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A Joint Framework for Analysisof Agri-Environmental Payment Programs

Abstract

This peper presents an goproach for smultaneoudy edtimating farmers decigons to
accept incentive payments in return for adopting a bundle of environmentaly benign
management practices. Usng the results of a multinomid probit andyss of surveys of
over 1,000 farmers facing ten adoption decisons in an EQIP-type program, we show how
the famers perceptions of the desrability of various bundles changes with the offer

amounts and with which practices are offered in the program.

Key words incentive payments EQIP, smulaed multivarigde normd, multinomial

probit, smulated maximum likelihood estimation, best management practices



A Joint Framework for Analysisof Agri-Environmental Payment Programs

Introduction
Agri-environmental  payment programs can accomplish the task of improving the
environmentd  performance of agriculture, with ‘green payment’ programs adding the
additiond god of providing an dternative source of farm income relative to traditiona
commodity programs (Claassen and Horan; Batie; Lynch and Smith; Smith; Feather and
Cooper; Claussen et d.). Interest in developing these programs is currently strong. For
example, in Fdl 2000, Senator Harkin and Congressman Minge introduced the
‘Conservation Security Act’ as a hill in the U.S. House and Senate (S.3223, HR.5511),
and the Clinton Adminigration proposed the Conservation Security Program (Clinton
Adminigration's FY 2001 budget proposd). Each of these programs would introduce
one form of ‘green payments, which can accomplish the dud tasks of improving the
environmentd peformance of agriculture and providing an dternaive source of farm
income relative to traditiond commodity programs. This paper focuses on voluntary
programs desgned dong the lines of the USDA’s Environmentd Qudity Incentives
Program (EQIP), which provides incentive payments to encourage producers to perform
land management practices such as nutrient management, manure management, and
integrated pest management.

For policymaking purposes, it would be ussful to know the sengtivity of the
producer’s decision to enroll in response to a schedule of potential incentive payments

and to which practices are bundled together. Such information can be used to assess the



cods of encouraging famers to try vaious environmentdly benign  management
practices (commonly known as Best Management Practices, or BMPs).

EQIP offers the famer a suite of BMPs to choose from. Existing published
research (Cooper and Keim) modeled the probability of farmer adoption of BMPs as a
function of the incentive payment, with each practice being modded independently in a
bivariate probit andysis of actua adoption and hypotheticd adoption. Khanna (2001)
adso conducts a hivariate probit andyss of technology adoption, but between two
technologies a atime.

Logicdly, there is no reason to beieve that the farmer’s decison to adopt each of
these practices should be treated independently; these BMP should be consdered in fact,
as a bundle of inter-related practices (Amacher and Feather). If each adoption decison is
treated independently in esimation, then vauable economic information may be logt. If
the available set of BMP options does indeed influence the famer’s decision as to which
practices to adopt, then the adoption decison follows a multivariate digtribution. The
multinomid probit (MNP) modd, which makes use of the multivariate norma (MVN)
digribution, is the appropriate econometric tool for modeling multiple adoption decisions
in a joint fashion such that the corrdations of the error terms across the practices are
nonzero.

Unfortunately, the MVN becomes computationdly intractable and develops
serious shortcoming in numerical accuracy as the number of random varigbles incresses
past three when using traditiond Gaussian quadrature techniques. This is the reason why

econometric gpplications greater than the trivariate probit are rardly seen. The god of



this paper is to smultaneoudy mode ten discrete choice adoption decisons. The
dternative to quadrature methods that makes this possible is to gpped to Monte Carlo
methods to smulate the MVN, in our case usng the GHK (Geweke, Hgivassliou and
Keane) smulator.

Smulation of dandard norma varigbles is a redively wdl-studied problem (see
Gouriéroux and Montfort for an overview of smulaionbased methods), dthough
gpplications in the gpplied economics area are Hill rare. Dorfman (1996) provides the
only published example of application of the smulated norma probability dendty
function (with a Gibbs sampling approach) to modding a single-stage farmer decison
making process. He estimated his MNP using the method of smulated moments (MSM)
for three possble decisons. This paper, on the other hand, uses the smulated maximum
likelihood estimation (SMLE) approach, which with its direct correspondence to the
MLE gpproach, is more intuitive to most applied economists, and applies it to a multiple-
stage decison process with ten decisons.

