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Abstract.  
 
In this paper we standardize, compare, and aggregate results from thirteen surveys of technology 
experts, performed over a period of five years using a range of different methodologies, but all aiming at 
eliciting expert judgment on the future cost of five key energy technologies and how future costs might 
be influenced by public R&D investments.  To enable researchers and policy makers to use the wealth of 
collective knowledge obtained through these expert elicitations we develop and present a set of 
assumptions to harmonize them. We also aggregate expert estimates within each study and across 
studies to facilitate the comparison. The analysis showed that, as expected, technology costs are 
expected to go down by 2030 with increasing levels of R&D investments, but that there is not a high 
level of agreement between individual experts or between studies regarding the technology areas that 
would benefit the most from R&D investments. This indicates that further study of prospective cost data 
may be useful to further inform R&D investments.  We also found that the contributions of additional 
studies to the variance of costs in one technology area differed by technology area, suggesting that 
(barring new information about the downsides of particular forms of elicitations) there may be value in 
not only including a diverse and relatively large group of experts, but also in using different methods to 
collect estimates.  
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1. Introduction 

The economic practicality of paths towards a sustainable future depends crucially on the future 
costs of low-carbon energy technologies. The recently published 5th Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC), in its summary for policy makers, points to the fact 
that: “Estimates of the aggregate economic costs of mitigation vary widely and are highly sensitive to 
model design and assumptions as well as the specification of scenarios, including the characterization of 
technologies and the timing of mitigation” [IPCC 5th AR, WG III, mitigation2014.org]. Indeed, total 
discounted mitigation costs (2015–2100) may increase up to 138% when some technologies are limited 
in their availability. It is expected that costs for most of these technologies will continue to fall, driven by 
various factors including research and development, economies of scale, and experience effects. 
However, the specific trajectories that costs may take in the future are highly uncertain.  In the absence 
of a clairvoyant who can eliminate these uncertainties, policy decisions should be informed by credible 
forecasts of technology costs that incorporate explicit estimates of the uncertainties. Effective policy 
decisions should be based on analysis of a comprehensive set of possible scenarios, with a probabilistic 
treatment of the uncertainties.  

 The 2010 InterAcademy Council review of the climate change assessment of the IPCC had only 
one substantive (rather than process-oriented) topic in its recommendations — the treatment of 
uncertainty:  

"To inform policy decisions properly, it is important for uncertainties to be characterized and 
communicated clearly and coherently. … Quantitative probabilities (subjective or objective) should be 
assigned only to well-defined outcomes and only when there is adequate evidence in the literature and 
when authors have sufficient confidence in the results.  … Where practical, formal expert elicitation 
procedures should be used to obtain subjective probabilities for key results." (Council, 2010) 

Similarly, the National Research Council (NRC, 2007) recommends that the U.S. Department of 
Energy use probabilistic assessment based on expert elicitations of R&D programs in making funding 
decisions.   

On December 2-3, 2010, the Department of Energy’s Office of Policy and International Affairs 
sponsored a two-day workshop on energy RD&D portfolio analysis. This workshop concluded that (1) the 
large and growing elicitation data sources need to be integrated with each other and with other relevant 
data on technology supply, and (2) that the integrated data needs to be communicated in ways that are 
useful to a variety of users, including both government decision makers and researchers who require 
expert technology supply information for their research. (Clarke & Baker, 2011) 

