )  
∑     (   

              ) 

∑    (                 ) 
. 

Equation (17) is essentially a collection of ∑   
 
    equations. Let     

  be a 1 x (km-1) 

vector containing the (km −1) explanatory variables for the m
th

 response. Then we can re-

organize Xi such that   ̃  [
  

  
    

] where   
      (   

       
 ).  The new-ordered first M 

equations then reduce to the first moment condition as in Equation (13). The remaining 

(∑   
 
     ) equations provide additional information that we will explore later: 

(19) 
 

 
∑ (    (  )) 

    
 )    

Note in Equation (18) the first part of the right-hand side (RHS) is the un-centered 

sample variance-covariance. The two additional components, A and A', form a symmetric M x M 

matrix, which becomes zero when X is identical across equations. This is easily seen when μ is a 
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vector of constants. A proof is given in Appendix that this is also the case when X is identical 

across the M response variables.  

 

2.4 Marginal Effects 

In many economic studies, we are interested in the marginal effect of an explanatory variable. 

Using the definition of the mean as given in Equation (10), we get the derivatives of E(y) with 

respect to the μ is an M x M matrix:  

(20) 
  ( )

  
 

[
 
 
 
 
 
  (  )

   

  (  )

   
 

  (  )

   

  (  )

   

  (  )

   
 

  (  )

   

   
  (  )

   

  (  )

   
 

  (  )

   ]
 
 
 
 
 

 
∑    (   ̅)     ((   )   (   ) ) 

∑    ((   )   (   ) ) 

. 

Let μ=(Xβ)´ as previously defined and βmk be the parameter of the k
th

 regressor in X for 

the m
th

  response. The derivative of the μ with respect to xk is an M-element column vector: 

(21)  
  

   
 *

  (  )

   

  (  )

   
 

  (  )

   
+
 

 [  (  )     (  )      (  )   ]
  

where   (  )  ,
          

           
           ∀           . 

The marginal effects of xk on the M response variables are then obtained by multiplying 

Equations (20) and (21) according to the chain rule of derivatives.  

Note the marginal effects involve all M sets of regressors if there are common variables. 

The marginal effects are the addition of direct effects on the response variable and indirect 

effects through the other (M-1) response variables. When event 1 indicates purchase, the 

marginal effect of xk is interpreted as change in the probability of purchasing product m, 

corresponding to a one-unit change in xk. We report average marginal effects in this study. 
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A straightforward way to derive marginal effects under the MVP model is to use the 

unconditional distributions (the univariate normal distributions). The unconditional mean 

functions are: 

(22)   (  |  )      ((    |  ))   (    )             

And thus the marginal effects are straightforward: 

(23)  
   (  |  )

   
  (    )                

As Mullahy (2011) points out, while such aggregation approaches may be informative for some 

purposes, it should be emphasized that they fail fundamentally to represent the properties of the 

underlying probability structure of the multivariate model. More appropriate marginal effects are 

based on joint conditional probabilities or probabilities conditional on subvectors of y. This 

complicates the computation of marginal effects because there is an ambiguity in the conditional 

distributions. Given the dimension of M response variables, there are 2
M

 probability outcomes 

based on the joint conditional probabilities. And the outcomes based on probabilities conditional 

on subvectors of y mount to ∑ ( 
 
)     

    (which is 4, 18, 64 for M=2, 3, 4, respectively). See  

Mullahy (2011) for a general analytical formula for such marginal effects. As a comparison, the 

marginal effects under MVBDN are much easier to computation, since an easy to implement 

formula of the expected mean functions are given by the definition. This adds another attractive 

property to the MVBDN model.  

For simplicity, we only compute the marginal effects for the MVP model using the 

unconditional distributions in this paper. We point out that the marginal effect under MVBDN 

accounts for the underlying property of the multivariate model while unconditional MVP 

marginal effect does not. Therefore, these two sets of marginal effects are not directly 

comparable.  
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3. Monte Carlo Simulations  

Monte Carlo simulations are performed to show the properties of the MVBDN estimator and 

provide comparisons to the traditional Multivariate Probit model. In the first set of simulations, 

we generate multivariate binary responses assuming that they are drawn from an underlying 

normal distribution. We will compare the average marginal and conditional probabilities from 

the multivariate binary discrete normal to those estimated by the Multivariate Probit. Thus we 

should be able to provide some guidelines as to the applicability of the multivariate binary 

discrete normal when the data are known to come from a multivariate normal distribution.  Next 

we will carry out simulations where the binary responses come from an underlying multivariate 

t-distribution. The idea here is that the multivariate binary discrete normal may actually 

outperform the Multivariate Probit model in such circumstances. 

 

3.1 Data Generating Process 

Consider the M-equation multivariate binary model, where, for convenience, the individual 

observation index is omitted: 

(24)   
    

                           
                 . 