In the numerical illugtration, a dataset is drawn from surveys of over 1,000
famers in four US regions, and is used to smultaneoudy mode ten discrete choices in
an EQIP-like cost sharing program. Because cost sharing programs such as EQIP only
accept farmers who are not currently using the desired BMPs, to avoid sample sdection
bias and meke use of dl avaladle information, the modd combines actua and
hypotheticd usars of the BMPs Namdy, usng a multiple-bound approach in the
multivariate setting, the modd simultaneoudy condders the decison to adopt the BMPs

without an incentive payment and the hypothetical decison (i.e, the famers responses



to survey questions) to adopt as a function of the offered incentive payments. To the best
of the author's knowledge, this is the first application of a multiple-bounded smulated
MNP modd. By modding the decison making process jointly across the offered BMPs,
the resulting estimate of the corrdations across both the current use decisons and the
hypothetical use decisons dlow us to examine which BMPs the farmers consder as
bundles (both among current users of the BMPs and among the hypothetica users) and to
caculate conditiond probabilities, which can be of policy sgnificance in the design of
the type of agri-environmental payment program discussed here. Before turning to the
econometric modd and then to the numericd illudration of the approach, in the next
section, we provide the theoretical basis for addressing the incentve payment program as

abundle of technologies to be adopted.

The Theoretical Model

Condder a farmer who is faced with aset of decisons on what combination of | = 1,...,J
BMPs to choose from under a incentive payment program. Assume that she has a land
congraint and that she is risk averse with utility function U(-) with U >0 and UOO £ 0
defined on wedth. We can deive the theoreticd modd by modifying Just and
Zilberman's (1983) mode of farmer adoption of one practice to a farmer adoption of a
bundle of practices given government incentive payments. Assuming that land is denoted
as L, and supposing that wedth at the end of the season is defined by the sum of the land
vaue, p L and the return from production. The farmer must either dlocate dl his land to

his current technologies (denoted by subscript “0”) or the new technologies, or BMPs



(denoted by subscript “17) for which she incurs fixed set-up costs, k!, for the new
technologies. The farmer can alocate his land into any proportions between the BMPs.
Hence, each acceptance decison is a discrete choice and the land-dlocation decison is a

continuous choice. Denoting stochasgtic profits per acre as p , the decison problem is
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where L is total acres, the 0/1 subscript references nonadoption/adoption, Lo is the acres
of land on which no BMPs are adopted, L!is the acres upon which the jth BMP is
adopted, K is the fixed costs associated with adopting the BMP, ¢ is the incentive
payment the farmer receives in return for adopting the practice, and I is 1 if the farmer
adopts practice j and O otherwise. The profit associated with the adoption of each practice
is a function of which set of practices are adopted, | = {I1%, 1%, ..., I'}, and of the
interactions between the practices, denoted by the corrdation matrix A .2 In other words,
in maximizing his utility, the famer dmultaneoudy condders the impacts on profits of

each adoption decison.

2 Fixed costs k may dso be a function of | and A but is not considered further as

gpecifying this function adds little to the conceptua understanding of the problem.



Congdering the problem as dated in equation (1) as smply maximizing profits
indead of the expected utility of profits would of course ignore the impacts that the
farmer’sleve of risk adversity woud have on the decision to adopt. For ingtance,

congdering the case of the decison over one BMP, even if E(p,) — k + g > E(p,), a

farmer may not choose to adopt the practice if the variance of profits, s 2(pl), IS greater
than s 2(p,). In addition, in order to account for the possibility that farmers may receive

some utility from taking meesures that have environmenta benefits, EU in equaion (1) is
adso a function of | independently of the profit motivation, and vector s comprises farmer
(and fam) attributes other than the change in profits that may explan the adoption
decison.

In an empiricd application, it is convenient, if not necessary, to separate the EU
maximization process above into two seps, the first discrete, the second continuous. In
empirica practice, this process could be conducted with a Heckman modd. As the
evidence suggests that for many BMPs, the discrete adoption decision is of greater policy
interest than the continuous land alocation decison (Cooper; Cooper and Keim) —
physcd or other management condraints are more important factors in deciding on the
number of acres to apply the practice to — the paper focuses on the decision to adopt.

