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A Joint Framework for Analysis of Agri-Environmental Payment Programs 

 

Abstract 

 

 
This paper presents an approach for simultaneously estimating farmers’ decisions to 

accept incentive payments in return for adopting a bundle of environmentally benign 

management practices. Using the results of a multinomial probit analysis of surveys of 

over 1,000 farmers facing ten adoption decisions in an EQIP-type program, we show how 

the farmers’ perceptions of the desirability of various bundles changes with the offer 

amounts and with which practices are offered in the program.  

 

Key words: incentive payments, EQIP, simulated multivariate normal, multinomial 

probit, simulated maximum likelihood estimation, best management practices 

 

 



 

A Joint Framework for Analysis of Agri-Environmental Payment Programs 
 

Introduction 

Agri-environmental payment programs can accomplish the task of improving the 

environmental performance of agriculture, with ‘green payment’ programs adding the 

additional goal of providing an alternative source of farm income relative to traditional 

commodity programs (Claassen and Horan; Batie; Lynch and Smith; Smith; Feather and 

Cooper; Claussen et al.).  Interest in developing these programs is currently strong. For 

example, in Fall 2000, Senator Harkin and Congressman Minge introduced the 

‘Conservation Security Act’ as a bill in the U.S. House and Senate (S.3223, HR.5511), 

and the Clinton Administration proposed the Conservation Security Program (Clinton 

Administration’s FY 2001 budget proposal).  Each of these programs would introduce 

one form of  ‘green payments’, which can accomplish the dual tasks of improving the 

environmental performance of agriculture and providing an alternative source of farm 

income relative to traditional commodity programs. This paper focuses on voluntary 

programs designed along the lines of the USDA’s Environmental Quality Incentives 

Program (EQIP), which provides incentive payments to encourage producers to perform 

land management practices such as nutrient management, manure management, and 

integrated pest management.  

 For policymaking purposes, it would be useful to know the sensitivity of the 

producer’s decision to enroll in response to a schedule of potential incentive payments 

and to which practices are bundled together. Such information can be used to assess the 
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costs of encouraging farmers to try various environmentally benign management 

practices (commonly known as Best Management Practices, or BMPs).   

EQIP offers the farmer a suite of BMPs to choose from.  Existing published 

research (Cooper and Keim) modeled the probability of farmer adoption of BMPs as a 

function of the incentive payment, with each practice being modeled independently in a 

bivariate probit analysis of actual adoption and hypothetical adoption.  Khanna (2001) 

also conducts a bivariate probit analysis of technology adoption, but between two 

technologies at a time.      

Logically, there is no reason to believe that the farmer’s decision to adopt each of 

these practices should be treated independently; these BMP should be considered in fact, 

as a bundle of inter-related practices (Amacher and Feather). If each adoption decision is 

treated independently in estimation, then valuable economic information may be lost.  If 

the available set of BMP options does indeed influence the farmer’s decision as to which 

practices to adopt, then the adoption decision follows a multivariate distribution.  The 

multinomial probit (MNP) model, which makes use of the multivariate normal (MVN) 

distribution, is the appropriate econometric tool for modeling multiple adoption decisions 

in a joint fashion such that the correlations of the error terms across the practices are 

nonzero.    

Unfortunately, the MVN becomes computationally intractable and develops 

serious shortcoming in numerical accuracy as the number of random variables increases 

past three when using traditional Gaussian quadrature techniques. This is the reason why 

econometric applications greater than the trivariate probit are rarely seen.  The goal of 
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this paper is to simultaneously model ten discrete choice adoption decisions.  The 

alternative to quadrature methods that makes this possible is to appeal to Monte Carlo 

methods to simulate the MVN, in our case using the GHK (Geweke, Hajivassiliou and 

Keane) simulator.  

Simulation of standard normal variables is a relatively well-studied problem (see 

Gouriéroux and Montfort for an overview of simulation-based methods), although 

applications in the applied economics area are still rare. Dorfman (1996) provides the 

only published example of application of the simulated normal probability density 

function (with a Gibbs sampling approach) to modeling a single-stage farmer decision 

making process. He estimated his MNP using the method of simulated moments (MSM) 

for three possible decisions.  This paper, on the other hand, uses the simulated maximum 

likelihood estimation (SMLE) approach, which with its direct correspondence to the 

MLE approach, is more intuitive to most applied economists, and applies it to a multiple-

stage decision process with ten decisions.   