In the first set of simulations, εm, m=1, …, M are error terms distributed as multivariate normal 

(MVN), each with a mean of zero, and variance-covariance matrix Σ, where Σ has values of 1 on 

the leading diagonal and correlations σjk = σkj as off-diagonal elements. A random draw from an 

MVN distribution can be obtained using the Cholesky decomposition of Σ, the lower triangular 

factor A, for which AA´= Σ, and a vector of univariate normal draws, z. Specifically, Z=Az is a 

random draw from the MVN distribution with mean vector zero and covariance matrix Σ. 
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In the second set of simulations, εm,, m=1, …, M are error terms distributed as 

multivariate t-distribution (MVT), each with mean of zero, and variance-covariance matrix Σ as 

defined previously. The degree of freedom is set to four such that the variance of the multivariate 

t-distribution is twice of the standard normal distribution.  

Two scenarios – identical and different regressors for the M-equations – are examined. 

Therefore, there are four sets of simulations in total.  We generate 400 observations for each 

simulation and repeat the process up to 300 times. Since the values of X are fixed through 

repetition, we use the empirical distributions of the parameter to provide standard errors for 

inference.  

 

Identical Regressors  

Regressors are identical across all four equations, including a constant term and an explanatory 

variable x, generated as two times a random uniform variable. The variance-covariance matrix to 

generate the correlated error terms is [

           
           
             
           

]. And the values of beta are 

β=[ [3.45 -1],[5 -1.3],[0.8 -0.5],[-2.8 1.4]]´. 

 

Different Regressors 

Following Cappellari and  Jenkins (2003), we use  Σ= [

            
            
            
            

], x1=uniform 

()-0.5; x2=uniform ()+1/3; x3=2*uniform ()+0.5; x4=0.5*uniform ()-1/3;   

y1s=.5+4*x1+u(:,1); 

y2s=3+0.5*x1-3*x2+u(:,2); 
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y3s = 1 - 2*x1 + .4*x2 - .75*x3 + u(:,3); 

y4s = -3.5 + 1*x1 - .3*x2 + 3*x3 - .4*x4 + u(:,4); 

y1 = (y1s>0); 

 y2 = (y2s>0); 

 y3 = (y3s>0); 

 y4 = (y4s>0); 

Note for y4, we use -3.5 as the intercept instead of -6 in Cappellari and Jenkins (2003). Table 1 

reports the mean and cross correlation among the generated response variables under above four 

simulation scenarios.  

 

[Table 1 here] 

 

 

 

3.2 Simulation Results 

Parameter estimates and marginal effects, as well as model fit measured by log likelihood values 

are compared across Multivariate Binary Discrete Normal model and Multivariate Probit model 

(GHK simulation with 500 draws).  

Tables 2 to 5 report parameter estimates for both models under each of the four 

simulation scenarios, respectively. A comparison across these two sets of parameter estimates 

shows that the pattern of signs and significance are similar between the two models, but by no 

means identical. The fits of the two models are almost identical – the 95% empirical confidence 

intervals of the difference in log-likelihood value between MVBDN and MVP are not 

significantly different from zero (statistics not reported). In addition, Maximum Likelihood 

Estimation of the MVP model sometimes runs into problem because the combination of data set 



14 
 

and initial values leads to a non-positive-definite covariance matrix for the GHK simulation.  

The MVP model experienced a failure rate of 28 percent, while the MVBDN successfully ran for 

all 300 repetitions. The average time required to run MVP model was about five times of that to 

run the MVBDN model for our simulated data sets.  

[Tables 2-5 here] 

We now focus on average marginal effects and some conditional expectations. Table 6 

presents average marginal effects for the case of identical regressors. Regardless whether the 

error terms are generated from MVN or MVT, the average marginal effects derived from 

unconditional distributions are very close in values under MVBDN and MVP. Although some of 

them are statistically significant at 5% level, it’s arguable that economically they are not 

substantially different.  

[Table 6 here] 

Table 7 reports average marginal effects for the case of different regressors. Note because 

of the multivariate nature of the model, the marginal effects of x2, x3, and x4 on y1 are nonzero, 

even though they are not regressors for y1.  This is because there are indirect effects channeled 

through the correlation between y1 and the other three response variables.  In contrast, the 

unconditional marginal effects from MVP fail to represent the underlying properties of 

multivariate model.  Marginal effects of x4, the regressor that enters the fourth equation only and 

thus have direct effect only, are estimated to have the same sign under MVBDN and MVP. 

However, marginal effects of x1, which enters all four equations, are very different under 

MVBDN (direct and indirect effects) versus MVP (direct effects only).  