The fame's discrete decison to accept incentive payments in exchange for
adopting the BMPs can be modded using the random utility mode (RUM) approach (eg.
Hanemann). From the utility theoretic standpoint, a farmer is willing to accept ¢ to

switch to a new production practice if the farmer's utility with the new practice and

incentive payment is a least as grest as a the initid state, ie, if Ui(Ly, p,.sk.g)



3 Uo(Lo, P, ,9), Where O is the kase date; 1 is the state with the green practice adopted.

The famer's utility function is unknown because some components are unobservable to
the researcher, and thus, can be considered a random variable from the researcher's

dandpoint. The observable portion is V, the mean of the random variable U. With the
addition of an error e, where e is an independently and identicaly distributed random
variable with zero mean, the farmer's decison to adopt the practice can be re-expressed
asVi(Ly, Py sK.g) + & 2 Vollo, Py + &

In practice, V1 and Vp are generdly not separably identifiable, but their dfference
(DV) is This is done by expressng the probability of adoption in a probability
framework as Pr{e - € £V, - V,}, and hence, the parameters of which can be estimated
through maximum likeihood.  Because DV is generaed directly from the utility modd
given above it is compdible with the theory of utility maximization. Many different
goecifications for DV ae possble, induding semi-nonparametric (e.g., Cred and
Loomis). The probability of farmer adoption a ¢ is Fe[DV(gJ)J, where F, is a
cumulative density function. Given tha p/ad p,, a wdl as any nonfinencid

moativations for adoption, are unlikely to be known to the researcher, survey approaches

(such as those that explicitly ask the farmer whether or not she would adopt for a given

incentive payment g) are needed to estimate the parameters of F, (Cooper; Cooper and
Keim; Khanna). According to equation (1), the DV(gj ) j =1,...,J are correlated across
the practices. Assuming the DV(gi) ae didributed normdly, the multivariate normd

digribution is necessary to account for the corrdations, where the (Jx1) vector DV is



disributed as DV~ F(mi,nf,ni,...,m;S), whereS is the (J x J) corrdlation marix
between the practices. The next section presents the empiricd modd for estimeting the

parameters of this digtribution.

Econometric M odel

Two issues require condgderation in the econometric anadysis. One is the how to treet the
adoption decisons as a bundle. The second, as mentioned in the introduction, is how to
combine data from actua and hypothetical users (i.e, current nonusers who are asked in
a survey whether or not they would adopt the practice for a given incentive payment).
Regarding the latter question, government subsidized BMP adoption programs tend to
offer incentive payments only to those who do not currently use the offered practices.
However, as current users are effectively using the practice a a $0 per acre incentive
payment, adding them to the andyss of famer responses to a range of incentive
payments adds additiona information to the andyss, and may smooth out potentia
biases in the st of contingent behavior responses.  Furthermore, ignoring the current

usersin the anadyss can indill sample sdlection biasin the modd.



Assume that farmers choose among a set of J practices. Subscript a represents the
farmer’s current decision to use or not use the BMP. Subscript b represents the farmer’s
decison to accept or not accept the incentive payment offer. Farmer i's RUM associated
with current use practicej is
(21) DV,, = Xg¢b, +e, (=1...3i=1..N)

The farmer’s RUM associated with the incentive payment offer to adopt the BMP is

(22) DV, =Xgb, +e, (=1...%i=1...N)

Where X, ={x,,C,.} ad X, :{>§j ,Cijb}, where Cijb is the incentive payment offer to
famer i, and Cija = $0 is the incentive payment offer currently facing the user or nonuser,
i.e, if the famer is currently usng the prectice, he is doing so without a subsdy, and
where the coefficient vector & is equal across the two equations.®

The MNP model assumes that the error terms in equations are distributed

€° (€,,...,€,1, €11, )~ IIDN(O, S), S=[s®] The suvey data used in the

numerical illudration consders the adoption of five BMPs. Hence it contans five
equations on current use and five equations on hypotheticadl use.  Normadizing dong the

main diagond, the resulting symmetric correlation meatrix is therefore

3 A full MNP model would have variablesin the RUMsin equation 2.1 and 2.2 that vary acrossthe J
choices. While explanatory variables that vary across the choices are possible for some datasets, such as
those used in recreational site choice, such variables are unlikely to be available to researchers modeling
the farmer’ stechnology adoption process. However, convergence of a MNP model with variables that vary
across choices aswell as across individuals generally requires restrictions on the correlation matrix, such as
normalizing the matrix along one row.
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It naturdly follows that for comparison, we should esimate a subset of the full mode, in

which it is assumed that famers condder the adoption decison of each BMP in an

independent fashion. The restricted correlation matrix is therefore
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Since dl the corrdations except the within practice corrdations are zero in eguaion
(3.2), edtimating the model subject to this matrix is andogous to peforming a bivariate
probit regresson of current and hypotheticd use for each of the five BMPs
Conceivably, one could further restrict S® by setting the five within practice corrdaions
equa to one. Doing so would be equivdent to the individud practice specific multiple
bound (specificaly, one-way up) modeds in Cooper (1997). However, some recent
evidence suggests imposing an effective corrdaion of one in multiple bound modds,
such as those usad in contingent vauation, can produce coefficient estimates on the offer
amount, that while consistent, can potentially have spurious standard errors.