In the numerical illustration, a dataset is drawn from surveys of over 1,000 

farmers in four US regions, and is used to simultaneously model ten discrete choices in 

an EQIP-like cost sharing program.  Because cost sharing programs such as EQIP only 

accept farmers who are not currently using the desired BMPs, to avoid sample selection 

bias and make use of all available information, the model combines actual and 

hypothetical users of the BMPs. Namely, using a multiple-bound approach in the 

multivariate setting, the model simultaneously considers the decision to adopt the BMPs 

without an incentive payment and the hypothetical decision (i.e., the farmers’ responses 



 

 

4

to survey questions) to adopt as a function of the offered incentive payments.  To the best 

of the author’s knowledge, this is the first application of a multiple-bounded simulated 

MNP model.  By modeling the decision making process jointly across the offered BMPs, 

the resulting estimate of the correlations across both the current use decisions and the 

hypothetical use decisions allow us to examine which BMPs the farmers consider as 

bundles (both among current users of the BMPs and among the hypothetical users) and to 

calculate conditional probabilities, which can be of policy significance in the design of 

the type of agri-environmental payment program discussed here.   Before turning to the 

econometric model and then to the numerical illustration of the approach, in the next 

section, we provide the theoretical basis for addressing the incentve payment program as 

a bundle of technologies to be adopted. 

 

The Theoretical Model 

Consider a farmer who is faced with a set of decisions on what combination of j = 1,…,J 

BMPs to choose from under a incentive payment program.  Assume that she has a land 

constraint and that she is risk averse with utility function U(·) with U� > 0 and  U�� ≤  0 

defined on wealth.  We can derive the theoretical model by modifying Just and 

Zilberman’s (1983) model of farmer adoption of one practice to a farmer adoption of a 

bundle of practices given government incentive payments.  Assuming that land is denoted 

as L, and supposing that wealth at the end of the season is defined by the sum of the land 

value, pLL and the return from production.  The farmer must either allocate all his land to 

his current technologies (denoted by subscript “0”) or the new technologies, or BMPs 
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(denoted by subscript “1”) for which she incurs fixed set-up costs, kj, for the new 

technologies. The farmer can allocate his land into any proportions between the BMPs.  

Hence, each acceptance decision is a discrete choice and the land-allocation decision is a 

continuous choice.  Denoting stochastic profits per acre as π , the decision problem is 
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where L  is total acres, the 0/1 subscript references nonadoption/adoption, L0 is the acres 

of land on which no BMPs are adopted, jL1 is the acres upon which the jth BMP is 

adopted, kj is the fixed costs associated with adopting the BMP, gj is the incentive 

payment the farmer receives in return for adopting the practice, and Ij is 1 if the farmer 

adopts practice j and 0 otherwise. The profit associated with the adoption of each practice 

is a function of which set of practices are adopted, I = {I1, I2, …, IJ}, and of the 

interactions between the practices, denoted by the correlation matrix Ã.2  In other words, 

in maximizing his utility, the farmer simultaneously considers the impacts on profits of 

each adoption decision. 

                                                 
2 Fixed costs k may also be a function of I and Ã but is not considered further as 

specifying this function adds little to the conceptual understanding of the problem. 
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Considering the problem as stated in equation (1) as simply maximizing profits 

instead of the expected utility of profits would of course ignore the impacts that the 

farmer’s level of risk adversity would have on the decision to adopt. For instance, 

considering the case of the decision over one BMP, even if E( 1π ) – k + g > E( 0π ), a 

farmer may not choose to adopt the practice if the variance of profits, ( )1
2 πσ , is greater 

than ( )0
2 πσ .   In addition, in order to account for the possibility that farmers may receive 

some utility from taking measures that have environmental benefits, EU in equation (1) is 

also a function of I independently of the profit motivation, and vector s comprises farmer 

(and farm) attributes other than the change in profits that may explain the adoption 

decision.  

In an empirical application, it is convenient, if not necessary,  to separate the EU 

maximization process above into two steps, the first discrete, the second continuous. In 

empirical practice, this process could be conducted with a Heckman model. As the 

evidence suggests that for many BMPs, the discrete adoption decision is of greater policy 

interest than the continuous land allocation decision (Cooper; Cooper and Keim) –

physical or other management constraints are more important factors in deciding on the 

number of acres to apply the practice to – the paper focuses on the decision to adopt. 

 The farmer's discrete decision to accept incentive payments in exchange for 

adopting the BMPs can be modeled using the random utility model (RUM) approach (e.g. 

Hanemann).  From the utility theoretic standpoint, a farmer is willing to accept gj to 

switch to a new production practice if the farmer's utility with the new practice and 

incentive payment is at least as great as at the initial state, i.e., if  U1(L1, 1π ,s,kj,gj) 
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≥ U0(L0, 0π ,s), where 0 is the base state; 1 is the state with the green practice adopted. 

The farmer's utility function is unknown because some components are unobservable to 

the researcher, and thus, can be considered a random variable from the researcher's 

standpoint.  The observable portion is V, the mean of the random variable U.  With the 

addition of an error ε , where ε  is an independently and identically distributed random 

variable with zero mean, the farmer's decision to adopt the practice can be re-expressed 

as V1(L1, 1π ,s,kj,gj) + 1ε  ≥  V0(L0, 0π ,s) + 0ε .   