[Table 7 here] 
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3.3 Correlations among Response Variables  

As shown in Table 8, when the regressors are identical across equations, the MVBDN estimates 

exactly match the observed correlation. This is because the first two moment equations are the 

maximum likelihood equations as proved in Section 2.3. When there are different regressors 

across equations, the first moment equation is still the maximum likelihood equation as long as 

there is a constant term. The second moment from the Multivariate Binary Discrete Normal 

distribution is slightly different from the sample moment (Equation 18). Therefore in simulation 

cases 3 and 4, MVBDN estimates of the correlation among response variables are slightly 

different from observed correlation. However, they are still much closer than the correlation 

among MVP residuals (correlation associated with the latent variables).  

[Table 8 Here] 

 

4. Applications to the Ketchup Brands Data  

Using data provided by the James M. Kilts Center, University of Chicago Booth School of 

Business that was originally collected by the now-defunct ERIM division of A. C. Nielsen, we 

examine the ketchup purchasing behavior of 1651 households in Sioux Falls, S.D.  Data are from 

full calendar year 1986. The five brands studied represent more than 98% of all reported ketchup 

purchases. If the household is observed to purchase a given brand of ketchup at any time(s) 

during the year, then the response variable for that brand and household is coded one; otherwise 

it is coded zero. Table 9 summarizes the data and Table 10 suggests some merit to considering a 

multivariate approach. 

[Tables 9 and 10 here] 
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Using the GHK simulator, a Multivariate Probit model was estimated.  The simple model 

posits that the decision to purchase a given brand of ketchup is related to a polynomial in 

household size, whether the household lives in a house, the income of the household in $1000’s, 

and the highest grade achieved by the head of the household. Results are reported in Table 11. Of 

particular interest is whether the response variables are correlated, and the test reported in the 

table suggests this is the case. 

[Table 11 here] 

Table 12 reports the exact maximum likelihood results using the multivariate binary 

discrete normal distribution.  Note that the pattern of signs and significance are similar between 

the two models, but by no means identical.  The fits of the two models are almost identical and 

since both models estimate the same number of parameters, application of an information 

criterion is unproductive. 

[Table 12 here] 

 If we focus on estimation of the marginal effects, we see almost an exact correspondence 

(at least to the first three decimal places) between the two models as shown in Table 13. Given 

that these marginal effects are simpler to derive from the multivariate binary discrete normal 

model and that estimation was achieved more than 20 times faster, this estimator appears to have 

merit in the analysis of large data sets. 

[Table 13 here] 

Finally, the implied correlations are presented in Table 14. The multivariate binary 

discrete normal reproduces the raw observed correlations.  The Multivariate Probit’s correlations 

are associated with the latent responses.   

[Table 14 here] 
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5. Conclusions and Discussions 

A multivariate binary response model, what we termed the Multivariate Binary Discrete Normal 

model, is obtained from the multivariate discrete normal distribution.  The statistical model is a 

member of the quadratic exponential family and as such, under proper specification of 

conditional means, the maximum likelihood estimator possesses desirable properties even under 

distributional misspecification. Maximum likelihood estimation of the multivariate binary 

discrete normal model is straightforward because the normalizing factor for the joint probability 

mass function is obtained via the evaluation of 2
M

 support points for M binary response variables. 

The MVBDN model nests the independent logit model. The MVBDN estimates of the 

correlations among response variables coincide with observed ones when the regressors 

(including a constant term) are identical across equations. Lastly, marginal effects that count for 

the underlying property of multivariate model are much easier to derive and compute under the 

MVBDN model.  

Application of the statistical model to simulation data and to a well-known empirical data 

set suggests that the estimator can produce results with fits comparable to other estimators; and 

in our empirical data computation time is reduced by a factor of 20 relative to a Multivariate 

Probit model.  
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Table 1. Summary of Descriptive Statistics of the Generated Response Variables  

 

Mean (average over 300 repetitions) 

  y1 y2 y3 y4 

Case 1: Identical regressors + MVN  0.9250     0.9775     0.5400     0.4750 

Case 2: Identical regressors + MVT  0.9150     0.9600     0.5475     0.4825 

Case 3: Different regressors + MVN  0.6194     0.6394     0.7783     0.1537 

Case 4: Different regressors + MVT  0.6750     0.6900     0.8150     0.2075 

      

Correlation (the last data set for example) 

  y1 y2 y3 y4 

Case 1: Identical regressors + MVN y1  0.3177     0.0683    -0.2651 

 y2   0.1221    -0.1965 

 y3    -0.0912 

      

Case 2: Identical regressors + MVT y1  0.2100     0.0452    -0.2434 

 y2   0.1335    -0.0978 

 y3    -0.0374 

      

Case 3: Different regressors + MVN y1  0.0646 -0.1206 0.1533 

 y2   0.1271 0.1168 

 y3    0.0382 

      

Case 4: Different regressors + MVT y1  0.0964    -0.0415     0.2072 

 y2   0.1480     0.1282 

 y3    0.0458 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Table 2. Parameter Estimates: Identical Regressor and MVN  

 

 