The MNP loglikelihood function to be edimated is an expanded verson of the

bivariate modd (Greene, 1997):

N
@ L(bS)=g log F & S g where
i=1

¢

VVI ° (qila* Zila""’qi.]a* ZiJa’qilb* Zi]b""7qub* Zin) md

z,, =xkb,t=ab

1if i currently uses practice j a C,; =$0

i
i ~1- Lif i currently doesnot use practice j a C, =$0

4 Namely, when a correlation of one isimposed between the DV’s, the bid coefficients can be statistically
significant even if the responses are completely random, and the level of significance is some function of
the choice of offer amounts. Upon request, the author can provide a computer program that shows this
effect. A fruitful line of study may beto investigate why thisisthe case. At any rate, freeing up the
correlation parameters (to anywhere between—1 and 1), may help reduce biases associated with potential
misspecification of the RUM and distribution.
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i Lif i will accept Cij [$Ofor current user, offer amount otherwise] per acre to adopt practice |
%- 1if i will not accept Cij [$0for current user, offer amount otherwise] per acreto adopt practice j

where Tyisa J° J diagond matrix with T, © (qila,...,qua,qm),...,qwb)¢ on the diagond,
and where the unrestricted J° J covariance matrix has (J-1)" J free elements (after
imposing symmetry conditions).

Leaving out the subscript i, the multivariste norma dendty function in equation
@ is

1
,|S* |(2p)3 O, Q

wherewjt = (W, - )/ s, s, =1 Ix=0,andt=a, b.

©) Flws)=

As noted earlier, the computationa intractability of the MVN dendty in equation
(5 accounts for why it is rady used in dimensons higher than J = 2 (bivariate), or
increesngly, J = 3 (trivariate). The traditiond numericadl quadraiure methods to
cdculating F() tend not only to be unacceptably dow in more than three or four
dimengons, they dso suffer from serious shortcoming in numericd accuracy as J
incresses (eg., Horowitz et al.). An dternative to quadrature methods, namely Monte
Carlo methods, is necessary to edtimate the CDF F(.). Smulaion of standard norma
vaiables is a wdl-studied problem (see Gouriéroux and Montfort for an overview of this
samulation based methods), athough applications in the gpplied economics area are rare

(e.g. Dorfman’s trivariate model). To some extent this dtate is due to desktop computers
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only recently having the computationd speed to perform this adlyss and to a lack of
available software. Severd dmulaion techniques for cdculaing the dendties ae
possible (Gouriéroux and Montfort). For this paper, the GHK (Gweke-Hgivasslior
Kean) importance sampling technique and a smilar technique proposed by Genz (1992)
were both tried and gave sSmilar results. The gpproximation to F() usng these
procedures lies in the unit intervad and is a continuous function of the parameters.
Haivassliou e d. (1992) found the root-mean square-error performance of the GHK
measure to be superior to twelve other smulators for norma rectangle probabilities. An
extensve discusson of the GHK or Genz smulator is outsde the scope of the paper, and
we smply note that these methods work by teking recursve draws from a truncated
norma CDF. As the Genz approach can be adequately summarized in a few lines, we
present a description of it as the example:

1. Input S and the number of Imulations, Rmax

2. Compute lower triangular Cholesty factor C for S .

3. Initidizelntsum=0,N=0,d, = F(a, /c,) andf, = F(b,/c,,) andf, = er-dh.

4. Repeat Rmax times

(@) Generate uniform random wi, Wa,..., Wyq 1 [0,1].
b For j =23..0 st ya1 = FYd,+w,le,-d.), ¢ =
F -1((31-1 - éi:c,-,k yj)/cj,k), g=F -1((bj-1 -a i:C,-,k yj)/ci,k)' and f; = (g-d))-1.

() St R=R+ 1, d = (fp-Intsum)UR, Intsum=Intsum+ d .
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5. Output F = Intsum.®
For the mode! in this paper, ;= - ¥ forj =1,....Jand b = (0§ - §j)/s ;,wheres ; =1
andi;=0.

Since the Monte Carlo smulator can approximate the probabilities of the MVN
dengty to any dedred degree of accuracy, the corresponding maximum dmulated
maximum likelihood estimate (SVILE) based on the smulated MVN can approximate the
MLE edimator (Hgivassliou, McFadden, and Ruud). For the results to be consstent,
Rmax must increese with the sample dze a a sufficiently rgpid rate (Newey and
McFadden, 1993). One hundred repetitions is used here (as suggested by Gweke, Kean,
and Runkle for their smulated MNP modé!).