 In practice, V1 and V0 are generally not separably identifiable, but their difference 

( V∆ ) is. This is done by expressing the probability of adoption in a probability 

framework as { }0110Pr VV −≤− εε , and hence, the parameters of which can be estimated 

through maximum likelihood.   Because V∆  is generated directly from the utility model 

given above, it is compatible with the theory of utility maximization.  Many different 

specifications for V∆ are possible, including semi-nonparametric (e.g., Creel and 

Loomis). The probability of farmer adoption at gj is ( )[ ]jgV∆εF , where εF  is a 

cumulative density function.  Given that j
1π and 0π ,  as well as any nonfinancial 

motivations for adoption, are unlikely to be known to the researcher, survey approaches 

(such as those that explicitly ask the farmer whether or not she would adopt for a given 

incentive payment g) are needed to estimate the parameters of εF  (Cooper; Cooper and 

Keim; Khanna).  According to equation (1), the ( )jgV∆ , j = 1,…,J are correlated across 

the practices.  Assuming the ( )jgV∆  are distributed normally, the multivariate normal 

distribution is necessary to account for the correlations, where the (Jx1) vector V∆ is 
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distributed as V∆  ˜ ( )Σ;,,,,F 321 Jµµµµ K , whereΣ  is the (J x J) correlation matrix 

between the practices. The next section presents the empirical model for estimating the 

parameters of this distribution.  

 

Econometric Model 

Two issues require consideration in the econometric analysis. One is the how to treat the 

adoption decisions as a bundle.  The second, as mentioned in the introduction, is how to 

combine data from actual and hypothetical users (i.e., current nonusers who are asked in 

a survey whether or not they would adopt the practice for a given incentive payment).  

Regarding the latter question, government subsidized BMP adoption programs tend to 

offer incentive payments only to those who do not currently use the offered practices.  

However, as current users are effectively using the practice at a $0 per acre incentive 

payment, adding them to the analysis of farmer responses to a range of incentive 

payments adds additional information to the analysis, and may smooth out potential 

biases in the set of contingent behavior responses.  Furthermore, ignoring the current 

users in the analysis can instill sample selection bias in the model.  
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Assume that farmers choose among a set of J practices. Subscript a represents the 

farmer’s current decision to use or not use the BMP. Subscript b represents the farmer’s 

decision to accept or not accept the incentive payment offer. Farmer i’s RUM associated 

with current use practice j is  

(2.1) ijajijaija XV εβ +′=∆     (j = 1,…,J; i = 1,…,N) 

The farmer’s RUM associated with the incentive payment offer to adopt the BMP is 

(2.2) ijbjijbijb XV εβ +′=∆     (j = 1,…,J; i = 1,…,N) 

Where { }ijaijija CxX ,=  and { }ijbijijb CxX ,= , where Cijb is the incentive payment offer to 

farmer i, and Cija = $0 is the incentive payment offer currently facing the user or nonuser, 

i.e., if the farmer is currently using the practice, he is doing so without a subsidy, and 

where the coefficient vector â is equal across the two equations.3   

The MNP model assumes that the error terms in equations are distributed  

( )′≡ iJbbiiJaaii εεεεε ,,,,, 11 KK ~ IIDN(0, Σ ), [ ].ab
ijσ=Σ  The survey data used in the 

numerical illustration considers the adoption of five BMPs. Hence, it contains five 

equations on current use and five equations on hypothetical use.  Normalizing along the 

main diagonal, the resulting symmetric correlation matrix is therefore 

 

 

                                                 
3 A full MNP model would have variables in the RUMs in equation 2.1 and 2.2 that vary across the J 
choices.  While explanatory variables that vary across the choices are possible for some datasets, such as 
those used in recreational site choice, such variables are unlikely to be available to researchers modeling 
the farmer’s technology adoption process.  However, convergence of a MNP model with variables that vary 
across choices as well as across individuals generally requires restrictions on the correlation matrix, such as 
normalizing the matrix along one row. 



 

 

10

(3.1) Σ  =   
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It naturally follows that for comparison, we should estimate a subset of the full model, in 

which it is assumed that farmers consider the adoption decision of each BMP in an 

independent fashion.  The restricted correlation matrix is therefore  

(3.2) RΣ  = 
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Since all the correlations except the within practice correlations are zero in equation 

(3.2), estimating the model  subject to this matrix is analogous to performing a bivariate 

probit regression of current and hypothetical use for each of the five BMPs.  