    Btrue  MVP
 a
 95% Empirical CI MVBDN

 b
 95% Empirical CI 

y1 Intercept 3.45 3.4872* 2.8074 4.5319 9.4064* 4.1471 13.5649 

 

X -1 -1.0083* -1.3815 -0.7545 -2.4984* -3.7249 -1.1026 

y2 Intercept 5 5.3019* 3.8622 8.0935 10.4651* 6.6867 15.4808 

 

X -1.3 -1.3913* -2.3174 -0.8547 -2.5537* -4.2306 -1.2714 

y3 Intercept 0.8 0.7975* 0.5636 1.0205 4.7663 -1.0632 10.8475 

 

X -0.5 -0.4971* -0.6141 -0.3629 -1.0765 -2.9187 0.7417 

y4 Intercept -2.8 -2.86* -3.3343 -2.4073 4.8362 -1.4653 10.7174 

 

X 1.4 1.4277* 1.1933 1.6788 -0.7035 -2.7888 1.482 

 

σ12 0.3 0.2918 -0.0309 0.6248 0.4205 -0.3168 0.7886 

 

σ13 -0.2 -0.188 -0.4045 0.0258 0.0853 -0.541 0.6073 

 

σ14 0.1 0.114 -0.1602 0.3792 0.2713 -0.4693 0.7126 

 

σ23 0.25 0.2407 -0.0723 0.7234 0.6082* 0.0881 0.8879 

 

σ24 0.5 0.4626* 0.0591 0.7674 0.6992* 0.232 0.8605 

 

σ34 0.75 0.748* 0.5878 0.8889 0.7925* 0.6731 0.8685 

Log likelihood 
 

-512.75 -551.03 -481.12 -517.37 -557.8 -487.65 

Repetitions   240     240     

 

a
 Average estimates over all repetitions under the Multivariate Probit model Average 

b
 Average estimates over all repetitions under the Multivariate Binary Discrete Normal model 

* Estimates are significantly different from zero at 5% level 
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Table 3. Parameter Estimates: Identical Regressor and MVT 

 

    Btrue  MVP
 a
 95% Empirical CI MVBDN

 b
 95% Empirical CI 

y1 Intercept 3.45 2.571* 2.0707 3.3645 6.7215* 4.3643 8.7547 

 

X -1 -0.7062* -0.9978 -0.5091 -1.6343* -2.3137 -1.0343 

y2 Intercept 5 3.2118* 2.4947 4.4541 6.6968* 4.2842 9.2862 

 

X -1.3 -0.7449* -1.1824 -0.4509 -1.443* -2.316 -0.6201 

y3 Intercept 0.8 0.738* 0.4996 0.9566 2.2552 -1.4681 5.3254 

 

X -0.5 -0.4588* -0.5926 -0.33 -0.4275 -1.4218 0.6292 

y4 Intercept -2.8 -2.3154* -2.7663 -1.9508 2.6129 -0.8039 5.3878 

 

X 1.4 1.1614* 0.9587 1.3864 -0.1403 -1.0875 1.0451 

 

σ12 0.3 0.3616* 0.0663 0.6306 0.5368 -0.1302 0.7824 

 

σ13 -0.2 -0.2013 -0.4455 0.0076 0.043 -0.5111 0.4898 

 

σ14 0.1 0.0874 -0.1649 0.3658 0.2933 -0.3416 0.6791 

 

σ23 0.25 0.1768 -0.1265 0.4455 0.5035* 0.0386 0.7662 

 

σ24 0.5 0.4861* 0.1631 0.7553 0.7030* 0.3906 0.8324 

 

σ34 0.75 0.7066* 0.5292 0.8582 0.7646* 0.6136 0.8431 

Log likelihood 
 

-590.28 -630.3 -549.73 -592.28 -633.56 -554.36 

Repetitions   200     200     

* Estimates are significantly different from zero at 5% level 
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Table 4. Parameter Estimates: Different Regressors and MVN 

 

     Btrue MVP 95% Empirical CI MVBDN 95% Empirical CI 

y1 Intercept 0.5 0.5137* 0.3661 0.6886 1.1455* 0.6944 1.7673 

 

X1 4 4.0676* 3.4671 4.8008 5.0473* 2.9378 7.5436 

y2 Intercept 3 3.0192* 2.4951 3.5958 2.8278* 1.8504 5.5827 

 

X1 0.5 0.4941* 0.0655 0.9527 2.2065 -0.7852 4.2439 

 

X2 -3 -3.0194* -3.6123 -2.4614 -1.9964* -5.1332 -1.1018 

y3 Intercept 1 1.012* 0.5963 1.4785 1.5551* 0.3053 2.6503 

 

X1 -2 -2.051* -2.6518 -1.4927 1.5753 -0.9511 3.5665 

 

X2 0.4 0.3988 -0.071 0.9236 -0.4046 -3.012 0.2812 

 