This paper outlines the results of three major expert elicitation efforts carried out independently 
by researchers at UMass Amherst (Baker & Keisler, 2011; Baker, et al., 2009b; Baker, et al., 2009a; 
Baker, et al., 2008), Harvard (Anadon, et al., 2011; Anadon, et al., 2012; Anadón, et al., 2014a; Chan, et 
al., 2011), and FEEM (Bosetti, et al., 2012; Catenacci, et al., 2013; Fiorese, et al., 2013). Each of the three 
groups covered many of the most promising future clean energy technologies [IPCC 5th AR, WG III, 
mitigation2014.org]: liquid biofuels, electricity from biomass, carbon capture (CCS), nuclear power, and 
solar photovoltaic (PV) power. The surveys varied considerably in terms of quantities elicited, projected 
dates, funding assumptions, types of questions, and modes of survey administration. These differences 
make the comparison challenging, but also allow us to span a variety of different assumptions and 



detect whether there are robust insights to be drawn by these exercises taken together. 
In Section 2, we review the methodology of the elicitations themselves, of the harmonization, 

and of the aggregation across experts and teams. In Section 3, we present results from the harmonized 
and aggregated elicitations, including a discussion of the sources of uncertainty and disagreement. In 
Section 4, we conclude with a discussion of applications for policy and future energy technology expert 
elicitations.  
 

2. Methodology 

There are four main challenges to comparing and combining the estimates of cost and performance 
elicited using different surveys. First, the surveys elicited different metrics, with different levels of 
aggregation. For example, the Harvard and UMass solar surveys asked questions about capital cost and 
efficiency, while FEEM asked directly for the Levelized Cost Of Electricity (LCOE). Second, the surveys 
elicited probability distributions in different ways: the UMass survey elicited the probability that a 
quantity would reach specific values, while the others elicited the 10th, 50th, and 90th percentiles for 
each quantity.  Third, the surveys differed on time scale: Harvard and FEEM asked for estimates for cost 
and performance in 2030, while UMass asked about 2050. Fourth, they differed greatly in the level of 
public R&D investments, upon which the probability estimates were conditional.  In the remainder of 
this section we describe the design of the expert elicitations, the harmonization, and the aggregation 
processes. 

2.1. Elicitation Methodology 

 
A total of 165 individual surveys or interviews with experts were completed by the three teams, each 
survey covering one (or two in the case of the Harvard bioenergy elicitation, which covered biofuels and 
electricity from biomass) of the technology areas. Some experts participated in multiple surveys, and the 
surveys of some experts were omitted due to missing data. Thus, there were between 114-119 distinct 
participating experts. (Due the anonymity of the individual surveys, we cannot narrow this number 
further). The complete list of experts is reported in the appendix.  
 
The UMass and Harvard elicitations included U.S. experts and the FEEM elicitations included mainly 
experts from the European Union.  The Harvard and FEEM experts spanned academia, public 
institutions, and the private sector, while the UMass elicitations excluded industry experts since UMass 
was focused on radical breakthroughs to be realized over a longer (2050) timeframe. 
 
The elicitations used a range of methods:  Some were conducted face to face, some were conducted via 
mail or email in a written form (in most cases with additional interactions between researchers and 
experts over the phone), some were conducted online (again, with access to researchers when needed), 
and some of the online surveys were followed up by a group workshop. Below is a summary of the 
methods used by the three research teams for each of the five technologies.   

- FEEM: biofuels (face to face), bioelectricity (face to face), nuclear (mail and group workshop), 



solar (face to face). 
- Harvard: biofuels (mail); bioelectricity (mail and phone); nuclear (online and group workshop); 

solar PV (online); and CCS (mail and face to face). 
- UMass: biofuels (face to face, mail); bioelectricity (face to face, mail, phone); nuclear (face to 

face and mail); solar (face to face with mail follow-up); and CCS (face to face and mail). 
For more details the reader is referred to the papers describing the different expert elicitations. In the 
case of the online and mail surveys, the elicitation protocols included phone conversations and/or e-
mail exchanges between experts and researchers as needed. 
 
As discussed in the detailed papers and reports on the different elicitations, all three teams took 
precautions to correct biases inherent to expert estimates. In the UMass studies (Baker & Keisler, 2011; 
Baker, et al., 2009b; Baker, et al., 2009a; Baker, et al., 2008; Clarke & Baker, 2011) experts reviewed a 
primer on expert elicitation discussing possible biases. As the experts gave their probabilities (or after 
completing the survey in the case of mail surveys), the analysts used a series of probes aimed at 
debiasing, including asking about disconfirming evidence, asking backcasting type questions, and 
reminding the experts of overconfidence, especially when probabilities were very near 0 or 1. All experts 
were provided with a written summary of their responses, both verbal and quantitative, with the 
possibility of revising their responses.  
 