Conceivably, one could further restrict RΣ  by setting the five within practice correlations 

equal to one.  Doing so would be equivalent to the individual practice specific multiple 

bound (specifically, one-way up) models in Cooper (1997).   However, some recent 

evidence suggests imposing an effective correlation of one in multiple bound models, 

such as those used in contingent valuation, can produce coefficient estimates on the offer 

amount, that while consistent, can potentially have spurious standard errors.4 

The MNP log-likelihood function to be estimated is an expanded version of the 

bivariate model (Greene, 1997):   

(4) ( ) ∑
=




 Σ=Σ
N

i
iFL

1

*,log, ωβ ,  where 

( )′∗∗∗∗≡ iJbiJbbibiiJaiJaaiaii zqzqzqzq ,,,,, 1111 KKω  and 

βijtijt xz ′= , t = a,b 





=−
=

=
$0  Cat  practice usenot doescurrently if1
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ij

ij
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ji
q ija  

                                                 
4 Namely, when a correlation of one is imposed between the ∆ V’s, the bid coefficients can be statistically 
significant even if the responses are completely random, and the level of significance is some function of 
the choice of offer amounts. Upon request, the author can provide a computer program that shows this 
effect.  A fruitful line of study may be to investigate why this is the case. At any rate, freeing up the  
correlation parameters (to anywhere between –1 and 1), may help reduce biases associated with potential 
misspecification of the RUM and distribution.  
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where Ti is a JJ ×  diagonal matrix with ( )′≡ iJbbiiJaaii qqqqT ,,,,, 11 KK  on the diagonal, 

and where the unrestricted JJ ×  covariance matrix has ( ) JJ ×−1  free elements (after 

imposing symmetry conditions).  

Leaving out the subscript i, the multivariate normal density function in equation 

(4) is   

(5) ( )
( ) ∫ ∫ ∫∞− ∞− ∞−

Σ′−
−

Σ
=Σ 1 2

1*

2
1
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1
, a a Jbw w w
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dewF θ

π

θθ
L

v
,  

where wjt = ( jtω - ìjt)/ jtσ ,  jtσ  = 1,  ìjt = 0, and t = a, b.  

As noted earlier, the computational intractability of the MVN density in equation 

(5) accounts for why it is rarely used in dimensions higher than J = 2 (bivariate), or 

increasingly, J = 3 (trivariate). The traditional numerical quadrature methods to 

calculating F(.) tend not only to be unacceptably slow in more than  three or four 

dimensions, they also suffer from serious shortcoming in numerical accuracy as J 

increases (e.g., Horowitz et al.). An alternative to quadrature methods, namely Monte 

Carlo methods, is necessary to estimate the CDF F(.). Simulation of standard normal 

variables is a well-studied problem (see Gouriéroux and Montfort for an overview of this 

simulation based methods), although applications in the applied economics area are rare 

(e.g. Dorfman’s trivariate model).  To some extent this state is due to desktop computers 
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only recently having the computational speed to perform this analysis and to a lack of 

available software.  Several simulation techniques for calculating the densities are 

possible (Gouriéroux and Montfort).  For this paper, the GHK (Gweke-Hajivassiliou-

Kean) importance sampling technique and a similar technique proposed by Genz (1992) 

were both tried and gave similar results. The approximation to F(.) using these 

procedures lies in the unit interval and is a continuous function of the parameters.  

Hajivassiliou et al. (1992) found the root-mean square-error performance of the GHK 

measure to be superior to twelve other simulators for normal rectangle probabilities.  An 

extensive discussion of the GHK or Genz simulator is outside the scope of the paper, and 

we simply note that these methods work by taking recursive draws from a truncated 

normal CDF.  As the Genz approach can be adequately summarized in a few lines, we 

present a description of it as the example: 

1. Input Σ  and the number of simulations, Rmax 

2. Compute lower triangular Cholesty factor C for Σ . 

3. Initialize Intsum = 0, N = 0, d1 = ( )1,11 / caΦ  and f1 = ( )1,11 / cbΦ  and f1 = e1-d1. 

4. Repeat Rmax times 

(a) Generate uniform random w1, w2,…, wJ-1  [ ].1,0∈  

(b) For j =2,3,…,J set yj-1 = ( )( )1111
1

−−−−
− −+Φ jjjj dewd , dj = 

( )( )kj

j

k jkjj cyca ,

1

1 ,1
1 ∑ −

=−
− −Φ , ej = ( )( )kj

j

k jkjj cycb ,

1

1 ,1
1 ∑ −

=−
− −Φ , and fj = (ej-dj)-1. 

(c) Set R = R + 1, δ  = (fm-Intsum)�R, Intsum = Intsum + δ .  
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5. Output F = Intsum.5  

For the model in this paper, aj = ∞−  for j = 1,…,J and bj = (xj�âj - ìj)/ jσ , where jσ  = 1 

and ìj = 0.  