X3 -0.75 -0.7532* -1.0262 -0.5097 -0.0485 -0.4729 1.5728 

y4 Intercept -3.5 -3.6124* -4.7337 -2.6899 -0.7686 -6.2506 0.7897 

 

X1 1 1.0218* 0.3132 1.7595 2.8142* 0.3301 4.8789 

 

X2 -0.3 -0.3209 -0.9396 0.3787 -0.363 -1.7262 0.1221 

 

X3 3 3.1054* 2.5166 3.7969 1.5117* 0.5885 5.8239 

 

X4 -0.4 -0.4174 -1.7784 0.9407 -0.1112 -0.9933 0.7121 

 

σ12 0.25 0.2346* 0.0033 0.4331 0.35 -0.0172 0.4316 

 

σ13 0.5 0.5099* 0.3031 0.743 0.3855* 0.0530 0.4428 

 

σ14 0.75 0.7287* 0.4930 0.8937 0.3634* 0.0003 0.4479 

 

σ23 0.75 0.7462* 0.6001 0.8622 0.4373* 0.3658 0.4575 

 

σ24 0.5 0.5046* 0.2380 0.7251 0.3689* 0.0715 0.4471 

 

σ34 0.75 0.7597* 0.5691 0.9231 0.4118* 0.2281 0.453 

Log likelihood  -559.01 -595.98 -523.34 -585.86 -625.73 -547.91 

Repetitions   187      187      

* Estimates are significantly different from zero at 5% level 
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Table 5. Comparison of MVBDN and MVP estimates: Different Regressors and MVT 

 

     Btrue MVP 95% Empirical CI MVBDN 95% Empirical CI 

y1 Intercept 0.5 0.4100* 0.2694 0.5736 0.9077 0.4835 1.4443 

 

X1 4 3.3900* 2.8533 4.0514 4.1058 2.5171 5.9076 

y2 Intercept 3 2.6088* 2.1324 3.1098 2.2563 1.6002 4.289 

 

X1 0.5 0.415 -0.0209 0.8798 2.0941 0.3818 3.7578 

 

X2 -3 -2.6142* -3.1427 -2.0951 -1.5642 -3.6269 -1.0036 

y3 Intercept 1 0.8635* 0.4451 1.3802 1.3561 0.7897 2.4262 

 

X1 -2 -1.6433* -2.2285 -1.0481 1.4665 -0.2331 3.2123 

 

X2 0.4 0.3303 -0.1877 0.8552 -0.1847 -1.626 0.277 

 

X3 -0.75 -0.6389* -0.888 -0.3788 -0.2147 -0.4326 0.6999 

y4 Intercept -3.5 -2.6432* -3.5946 -1.847 -0.2316 -3.6073 0.5882 

 

X1 1 0.8471* 0.2273 1.582 2.5821 0.7679 4.2904 

 

X2 -0.3 -0.2264 -0.8476 0.3595 -0.2537 -1.2418 0.1273 

 

X3 3 2.241* 1.691 3.1243 0.8858 0.5043 4.2019 

 

X4 -0.4 -0.3069 -1.4722 0.8466 -0.1073 -0.8153 0.3915 

 

σ12 0.25 0.2396* 0.0358 0.428 0.6918 0.3062 0.7952 

 

σ13 0.5 0.4825* 0.2780 0.6846 0.7565 0.5736 0.8347 

 

σ14 0.75 0.7159* 0.4967 0.904 0.759 0.0877 0.8511 

 

σ23 0.75 0.7353* 0.6006 0.8674 0.8373 0.7481 0.8774 

 

σ24 0.5 0.4697* 0.2319 0.7204 0.7431 0.1735 0.8398 

 

σ34 0.75 0.7171* 0.5020 0.8795 0.7883 0.4023 0.8576 

Log likelihood 
 

-626.1806 -662.68 -587.71 -647.51 -686.94 -603.9 

Repetitions   240      240      

 

* Estimates are significantly different from zero at 5% level 
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Table 6. Average Marginal Effects: Identical Regressors 

 

Error terms ~ MVN 

  

  MVBDN 95%  CI 
MVP 

95%  CI 
MVBDN 

 

E(ym)
 a
 -MVP 95%  CI 

me x on y1 -0.1611* -0.2025 -0.1197 -0.1448* -0.1814 -0.1056 -0.0164* -0.0342 -0.0034 

 
x on y2 -0.1057* -0.1557 -0.0563 -0.0922* -0.1396 -0.046 -0.0135 -0.0293 0.0019 

 
x on y3 -0.2072* -0.2325 -0.1724 -0.1749* -0.2053 -0.1355 -0.0323* -0.0478 -0.0179 

 
x on y4 0.2759* 0.2617 0.284 0.282* 0.2733 0.2866 -0.0061* -0.0166 -0.0011 

  

Error terms ~ MVT 

  

  MVBDN 95%  CI 
MVP 

95%  CI 
MVBDN 

 

E(ym)
 a
 -MVP 95%  CI 

me x on y1 -0.1409* -0.1800 -0.1034 -0.1282* -0.1639 -0.0938 -0.0127* -0.0233 -0.003 

 
x on y2 -0.0899* -0.1418 -0.0517 -0.0767* -0.1157 -0.0459 -0.0132* -0.0268 -0.0024 

 
x on y3 -0.1915* -0.2206 -0.1573 -0.1641* -0.199 -0.1248 -0.0274* -0.044 -0.0151 

  x on y4 0.2668* 0.2497 0.2791 0.2718* 0.2568 0.2822 -0.0051 -0.0134 0.0004 
 

a 
Marginal effects derived from unconditional distributions.  