The method of smulated moments (MSM) is an dternaive to SMLE as an
gpproximation to MLE. Each has advantages and drawbacks (Gouriéroux and Montfort).
SMLE is more intuitively gopeding as it is an goproximation to the MLE, which is a
much more common form of optimization in gpplied economics than method of moments
estimators. Furthermore, some evidence suggests that MSM works best for models with a
gmaler number of choices than SMLE. In ther Monte Carlo andyss, Hgivassliou and
Ruud found MSM works best for small sample spaces with a number of choices less than

ax.

S Alternatively, the loop can continue until some a priori minimum level of error in the difference between
fm and Instumisreached. It tendsto be faster in GAUSS to simply generate the vectorsin (a) and (b) in
parallel fashion for alarge Rmax than to do the loop procedure.
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Numerical Illustration
The data used for the numericd illudration is taken from a daa collection and modding
effort undertaken jointly by the Natural Resource Consarvation Service (NRCS), the
Economic Research Service (ERS), the U.S. Geologica Survey (USGS), and the
Nationd Agriculturd Statistica Service (NASS). Data on cropping and tillage practices
and input management were obtained from comprehengive fidd and fam level surveys of
about 1,000 farmers apiece for cropping practices in each of four criticd watershed
regions. In the survey, current nonusers of the practices were asked if they would adopt
the BMPs with an incentive payment of $X] per acre, a vdue which was varied across
the respondents in the range $2 to $24. As the data is discussed in detail in Cooper and
Cooper and Keim, for brevity and to avoid repetition, we do not discuss the data in detall
here. Table 1 lists the BMPs discussed in the surveys, and Table 2 ligts the explanatory
vaiables used in the regressons. The decison on which vaiables to indude in the
regressons for each of the practices was based on whether or not the variables appear
judtified from afarm management standpoint (ibid).

The SMLE likdihood function and maximization routines were programmed by
the author in GAUSS® Regression results ae presented in Tables 3 and 4. The coefficient
on the offer amount (BIDVAL) is of the expected sgn and sgnificant to at least the 10%

level, and for most cases, the 1% leve, for dl five practices in Tables 3 and 4a As

6 The only commercially available program that the author is aware of that performsthe MNP using the
simulated normal is an optional packagein Limdep. However, itis not suitable to the model here for two
reasons: 1) it offers no practical way to fix the coefficient vector a to be equal between DVi,-a and DV; ibs
and 2) the author found that modeling just the data on the five current use decisions was too
computationally burdensome to be practical.
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expected, the within practice corrdations are close to one and highly dgnificant in both
Table 3 and Table 4b. In the latter table, most of the other correlations are sgnificant to
a least the 5% level as wdl. In generd, the correlations between the current use variates
(the upper left triangle of vaues in table 4.b) tend to be less dgnificant than the
correlations between the hypotheticd use vaiates (in the bottom right triangle of
numbers). This difference in sgnificance is to be expected; whether or not the farmer is
a current user of the BMPs is a result of an evolutionary process, while the hypothetica
adoption decisons are over a bundle of practices offered to the farmer a one point in
timein asurvey indrumen.

As the redtricted model (Table 3) is nested within the unrestricted modd (Tables
4da-b), a likdihood ratio test, namely LR = -2(InL; - InL,), can be used to test the null
hypothesis that farmers consder each BMP adoption decison as an independent one.
Given the log-likelihood vadues in Tables 3 and 4a, this hypothesis is not accepted for any
reasonable leve of sgnificance.

Next, given that the redricted modd is not accepted, we turn to how the
unrestricted MNP results can be used for andysis of bundling. The basic vaue of the
multivariate andlyss is it dlows us to cdculate the joint probabilities as a function of the
incentive payments. Figure 1 provides an example of how the joint probability changes as
a function of the IPM incentive payment offer. The basdine densty is that for a typica
respondent who currently uses CONTILL (as around 70% in the sample did), but does
not currently use the other BMPs, and refuses to use them at the offered incentive