Since the Monte Carlo simulator can approximate the probabilities of the MVN 

density to any desired degree of accuracy, the corresponding maximum simulated 

maximum likelihood estimate (SMLE) based on the simulated MVN can approximate the 

MLE estimator (Hajivassiliou, McFadden, and Ruud). For the results to be consistent, 

Rmax must increase with the sample size at a sufficiently rapid rate (Newey and 

McFadden, 1993).  One hundred repetitions is used here (as suggested by Gweke, Kean, 

and Runkle for their simulated MNP model). 

The method of simulated moments (MSM) is an alternative to SMLE as an 

approximation to MLE.  Each has advantages and drawbacks (Gouriéroux and Montfort).  

SMLE is more intuitively appealing as it is an approximation to the MLE, which is a 

much more common form of optimization in applied economics than method of moments 

estimators. Furthermore, some evidence suggests that MSM works best for models with a 

smaller number of choices than SMLE.  In their Monte Carlo analysis, Hajivassiliou and 

Ruud found MSM works best for small sample spaces with a number of choices less than 

six. 

 

 

                                                 
5 Alternatively, the loop can continue until some a priori minimum level of error in the difference between 
fm and Instum is reached.  It tends to be faster in GAUSS to simply generate the vectors in (a) and (b) in 
parallel fashion for a large Rmax than to do the loop procedure.  
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Numerical Illustration 

The data used for the numerical illustration is taken from a data collection and modeling 

effort undertaken jointly by the Natural Resource Conservation Service (NRCS), the 

Economic Research Service (ERS), the U.S. Geological Survey (USGS), and the 

National Agricultural Statistical Service (NASS).  Data on cropping and tillage practices 

and input management were obtained from comprehensive field and farm level surveys of 

about 1,000 farmers apiece for  cropping practices in each of four critical watershed 

regions.  In the survey, current nonusers of the practices were asked if they would adopt 

the BMPs with an incentive payment of $[X] per acre, a value which was varied across 

the respondents in the range $2 to $24.  As the data is discussed in detail in Cooper and 

Cooper and Keim, for brevity and to avoid repetition, we do not discuss the data in detail 

here.  Table 1 lists the BMPs discussed in the surveys, and Table 2 lists the explanatory 

variables used in the regressions. The decision on which variables to include in the 

regressions for each of the practices was based on whether or not the variables appear 

justified from a farm management standpoint (ibid). 

 The SMLE likelihood function and maximization routines were programmed by 

the author in GAUSS.6 Regression results are presented in Tables 3 and 4. The coefficient 

on the offer amount (BIDVAL) is of the expected sign and significant to at least the 10% 

level, and for most cases, the 1% level, for all five practices in Tables 3 and 4a.  As 

                                                                                                                                                 
 
6 The only commercially available program that the author is aware of that performs the MNP using the 
simulated normal is an optional package in Limdep.  However, it is not suitable to the model here for two 
reasons: 1) it offers no practical way to fix the coefficient vector â to be equal between ∆ Vija and ∆ Vijb; 
and 2) the author found that modeling just the data on the five current use decisions was too 
computationally burdensome to be practical. 
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expected, the within practice correlations are close to one and highly significant in both 

Table 3 and Table 4b.  In the latter table, most of the other correlations are significant to 

at least the 5% level as well. In general, the correlations between the current use variates 

(the upper left triangle of values in table 4.b) tend to be less significant than the 

correlations between the hypothetical use variates (in the bottom right triangle of 

numbers).  This difference in significance is to be expected; whether or not the farmer is 

a current user of the BMPs is a result of an evolutionary process, while the hypothetical 

adoption decisions are over a bundle of practices offered to the farmer at one point in 

time in a survey instrument.  

 As the restricted model (Table 3) is nested within the unrestricted model (Tables 

4a-b), a likelihood ratio test, namely LR = -2(lnLr - lnLu), can be used to test the null 

hypothesis that farmers consider each BMP adoption decision as an independent one.  

Given the log-likelihood values in Tables 3 and 4a, this hypothesis is not accepted for any 

reasonable level of significance. 

 Next, given that the restricted model is not accepted, we turn to how the 

unrestricted MNP results can be used for analysis of bundling. The basic value of the 

multivariate analysis is it allows us to calculate the joint probabilities as a function of the 

incentive payments. Figure 1 provides an example of how the joint probability changes as 

a function of the IPM incentive payment offer. The baseline density is that for a typical 

respondent who currently uses CONTILL (as around 70% in the sample did), but does 

not currently use the other BMPs, and refuses to use them at the offered incentive 

payments. In this case, the joint probability is the  probability of a  “no” to any  practices 
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except CONTILL, i.e., the probability  that  the  farmer  will not use any of the practices 

except CONTILL. In other words, the MVN density function is 

( )bbbbbbbbaaaaa CCCzzzzzzzzzzF 5215432154321 ,...,,;,,,,;,,,, Σ−−−−−−−− , and the slope of 