*The estimate is significantly different from zero at 5% level.  
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Table 7.  Average Marginal Effects: Different Regressors 

 

Error terms ~ MVN 

  

  MVBDN 95%  CI 

MVP 

E(ym)
 a
 95%  CI 

me of x1 y1 1.0319* 0.6630 2.3125 0.9513* 0.8109 1.1228 

 y2 0.4751 -0.6017 0.999 0.1301* 0.0172 0.2508 

 y3 -0.5566* -0.9945 -0.2524 -0.4379* -0.5662 -0.3187 

 y4 -0.2501* -0.7971 -0.022 0.1477* 0.0453 0.2543 

me of x2 y1 0.1694* 0.0311 0.6647    

 y2 -0.8708* -1.9168 -0.5499 -0.7947* -0.9508 -0.6479 

 y3 0.2642 -0.0905 0.3806 0.0851 -0.0152 0.1972 

 y4 0.2532* 0.0846 0.7471 -0.0464 -0.1358 0.0547 

me of x3 y1 -0.1503* -0.7131 -0.0261    

 y2 -0.127* -0.6732 -0.0046    

 y3 -0.1728 -0.2803 0.1013 -0.1608 -0.2191 -0.1088 

 y4 0.5069* 0.2314 1.7978 0.4489* 0.3638 0.5488 

me of x4 y1 0.0114 -0.0728 0.1016    

 y2 0.0098 -0.0626 0.0873    

 y3 0.0114 -0.0728 0.1015    

 y4 -0.0368 -0.3291 0.2359 -0.0603 -0.2571 0.136 

Error terms ~ MVT 

  

  MVBDN 95%  CI 

MVP 

E(ym)
 
 95%  CI 

meof x1 y1 1.1933* 0.8677 1.9184 0.9019* 0.7591 1.0779 

 y2 0.4412 -0.2133 0.8905 0.1225 -0.0062 0.2596 

 y3 -0.5869* -0.7913 -0.4198 -0.3866* -0.5243 -0.2466 

 y4 -0.345* -0.7927 -0.1254 0.1416* 0.038 0.2645 

me of x2 y1 0.193* 0.0559 0.5959    

 y2 -0.7791* -1.6079 -0.5457 -0.7715* -0.9274 -0.6183 

 y3 0.2162* 0.0103 0.3237 0.0777 -0.0442 0.2012 

 y4 0.2149* 0.0956 0.4984 -0.0378 -0.1417 0.0601 

me of x3 y1 -0.086* -0.581 -0.0276    

 y2 -0.0622* -0.455 -0.0156    

 y3 -0.1762* -0.2741 -0.0877 -0.1503* -0.2089 -0.0891 

 y4 0.357* 0.2253 1.4939 0.3747* 0.2827 0.5224 

me of x4 y1 0.0133 -0.0486 0.1011    

 y2 0.0102 -0.0371 0.0773    

 y3 0.0111 -0.0403 0.084    

 y4 -0.0401 -0.3046 0.1463 -0.0513 -0.2461 0.1416 
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Table 8. Correlation Estimates among Response Variables 

Case 1. Identical Regressors + MVN 

 

 MVBDN  MVP Residuals 

 y2 y3 y4  y2 y3 y4 

y1 0.3177     0.0683    -0.2651 y1 0.9084     0.0862    -0.6396 

y2  0.1221    -0.1965 y2  0.1340    -0.6825 

y3   -0.0912 y3   0.0945 

        

Case 2. Identical Regressors + MVT 

 

 MVBDN  MVP Residuals 

 y2 y3 y4  y2 y3 y4 

y1 0.2100     0.0452    -0.2434 y1 0.6530     0.0260    -0.4079 

y2  0.1335    -0.0978 y2  0.1367    -0.4491 

y3   -0.0374 y3   0.1536 

        

Case 3. Different Regressors + MVN 

 

 MVBDN  MVP Residuals 

 y2 y3 y4  y2 y3 y4 

y1 0.0514    -0.1060     0.1319 y1 0.0836    -0.1493     0.1517 

y2   0.1266     0.1077 y2  0.1123     0.1342 

y3   0.0414 y3   -0.2231 

        