In the Harvard mail and online elicitations (Chan, et al., 2011; Anadon, et al., 2012; Anadón, et al., 
2014a) experts were provided extensive background information including (1) a summary of the 
purpose of the elicitations; (2) information about government R&D programs, current costs and future 
cost projections in the literature; (3) a short tutorial on bias and overconfidence including visual aids; 
and (4) an explanation of percentiles, also including visual aids.  In addition, the elicitations themselves 
included interactive tools, both in the mail and online elicitations. On average, experts invested between 
2 to 5 hours in completing the elicitations, plus additional time interacting with the researchers in some 
cases.  All experts were provided with a written summary of the responses of all experts, with the ability 
to change theirs, and nuclear experts participating in a group following the individual elicitation 
workshop were given the possibility of revising their responses in private after each workshop session.  
 
The FEEM studies [Anadon et al, 2012, Bosetti et al, 2012, Fiorese et al, 2013, Fiorese et al, 2014,] also 
included a preparatory document including information on technology costs and R&D funding and on 
biases. Each individual interview also included a first stage for training the experts in the elicitation 
process and discussing biases and heuristics. The interviews themselves included probing questions 
aimed at helping experts avoid overconfidence. Moreover, the questions were asked in multiple ways 
and then compared, allowing the expert to revise answers when needed. The average elicitation lasted 
more than three and a half hours. 
 
The teams elicited different metrics for the different technologies. The top rows in Table 1 summarize 
the metrics that were elicited for each study, while the last two rows report the metrics used in this 
work to aggregate across surveys and the required assumptions. 
 



Table 1: Key survey characteristics and assumptions for the harmonization 
Group Biofuels Bioelectricity CCS Nuclear Solar 
UMass 
metrics 
elicited 

Capital cost 
per gge1 
capacity, 
efficiency, 
other 

Various 
technical 
endpoints, 
cost 

Various 
technical 
endpoints, 
cost 

Various 
technical 
endpoints, cost 

Manufacturing cost per 
m2,  
efficiency,  
lifetime 

FEEM metrics 
elicited 

Cost per gge  Cost per kWh  N/A Overnight 
capital cost 
($/kW), fixed 
O&M cost, 
variable O&M 
cost, fuel cost, 
thermal 
burnup 

LCOE 

Harvard 
metrics 
elicited 

Cost per gge, 
yield (gge/dry 
ton of 
feedstock), 
plant life, 
feedstock 
costs 

Cost per kWh, 
yield (gge/dry 
ton of 
feedstock), 
plant life 
 

Overnight 
capital cost 
($/kW) 
generating 
efficiency 
(HHV), 
capacity 
factor, book 
life for fossil 
plants with 
and without 
CCS 

Overnight 
capital cost 
($/kW), fixed 
O&M cost, 
variable O&M 
cost, fuel cost, 
thermal 
burnup 

Module capital cost per 
Wp, module efficiency, 
inverter cost, inverter 
efficiency, inverter 
lifetime, O&M costs, 
other electronic 
components, etc. 

Common 
Metrics 
Harmonized 

Non-energy 
cost per gge; 
efficiency 

Non-energy 
cost per kwh; 
efficiency 

Additional 
capital cost 
per kW; 
Energy penalty 

Overnight 
capital cost 

LCOE 

Key 
Assumptions 

Assumptions 
on efficiency, 
share of non-
energy cost.  
Assumption on 
time horizon 
transformation 

Assumptions 
on efficiency, 
share of non-
energy cost. 
Assumption on 
time horizon 
transformation 

Calculating the  
additional cost 
of CCS over a 
coal plant 
without CCS 
Assumption on 
time horizon 
transformation 

Assumption on 
time horizon 
transformation. 