the curves in the figure is ∂ F(.)/∂ C2b, where C2b is the incentive payment for IPM.7  For 

the baseline, C2b is varied between $0 and $30 per acre, with the other incentive payment 

set equal to zero.  In other words, incentive payments are provided only for the adoption 

of IPM; other practices are to be adopted purely at the farmer’s expense. Scenario 1 is the 

same except that now, MANTST at a fixed incentive payment of $10 per acre is bundled 

with IPM. This bundling shifts the  probability of a “no” response downwards, but not by 

a great amount.  However, when LEGCR is bundled with a $10 per acre IPM incentive 

payment instead of MANTST (Scenario 2),  then the probability shifts downwards by a 

large amount.  Bundling in MANTST, LEGCR, and SMTST (Scenario 3) with IPM has 

little impact on decreasing the negative response of the farmer compared to Scenario 2 as 

adding MANTST and SMTST has little impact on the farmer’s decision to adopt IPM. In 

fact, the correlation coefficient between IPM and LEGCR is higher than between IPM 

and MANTST or  IPM and SMTST (Table 4b).  Hence, if for the sake of argument, the 

government’s focus is on IPM adoption, it appears from this analysis that bundling 

LEGCR with IPM is attractive to the farmer and has the potential to be cost effective.  A 

wide variety of scenarios can be examined in the same manner. 

 

 

                                                 
7 The key to the subscripts is CONTILL = 1, IPM = 2, LEGCR = 3, MANTST=4, and SMTST = 5. 
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Conclusion 

This paper develops an econometric model based on the multivariate normal distribution 

that identifies producer tendencies to bundle types of management practices that may be 

covered under an incentive payment system. Identifying producer tendencies to bundle 

these types of practices may increase adoption and lower the costs of voluntary adoption 

programs.  Although the scenario examined here relies on payments to encourage 

adoption, identifying these producer tendencies can also lower the costs of voluntary 

adoption programs  that rely on the  dissemination of information to encourage adoption. 

Since a critical component of voluntary adoption is producer perceptions, as in the 

numerical illustration, identifying and packaging BMPs that are perceived to be jointly 

beneficial, or bundled, may increase adoption and lower the costs of the programs. 

Alternatively, the identification of producer perceptions regarding bundling preferences 

that may be considered suboptimal in some fashion can be used in identifying 

information and extension needs. Thus, jointly modeling the observed adoption data 

across the BMPs can indicate which practices should be bundled into composite 

practices. If voluntary agri-environmental programs in the US become more systems-

oriented, such as in the EU, the multivariate approach developed this paper can become 

an increasingly useful tool in optimizing the design of these programs.  In fact, as the 

current EQIP program already takes more of a systems approach than older programs 

such as WQIP, the program evolution is probably in that direction.  

 Of course, the multivariate SMLE routine presented here can be applied to other 

subjects besides technology adoption.  For example, it can be directly applied to analysis 
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of multiple bound discrete choice contingent valuation questions, in cases when it is 

necessary or expedient to ask several sets of questions in the same survey instrument. 

Future extensions to the approach could be implementations that reduce the potential 

biases associated with the distributional assumptions of the model.  For example, the 

linear random utility model assumed here could be substituted with a highly flexible 

functional form, such as the Fourier (e.g., Creel and Loomis).  However, practical 

application of such procedures in the context of the simulated multivariate normal 

distribution require greater computational power than is currently available to most 

economists. 
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Table 1. Descriptions of the Farm Management Practices Presented in the Survey Instrument. 

Conservation Tillage (CONTILL) - Tillage system in which at least 30% of the soil surface 

is covered by plant residue after planting to reduce soil erosion by water; or where soil 

erosion by wind is the primary concern, at least 1,000 pounds per acre of flat small grain 

residue-equivalent are on the surface during the critical erosion period.  

Integrated Pest Management (IPM) - Pest control strategy based on the determination of 

an economic threshold that indicates when a pest population is approaching the level at 

which control measures are necessary to prevent a decline in net returns.  This can include 

scouting, biological controls and cultural controls.  

Legume Crediting (LEGCR) - Nutrient management practice involving the estimation of 

the amount of nitrogen available for crops from previous legumes (e.g. alfalfa, clover, cover 

crops, etc.) and reducing the application rate of commercial fertilizers accordingly.  

Manure Testing (MANTST) - Nutrient management practice which accounts for the 

amount of nutrients available for crops from applying livestock or poultry manure and 

reducing the application rate of commercial fertilizer accordingly.  