Case 4. Different Regressors + MVT 

 

 MVBDN  MVP Residuals 

 y2 y3 y4  y2 y3 y4 

y1 0.1001    -0.0221     0.1790 y1 0.1680     0.0032     0.1597 

y2  0.1456     0.1416 y2  0.1658     0.1497 

y3   0.0519 y3   -0.1123 

Note: Estimates from the last data set for illustration. 
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Table 9.  Counts of Households Which Purchase Ketchup (216 Households Make     

                   No Purchases) 

 

Combination With     

of Brand(s) Brand1 Brand2 Brand3 Brand4 Brand5 

1 1258     

2  343 426    

3  465 223 555   

4   96  56  76 123  

5 134  81 102  19 173 

2&3 198     

2&4  51     

2&5  69     

3&4  68 43    

3&5  83 56    

4&5  16 12 16   

2&3&4  41     

2&3&5  50     

3&4&5 14 12    

2&3&4&5 11     
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               Table 10.  Correlations of Observed Binary Responses: Ketchup Brands 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 

Brand 1 1 0.0598 0.1268 0.0123 0.0101 

      
Brand 2 

 
1 0.2338 0.1279 0.1644 

      
Brand 3 

  
1 0.1692 0.1836 

      
Brand 4 

   
1 0.046 

      
 Brand 5 

    
1 
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Table 11.  Ketchup Brands Maximum Likelihood Results—Multivariate Probit (GHK Simulator) 

Log Likelihood = -3607.05 

 

Brand1 Coefficient Std. Error z-Value  Brand2 Coefficient Std. Error z-Value 

Intercept -0.6103 0.1821 -3.3511  Intercept -1.448 0.192 -7.5417 

Size  0.7284 0.1137  6.4051  Size   0.3729   0.1059  3.5204 

Size^2 -0.0649 0.0172 -3.7623  Size^2 -0.0304   0.0151 -2.0168 

House  0.1357 0.0992 1.368  House  0.3055 0.111  2.7519 

Income  0.0002 0.0025  0.0753  Income -0.0040   0.0023 -1.7478 

Educ -0.0192 0.0188 -1.0181  Educ -0.0174 0.018 -0.9648 

         

Brand3 Coefficient Std. Error z-value  Brand4 Coefficient Std. Error z-value 

Intercept -1.3703 0.1803 -7.6001  Intercept -1.2189 0.2273 -5.3622 

Size 0.524 0.1013 5.1709  Size  0.0738 0.1440  0.5124 

Size^2  -0.0424 0.0145 -2.9304  Size^2  0.0045 0.0197  0.2262 

House -0.0246 0.1005 -0.2448  House -0.1044 0.1353 -0.7715 

Income -0.0058 0.0024 -2.4558  Income -0.0095 0.0051 -1.8599 

Educ  0.0064 0.0171  0.3761  Educ -0.0200 0.0260 -0.7675 

         

Brand5 Coefficient Std. Error z-Value      

Intercept -2.0977 0.2529 -8.2932      

Size  0.3852 0.1335  2.8858      

Size^2 -0.0307 0.0183 -1.6753      

House  0.1651 0.1435 1.150      

Income -0.0044 0.0030 -1.4577      

Educ -0.0004 0.0231 -0.0182      

         

r12 -0.0052 0.0473 -0.1109  r24  0.2840 0.0580  4.8963 

 r13  0.1017 0.0456  2.2324  r25  0.2967 0.0527  5.6274 

r14 -0.0157 0.0637 -0.2472  r34  0.3720 0.0543  6.8564 

r15 -0.1004 0.0592 -1.6963  r35  0.3178 0.0500  6.3553 

r23  0.3403 0.0408  8.3504  r45  0.1155 0.0729  1.5850 

  

 

LR Test of H0: ρij=0  all i<j 

 

X
2
 = 172.3 with 10 df. 

p  =    0.0000 
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Table 12.  Ketchup Brands Maximum Likelihood Results—Multivariate Binary Discrete Normal 

Log Likelihood = -3606.03 

 

Brand1 Coefficient Std. Error z-Value  
Brand2 Coefficient Std. Error z-Value 

Intercept  0.0566 1.384   0.0409  Intercept -4.7266 0.5202 -9.0869 

Size 1.0734   0.3984 2.694  Size  1.2382 0.3090  4.0065 

Size^2 -0.0911   0.0425  -2.1451  Size^2 -0.0928 0.0382 -2.4323 

House  0.1465   0.1901   0.7706  House  0.4604 0.3059  1.5051 

Income 0.002   0.0086   0.2353  Income -0.0259 0.0091 -2.8383 

Educ -0.0344   0.0344 -1.000  Educ -0.0346 0.0509 -0.6790 

         