Capacity 
Factor 

12% 

Discount 
rate 

10% 

Lifetime* 20 
BOS $/m2 75 

UMass; 
250 
Harvard 

Assumption on time 
horizon transformation. 

1 gge are gallons of gasoline equivalent. 
* For the Harvard elicitations module lifetime was provided by each expert, and thus not always equal to 
20 years 
 

 
Each study asked experts to assess uncertain future costs and performance of energy technologies 
conditional on the level of R&D funding by governments with the goal of examining the effect of 
government R&D on the costs of reducing carbon emissions. The studies defined R&D funding levels in 



different ways (see Table 2). The FEEM surveys focused on the implications of European public R&D 
expenditures, hence “Low” R&D refers to an average of yearly expenditure over a five year period, per 
data collected by the OECD (IEA, 2013); “Mid” and “High” scenarios represent an increment of one and a 
half and twice the current levels; the UMass and Harvard studies considered the impact of U.S. public 
R&D investments. Harvard’s “Mid” funding level is an average of the experts’ recommended funding 
level for research, development and demonstration; low is ½ this amount, and high is 10 times this 
amount. Harvard experts were asked to break down their recommended level of investment by specific 
technology area or research pathway and by the stage of technology development. The UMass funding 
levels were defined in conjunction with a subset of the experts in a bottom-up manner, with experts 
thinking about how many labs could reasonably do research on specific technologies. The UMass 
funding amounts do not include demonstration plants while the Harvard funding amounts do.  
 
Table 2: Definition of R&D levels in each of the three studies (in millions of $2010/year). 

 
UMass Low  Mid High 
Solar 25 140 NA 
Nuclear  40 480 1980 
CCS 13 48 108 
Biofuels 13 201 838 
Bio electricity 15 50 150 
Harvard 
Solar 205 409 4091 
Nuclear 942 1883 18833 
CCS 1125 2250 22500 
Biofuels** 293 585 5850 
Bio electricity** 293 585 5850 
FEEM 
Solar 171 257 342 
Nuclear* 753 1514 15140 
CCS NA NA NA 
Biofuels 168 252 336 
Bioelectricity 169 254 338 
Funding Levels $M/yr 
* The Nuclear survey is an exception for the FEEM surveys as it was 
carried out together with Harvard, hence the nuclear mid and high R&D 
levels represent the average R&D investment across all the experts 
corresponding to that R&D level. 
** Harvard combined Biofuels and Bio-electricity in one elicitation. The 
amount shown is the total R&D amount for both areas. 

 
There are a number of challenges in evaluating the effect of government R&D funding on future 
technology costs, including the role of international and private sector spillovers, and the relationship 



between deployment policies and cost reductions through economies of scale and induced R&D.  It is 
hard for any analyst, including the experts participating in each study, to disentangle these effects. 
Moreover, just as there is some evidence of insensitivity to scale in contingent valuation studies (Carson, 
2001), it is possible that the experts were not well-calibrated to the specific funding amounts—and 
would have given similar answers when considering a doubling of investment from $20 million to $40 
million as they would from $200 million to $400 million. Therefore, in order to avoid over-specificity due 
to this list of challenges, we compare the results for low, medium, and high funding amounts in each 
study, against each other. 
 
FEEM and Harvard asked their experts to provide 10th, 50th, and 90th percentiles for each quantity to be 
assessed as a probability distribution. The UMass survey asked experts to assess the probability of two 
to four specified cost values.  
 