Soil Moisture Testing (SMTST) - Irrigation water management practice in which  

tensiometers or water table monitoring wells are used to estimate the amount of water 

available from subsurface sources.  
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Table 2. Definitions of the Explanatory Variables. 
BIDVAL - Bid Offer ($) in the WTA question. 
TACRE - Total acres operated. 
EDUC - Formal education of operator. 
EINDEX - Sheet and rill erosion index. 
FLVALUE - Estimated market value per acre of land. 
EXPER - Farm operator's years of experience. 
BPWORK - Number of days annually operator worked off the farm. 
NETINC - Operation's Net farm income in 1991. 
SNT - Soil nitrogen test performed in 1992 (dummy). 
TISTST - Tissue test performed in 1992 (dummy). 
CTILL - Conservation tillage used in 1992 (dummy). 
PESTM  - Destroy crop residues for host free zones (dummy). 
ANIMAL - Farm type-beef,hogs,sheep (dummy). 
ROTATE - Grasses and legumes in rotation (dummy). 
MANURE - Manure applied to field (dummy). 
HEL - Highly erodible land (dummy). 
IA - Sample located in the Eastern Iowa or Illinois Basin Area (dummy). 
ALBR - Sample located in the Albermarle-Pamlico Drainage Area (dummy). 
IDAHO - Sample located in the Upper Snake River Basin Area (dummy). 
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Table 3. Multinomial Probit Regression Results for the Multiple Bound Model – 
Restricted Correlation Matrix (Log-likelihood = -3671.983) 
 

 CONTILL IPM LEGCR MANTST SMTST 
Variable Coefficient Estimates (Coefficient Estimates/Standard Error)  
CONST 0.2628 -0.8786 -0.7858 -1.4857 -0.4924 

 (.981) -(3.822) -(2.418) -(3.405) -(1.662) 
BIDVAL 0.0084 0.0382 0.0208 0.0413 0.0512 

 (1.681) (9.406) (8.886) (8.167) (7.519) 
EDUC -0.0065 0.1704 0.0967 0.0427 -0.0360 

 -(.2) (5.296) (3.02) (.999) -(.869) 
CTILL 0.4205 -- -- -- -- 

 (4.756)     
TISTST -- -- 0.0762 -1.5490 -- 

   (.288) -(1.269)  
HEL -0.0500 -- -- -- -- 

 -(.465)     
EXPER -0.0002 -0.0036 -0.0018 -0.0100 -0.0072 

 -(.048) -(1.044) -(.5) -(2.048) -(1.664) 
PESTM 0.0733 0.4424 -- -- -- 

 (.584) (4.045)    
ROTATE 0.0857 -0.0616 0.4729 -- -- 

 (.466) -(.319) (3.035)   
MANURE -0.1758 -0.1925 0.0533 0.2625 -- 

 -(1.7) -(1.556) (.497) (1.996)  
ANIMAL -0.0327 -0.2798 -0.0841 0.2852 -0.1396 

 -(.31) -(2.46) -(.808) (2.233) -(1.104) 
TACRE -5.58E-06 4.82E-05 -7.41E-06 2.51E-06 4.55E-06 

 -(.17) (1.419) -(.189) (.068) (.148) 
FLVALUE -1.60E-05 -1.63E-05 -0.0001 -7.83E-05 -0.0002 

 -(.236) -(.243) -(1.47) -(.772) -(2.006) 
IA 0.2955 0.0805 0.5057 0.6459 -0.2656 

 (1.568) (.43) (1.892) (1.831) -(1.23) 
ALBR 0.3955 0.0962 -0.1167 -0.2130 -0.6208 

 (1.595) (.373) -(.33) -(.488) -(1.904) 
IDAHO 0.0667 -0.4146 0.2554 0.2878 0.2366 

 (.304) -(1.875) (.861) (.717) (1.047) 
BPWORK -0.0006 -0.0004 -0.0005 -0.0003 -0.0001 

 -(1.307) -(.691) -(.916) -(.359) -(.112) 
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Table 3. Continued 
      
NETINC 4.31E-07 9.08E-07 -3.87E-06 -2.19E-07 5.73E-06 

 (.195) (.452) -(1.808) -(.079) (2.07) 
Within practice correlation coefficients between current and hypothetical use  

CONTILL  0.8504   
   (24.57)   

IPM  0.9704   
   (51.59)   

LEGCR  0.9998   
   (4191.)   