payments. In this case, the joint probability is the probability of a “no” to any practices
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except CONTILL, i.e, the probability that the farmer will not use any of the practices
excegpt CONTILL. In  other words, the MVN densty function is
F (2~ Zonr- Zoas Zuarm Zoy: Zi - Zar- Zay o Zag - Zayi S|Cup Cip s Cap ), a0 the slope of
the curves in the figure is ¥ F(.)/ Cap, Where Cyy, is the incentive payment for IPM.” For
the basdline, Cyy, is varied between $0 and $30 per acre, with the other incentive payment
st equd to zero. In other words, incentive payments are provided only for the adoption
of IPM; other practices are to be adopted purely at the farmer’s expense. Scenario 1 is the
same except that now, MANTST at a fixed incentive payment of $10 per acre is bundled
with IPM. This bundling shifts the probability of a “no” response downwards, but not by
a great amount. However, when LEGCR is bundled with a $10 per acre IPM incentive
payment instead of MANTST (Scenario 2), then the probability shifts downwards by a
large amount. Bundling in MANTST, LEGCR, and SMTST (Scenario 3) with IPM has
little impact on decreasing the negative response of the farmer compared to Scenario 2 as
adding MANTST and SMTST has little impact on the farmer’s decision to adopt IPM. In
fact, the corrdation coefficient between IPM and LEGCR is higher than between IPM
and MANTST or IPM and SMTST (Table 4b). Hence, if for the sake of argument, the
government’'s focus is on IPM adoption, it appears from this andyss tha bundling
LEGCR with IPM is attractive to the farmer and has the potentia to be cost effective. A

wide variety of scenarios can be examined in the same manner.

" The key to the subscriptsis CONTILL =1, IPM =2, LEGCR = 3, MANTST=4, and SMTST =5.
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Conclusion
This paper develops an econometric modd based on the multivariate normal distribution
that identifies producer tendencies to bundle types of management practices that may be
covered under an incentive payment system. ldentifying producer tendencies to bundle
these types of practices may increase adoption and lower the costs of voluntary adoption
programs.  Although the scenario examined here relies on payments to encourage
adoption, identifying these producer tendencies can dso lower the costs of voluntary
adoption programs that rely on the disseminaion of information to encourage adoption.
Since a criticd component of voluntary adoption is producer perceptions, as in the
numerica illudration, identifying and packaging BMPs tha ae perceived to be jointly
beneficid, or bundled, may increase adoption and lower the costs of the programs.
Alternatively, the identification of producer perceptions regarding bundling preferences
that may be conddered suboptima in some fashion can be used in identifying
information and extenson needs. Thus, jointly modeding the observed adoption data
across the BMPs can indicate which practices should be bundled into composte
practices. If voluntary agri-environmenta programs in the US become more systems-
oriented, such as in the EU, the multivariate approach developed this paper can become
an increesangly ussful tool in optimizing the desgn of these programs. In fact, as the
current EQIP program dready takes more of a systems gpproach than older programs
such as WQIP, the program evolution is probably in that direction.

Of course, the multivariate SMLE routine presented here can be applied to other

subjects besides technology adoption. For example, it can be directly gpplied to andyss
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of multiple bound discrete choice contingent vauation questions, in cases when it is
necessary or expedient to ask severd sets of quedtions in the same survey instrument.
Future extensons to the approach could be implementations that reduce the potentid
biases asociated with the digtributional assumptions of the modd. For example, the
lineer random utility mode assumed here could be subdituted with a highly flexible
functiond form, such as the Fourier (eg., Cred and Loomis). However, practica
goplication of such procedures in the context of the sSmulaied multivariate norma

digribution require greaster computational power than is currently avalable to mogt

economists.
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Table 1. Descriptions of the Farm Management Practices Presented in the Survey Instrument.

Conservation Tillage (CONTILL) - Tillage syssem in which at least 30% of the soil surface
is covered by plant resdue after planting to reduce soil eroson by water; or where soil
eroson by wind is the primary concern, a least 1,000 pounds per acre of flaa smal grain
resdue-equivadent are on the surface during the critica erosion period.

Integrated Pest Management (IPM) - Pest control strategy based on the determination of
an economic threshold that indicates when a pest population is gpproaching the leve at
which control measures are necessary to prevent a decline in net returns. This can include
scouting, biologica controls and cultura controls.

Legume Crediting (LEGCR) - Nutrient management practice involving the esimation of
the amount of nitrogen available for crops from previous legumes (eg. dfdfa clover, cover
crops, etc.) and reducing the gpplication rate of commercid fertilizers accordingly.

Manure Testing (MANTST) - Nutrient management practice which accounts for the
amount of nutrients avalable for crops from gpplying livestock or poultry manure and
reducing the gpplication rate of commercid fertilizer accordingly.

Soil Moisture Testing (SMTST) - lrrigation water management practice in which
tensometers or water table monitoring wells are used to edimate the amount of water

avallable from subsurface sources.
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Table 2. Definitions of the Explanatory Variables.