Brand3 Coefficient Std. Error z-Value  
Brand4 Coefficient Std. Error z-Value 

Intercept -4.7816 0.5160 -9.2664  Intercept -4.3343 0.5511  -7.8642 

Size  1.4267 0.3110  4.5883  Size  1.0388 0.3588 2.895 

Size^2 -0.1075 0.0384 -2.7967  Size^2 -0.0700 0.0434 -1.6129 

House  0.2670 0.3027  0.8822  House  0.1505 0.3214  0.4683 

Income -0.0279 0.0096 -2.8955  Income -0.0308 0.0122 -2.5302 

Educ -0.0250 0.0518 -0.4826  Educ -0.0402 0.0593 -0.6776 

         

Brand5 Coefficient Std. Error z-Value      

Intercept -4.951 0.5848 -8.4662      

Size  1.085 0.3269  3.3192      

Size^2   -0.0811 0.0410 -1.9799      

House   0.3868 0.3379  1.1444      

Income  -0.0236 0.0090 -2.6087      

Educ -0.0144 0.0544 -0.2641      

         

s15 -0.1864 0.2088 -0.8926   

LR Test of H0: σij=0  all i<j 

 

  X
2
 = 179.8 with 10 df. 

   p  =    0.0000 

 

s23 0.7088 0.0232 30.5638  

s24 0.6627 0.0448 14.7817  

s25 0.6461 0.0482 13.3995  

s34 0.7124 0.0367 19.4051  

s35 0.6472 0.0529 12.2345      

s45 0.5278 0.1044 5.0575      
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Table 13.  Comparison of Average Marginal Effects for Ketchup Brands Choice 

 

 
Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 

MVP—Size +1 0.08802 0.053 0.08492 0.015345 0.03096 

MVBDN—Size +1 0.08874 0.05292 0.08493 0.016987 0.03114 

      
MVP—Income+1

a
 0.00006 -0.00124 -0.00199 -0.001299 -0.00075 

MVBDN—Income+1 0.00012 -0.00133 -0.00219 -0.001563 -0.00079 
a
Income in $1,000’s 
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Table 14.  Ketchup Brands Choice Correlations Implied by Models—MVDBN Coincides with 

Observed Correlations 

 

Brand Brand 1 Brand 2 Brand 3 Brand 4 Brand 5 

1-MVP 1 -0.0052 0.1017 -0.0157 -0.1004 

1-MVBDN 
 

0.0598 0.1268 0.0123 0.0101 

      
2-MVP 

 
1 0.3403 0.2840 0.2967 

2-MVBDN 
  

0.2338 0.1279 0.1644 

      
3-MVP 

  
1 0.3720 0.3178 

3-MVBDN 
   

0.1692 0.1836 

      
4-MVP 

   
1 0.1155 

4-MVBDN 
    

0.0460 

      
5-MVP 

    
1 

5-MVBDN 
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Appendix  

Proposition: A in Equation (18) is a zero matrix when the regressors are identical across 

equations.  

Proof: 

When regressors are identical across equations, we have that   
       

 . Equation (19) then 

becomes  

 (A1) 
 

 
∑ (   

       
 )  

 

 
∑  (  ) 

       
 

  

which can be further re-organized as follows: 

(A2)     ̃     

where  ̃  *
 

 
∑ (     (   ))  

 
  

 

 
∑ (     (   ))  

 
   

 

 
∑ (     (   ))  

 
 + is a M x 

k matrix, where k is the number of explanatory variables. We can solve for the elements of  ̃ by 

Cramer’s Rule. The system in Equation (A2) can be broke down into k systems, where the to-be-

solved vector is a column of  ̃ and the answer vector is the corresponding zero column vector of 

the M x k answer matrix 0. For each system, let D=det(Σ
-1

), and Dm be coefficient determinant 

with answer-column values  in m-column of the coefficient matrix Σ
-1

. Since the answer-column 

is a zero vector, Dk = 0 ∀ m=1, 2, … M. This solution holds for all k systems and thus the 

elements of  ̃ are zeros. In general notation, we have that 

(A3)  
 

 
∑ (     (   ))  

  
       ∀        .  

Now let’s examine the extra component in Equation (18): 
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[     (   )      (   )       (   )]
 

 

where βm0 is the parameter associated with the constant term for the m
th

 response variable, and  

βm1 is a vector of parameters of the explanatory variables for equation m (m=1, 2, … M). The (m, 

k)
th

 element of matrix A, amk, is as follows: 

(A4)        
 

 
∑ (     (   ))

 
    

 

 
∑ (     (   ))   

  
                 . 

The first term of the RHS is zero under the first moment condition, regardless whether the 

regressors are identical across equations. The second term reduces to zero when there are 

identical regressors (Equation (A3) as previously proven). Therefore the extra component in 

Equation (18) is a zero matrix and thus the second moment equation is the maximum likelihood 

equation under identical regressors. The combination of the first two moment equations leads to 

the result that the estimated correlation among response variables under the MVBDN model 

matches the sample correlation.  