MANTST  0.9939   
   (165.9)   

SMTST  0.9318   
   (24.04)   
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Table 4a. Multinomial Probit Regression Results for the Multiple Bound Model – 
Unrestricted Correlation Matrix (Log-likelihood = -3485.78223) 
 

 CONTILL IPM LEGCR MANTST SMTST 
Variable Coefficient Estimates (Coefficient Estimates/Standard Error)  
CONST 0.2501 -1.1187 -2.1961 -3.5710 -3.1764 

 (.938) -(5.202) -(7.219) -(9.623) -(16.02) 
BIDVAL 0.0114 0.0266 0.0067 0.0315 0.0285 

 (3.035) (6.413) (2.624) (5.311) (5.985) 
EDUC -0.0104 0.1877 0.1315 0.0879 0.0872 

 -(.301) (6.299) (4.524) (2.259) (2.934) 
CTILL 0.4101 -- -- -- -- 

 (4.476)     
TISTST -- -- 0.2036 -2.4712  

   (.904) -(3.089)  
HEL -0.0465 -- -- -- -- 

 -(.413)     
EXPER 0.0019 -0.0002 0.0051 0.0023 0.0079 

 (.549) -(.078) (1.562) (.543) (2.278) 
PESTM -0.0484 0.4303 -- -- -- 

 -(.366) (3.961)    
ROTATE 0.1221 -0.0707 0.4263 -- -- 

 (.58) -(.375) (2.598)   
MANURE -0.1684 -0.1947 0.1126 0.3311 -- 

 -(1.53) -(1.684) (1.208) (2.662)  
ANIMAL -0.0131 -0.2752 -0.1363 0.1576 -0.2484 

 -(.116) -(2.905) -(1.473) (1.28) -(2.322) 
TACRE -2.24E-06 5.48E-05 5.70E-06 -6.12E-06 2.55E-05 

 -(.063) (1.569) (.169) -(.151) (1.185) 
FLVALUE -1.15E-05 3.98E-06 -0.0001 -0.0002 -0.0003 

 -(.153) (.069) -(1.803) -(1.662) -(4.609) 
IA 0.1706 0.2230 1.6614 2.4504 1.9161 

 (.927) (1.249) (6.53) (8.288) (13.15) 
ALBR 0.3061 0.2389 0.4431 1.6267 1.0059 

 (1.204) (.985) (1.451) (4.467) (3.313) 
IDAHO -0.0371 -0.3045 1.2844 2.1152 2.0153 

 -(.17) -(1.442) (4.676) (6.28) (12.11) 
BPWORK -0.0002 -0.0003 -0.0001 0.0004 0.0002 

 -(.4) -(.713) -(.154) (.693) (.376) 
NETINC 2.06E-06 1.51E-06 -1.21E-07 2.51E-06 1.46E-05 

 (.861) (.767) -(.061) (1.003) (7.305) 
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Table 4b. Correlation Matrix Estimates for Multinomial Probit Regression Results for the Multiple Bound Model – 
Unrestricted Model  
 

 CONTILL_a IPM_a LEGCR_a MANTST_a SMTST_a CONTILL_b IPM_b LEGCR_b MANTST_b SMTST_b 
  Coefficient Estimates (Coefficient Estimates/Standard Error)   

CONTILL_a --        
         

IPM_a -0.0329 --       
 -(.425)        

LEGCR_a 0.2145 0.3036 --      
 (2.988) (5.03)       

MANTST_a -0.0114 0.2201 0.2447 --      
 -(.121) (2.69) (2.453)      

SMTST_a 0.1503 0.0225 0.1444 0.5696 --     
 (1.945) (.281) (1.724) (9.233)      

CONTILL_b 0.9309 -0.123 0.1817 0.0466 0.1470 --    
 (52.79) -(1.64) (2.316) (.441) (1.772)     

IPMb 0.0367 0.8833 0.2328 0.2223 -0.0229 0.0830 --   
 (.601) (37.0) (4.015) (2.626) -(.313) (1.345)    

LEGCR_b 0.2043 0.2851 0.9617 0.3236 0.1541 0.2687 0.3257 --   
 (3.424) (5.67) (111.9) (3.506) (1.886) (4.25) (6.60)   

MANTST_b 0.0111 0.1297 0.2487 0.9653 0.4807 0.1171 0.2309 0.3633 --  
 (.145) (1.72) (3.458) (65.47) (6.435) (1.286) (2.81) (5.248)   

SMTST_b 0.1352 0.0393 0.1925 0.5598 0.9202 0.2283 0.1668 0.2805 0.5521 -- 
 (2.416) (.664) (3.18) (13.41) (62.79) (3.786) (2.73) (4.64) (10.21)  
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Figure 1. Joint Probability Function with Changes in IPM Incentive 
Payments 

 
Notes: 
- The joint CDF is F(is current user of Conservation Tillage, is nonuser of the other four 
practices and rejects incentive payment offers on all four) 
- Baseline: MANTST, LEGCR, and SMTST incentives are set equal to $0 per acre. 
- Scenario 1: MANTST incentive = $10 per acre; LEGCR and SMTST incentives = $0. 
- Scenario 2: LEGCR incentive = $10 per acre; MANTST and SMTST incentives = $0. 
- Scenario 3: LEGCR, MANTST and SMTST incentives = $10 per acre. 
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