BIDVAL - Bid Offer ($) inthe WTA question.

TACRE - Totd acres operated.

EDUC - Forma educetion of operator.

EINDEX - Sheet and rill eroson index.

FLVALUE - Estimated market vaue per acre of land.

EXPER - Farm operator's years of experience.

BPWORK - Number of days annualy operator worked off the farm.
NETINC - Operation's Net farm income in 1991.

SNT - Sail nitrogen test performed in 1992 (dummy).

TISTST - Tissuetest performed in 1992 (dummy).

CTILL - Consarvation tillage used in 1992 (dummy).

PESTM - Destroy crop residues for host free zones (dummy).

ANIMAL - Farm type-beef,hogs,sheep (dummy).

ROTATE - Grasses and legumesin rotation (dummy).

MANURE - Manure gpplied to fidd (dummy).

HEL - Highly erodible land (dummy).

|A - Sample located in the Eastern lowaor 1llinois Basin Area (dummy).
ALBR - Sample located in the Albermarle-Pamlico Drainage Area (dummy).
IDAHO - Sample located in the Upper Snake River Basin Area (dummy).




Table 3. Multinomial Probit Regression Resultsfor the Multiple Bound Model —

Restricted Correlation Matrix (L og-likelihood = -3671.983)
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CONTILL LEGCR MANTST SMTST
Vaiadle  Coefficient Edimates (Coefficient EStimates/Standard Error)
CONST 0.2628 -0.8786 -0.7858 -1.4857 -0.4924
(.981) -(3.822) -(2.418) -(3.405) -(1.662)
BIDVAL 0.0084 0.0382 0.0208 0.0413 0.0512
(1.681) (9.406) (8.886) (8.167) (7.519)
EDUC -0.0065 0.1704 0.0967 0.0427 -0.0360
-(.2) (5.296) (3.02) (.999) -(.869)
CTILL 0.4205 -- -- -- --
(4.756)
TISTST -- -- 0.0762 -1.5490 --
(.288) -(1.269)
HEL -0.0500 -- -- -- --
-(.465)
EXPER -0.0002 -0.0036 -0.0018 -0.0100 -0.0072
-(.048) -(1.044) -(.5) -(2.048) -(1.664)
PESTM 0.0733 0.4424 -- -- --
(.584) (4.045)
ROTATE 0.0857 -0.0616 0.4729 -- --
(.466) -(.319) (3.035)
MANURE -0.1758 -0.1925 0.0533 0.2625 --
-(1.7) -(1.556) (.497) (1.996)
ANIMAL -0.0327 -0.2798 -0.0841 0.2852 -0.1396
-(.3) -(2.46) -(.808) (2.233) -(1.104)
TACRE -5.58E-06 4.82E-05 -7.41E-06 2.51FE-06 4.55E-06
-(.17) (1.419) -(.189) (.068) (.148)
FLVALUE -1.60E-05 -1.63E-05 -0.0001 -7.83E-05 -0.0002
-(.236) -(.243) -(1.47) -(.772) -(2.006)
1A 0.2955 0.0805 0.5057 0.6459 -0.2656
(1.568) (.43) (1.892) (1.831) -(1.23)
ALBR 0.3955 0.0962 -0.1167 -0.2130 -0.6208
(1.595) (.373) -(.33) -(.488) -(1.904)
IDAHO 0.0667 -0.4146 0.2554 0.2878 0.2366
(.304) -(1.875) (.861) (.717) (1.047)
BPWORK -0.0006 -0.0004 -0.0005 -0.0003 -0.0001
-(2.307) -(.691) -(.916) -(.359) -(.112)
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Table 3. Continued

NETINC 4.31E-07 9.08E-07 -3.87E-06 -2.19E-07 5.73E-06
(.195) (.452) -(1.808) -(.079) (2.07)
Within practice correlation coefficients between current and hypothetica use

CONTILL 0.8504
(24.57)
|PM 0.9704
(51.59)
LEGCR 0.9998
(4191)
MANTST 0.9939
(165.9)
SMTST 0.9318

(24.04)
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Table 4a. Multinomial Probit Regression Resultsfor the Multiple Bound Model —
Unredtricted Correlation Matrix (Log-likelihood = -3485.78223)

CONTILL |PM LEGCR MANTST SMTST
Vaiadle  Coefficient Etimates (Coefficient Estimates/Standard Error)
CONST 0.2501 -1.1187 -2.1961 -3.5710 -3.1764
(.938) -(5.202) -(7.219) -(9.623) -(16.02)
BIDVAL 0.0114 0.0266 0.0067 0.0315 0.0285
(3.035) (6.413) (2.624) (5.311) (5.985)
EDUC -0.0104 0.1877 0.1315 0.0879 0.0872
-(.301) (6.299) (4.524) (2.259) (2.934)
CTILL 0.4101 -- -- -- --
(4.476)
TISTST -- -- 0.2036 -2.4712
(.904) -(3.089)
HEL -0.0465 -- -- -- --
-(.413)
EXPER 0.0019 -0.0002 0.0051 0.0023 0.0079
(.549) -(.078) (1.562) (.543) (2.278)
PESTM -0.0484 0.4303 -- -- --
-(.366) (3.961)
ROTATE 0.1221 -0.0707 0.4263 -- --
(.58) -(.375) (2.598)
MANURE -0.1684 -0.1947 0.1126 0.3311 --
-(1.53) -(1.684) (1.208) (2.662)
ANIMAL -0.0131 -0.2752 -0.1363 0.1576 -0.2484
-(.116) -(2.905) -(1.473) (1.28) -(2.322)
TACRE -2.24E-06 5.48E-05 5.70E-06 -6.12E-06 2.55E-05
-(.063) (1.569) (.169) -(.151) (1.185)
FLVALUE -1.15E-05 3.98E-06 -0.0001 -0.0002 -0.0003
-(.153) (.069) -(1.803) -(1.662) -(4.609)
1A 0.1706 0.2230 1.6614 2.4504 1.9161
(.927) (1.249) (6.53) (8.288) (13.15)
ALBR 0.3061 0.2389 0.4431 1.6267 1.0059
(1.204) (.985) (1.451) (4.467) (3.313)
IDAHO -0.0371 -0.3045 1.2844 2.1152 2.0153
-(.17) -(1.442) (4.676) (6.28) (12.12)
BPWORK -0.0002 -0.0003 -0.0001 0.0004 0.0002
-(.4) -(.713) -(.154) (.693) (.376)
NETINC 2.06E-06 1.51E-06 -1.21E-07 2.51E-06 1.46E-05
(.861) (.767) -(.061) (1.003) (7.305)
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Table 4b. Correlation Matrix Estimatesfor Multinomial Probit Regression Resultsfor the Multiple Bound Model —
Unrestricted Model

CONTILL_a IPM_a LEGCR a MANTST a SMTST a CONTILL_ b IPM_b LEGCR b MANTST b SMTST b

Coefficient Egtimates (Coefficient Estimates/Standard Error)

CONTILL_a -
IPM_a -0.0329 -
-(.425)
LEGCR a 0.2145 0.3036 -
(2.988) (5.03)
MANTST a -0.0114 0.2201  0.2447 -
(121) (2.69) (2.453)
SMTST a 0.1503 0.0225  0.1444 0.5696 -
(1.945) (281) (1.724) (9.233)
CONTILL_b 0.9309 -0.123  0.1817 0.0466  0.1470 -
(52.79) -(1.64)  (2.316) (441) (1.772)
IPMb 0.0367 0.8833  0.2328 0.2223 -0.0229 0.0830 --
(.601) (37.0) (4.015) (2.626)  -(.313) (1.345)
LEGCR b 0.2043 0.2851  0.9617 0.3236 0.1541 0.2687 0.3257 -
(3.424) (5.67) (111.9) (3.506)  (1.886) (4.25) (6.60)
MANTST b 0.0111 0.1297  0.2487 0.9653  0.4807 0.1171 0.2309  0.3633 -
(.145) (1.72) (3.458) (65.47)  (6.435) (1.286) (2.81) (5.248)
SMTST b 0.1352 0.0393  0.1925 0.5598  0.9202 0.2283 0.1668  0.2805 05521 -

(2.416) (.664)  (3.18) (13.41)  (62.79) (3.786) (2.73)  (4.64)  (10.21)




Figure 1. Joint Probability Function with Changesin IPM Incentive

Payments
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Notes:
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I ncentive Payment ($) per acrefor IPM

- Thejoint CDF is F(is current user of Conservation Tillage, is nonuser of the other four

practices and regjects incentive payment offers on dl four)

- Basdine MANTST, LEGCR, and SMTST incentives are set equal to $0 per acre.
- Scenario 1: MANTST incentive = $10 per acre; LEGCR and SMTST incentives = $0.
- Scenario 2: LEGCR incentive = $10 per acre; MANTST and SMTST incentives = $0.

- Scenario 3: LEGCR, MANTST and SMTST incentives = $10 per acre.
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