2.2. Fitting probability distributions to elicitation data 

 
For the FEEM and Harvard surveys, we examined three approaches to fitting probability distributions to 
the elicited 10th, 50th, and 90th percentiles (x10, x50, x90): Triangular, shifted Weibull, and a piecewise 
cubic fit to the cumulative distribution.  The triangular and Weibull distributions each have three 
parameters. A triangular can fit x10, x50, x90 only if the skewness ratio (x50-x10)/(x90-x50) < 1.618. 
Similarly a Weibull can fit the three percentiles only if the skewness ratio is less than 1.569.  Since only 
58% and 57%, respectively, of the expert assessments have skewness ratios below these limits, we used 
the piecewise cubic method, which fits a cubic polynomial between successive percentiles, x0, x10, x50, 
x90, x100, on the cumulative distribution. We specify the minimum and maximum (x0 and x100) such 
that the ratios satisfy the following conditions: 
 x0/x10 = x10/x50  
 x100/x90 = x90/x50 
We limit the minimum, x0, to be positive.  Figure 1 shows an example of a fitted distribution. For the 
UMass surveys, we first aggregated across experts using simple averaging of the probabilities. After 
aggregation across experts, a piecewise cubic was used to fit the selected points. This required 
additional assumptions in some cases about the zero and 100th percentiles.  
 



 
Fig 1 An example of a fitted distribution for one expert for solar LCOE. The  10th, 50th, and 90th 
percentiles estimated by the expert are shown as red dots. The 0 and 100th percentiles have been 
extrapolated as described above and are also shown with red dots. The blue line shows the cumulative 
distribution fitted to those percentiles using a piecewise cubic curve. 

2.3.  Harmonization Methodology 

In order to compare and aggregate the elicited distributions, we harmonized them, making assumptions 
to have comparable currencies and currency years, endpoint years, and common metrics. Key 
assumptions used to convert to common metrics are included in the bottom rows of Table 1.  The fifth 
row of Table 1 shows the metrics that were chosen as the goal of the harmonization for each 
technology. Typically, the most aggregated metric elicited in each survey represented the binding 
constraint in defining the common metric. For this reason in most cases we used the FEEM surveys to 
define the common metric. An exception is the metrics for the bioenergy technologies. In this case we 
use two metrics, allowing us to disentangle biomass cost from the conversion technology cost. We did 
this in order to connect these results with Integrated Assessment Models (IAMs) which take these 
distributions as inputs. Most IAMs treat the biomass cost as endogenous, and so must separate the 
energy and non-energy costs for the bioenergy technologies.  
 
The sixth row summarizes assumptions. In order to divide bioenergy costs into energy and non-energy 
portions for the FEEM and Harvard studies, we assume that the fraction of non-energy costs provided by 
experts at the mean is the same across the distribution. In the case of solar technologies, experts 
participating in the FEEM study provided their estimates in terms of LCOE under the assumptions of a 
12% capacity factor. Thus, to make the UMass and Harvard costs comparable, their more disaggregated 
costs were converted into an LCOE metric using a 12% capacity factor, even though most of the Harvard 
and UMass experts would have  provided LCOE estimates using a higher capacity factor if that had been 
the metric that they were asked about.  In order to illustrate the impact of capacity factor on LCOE, 



Table 3 applies the TEaM assumptions to estimate the LCOE of a module cost of $0.75/Wp, estimated to 
be the 2013 cost of modules manufactured in China [ (Baker, et al., 2013)]. The two rows use two 
different assumptions about Balance Of Systems (BOS) costs, consistent with assumptions by UMass 
(the lower cost) and the average from Harvard experts (the higher cost). These values can be compared 
to the range of values in Figure 4. 
 
Table 3 Example calculation of converting current solar costs into the TEaM aggregated metric with 
different BOS cost assumptions in terms of $/m2 (as in Table 2). 
Study Module cost 

2014 ($/Wp) 
BOS ($/Wp) Lifetime LCOE TEaM using 

BOS cost 
assumption 

UMass 0.75 0.73 20 $0.17 

Harvard 0.75 1.67 20 $0.28 

 
 
Finally, we needed to make no major assumptions to harmonize the nuclear overnight capital cost 
estimates, since all teams asked about the same metric.  In Section 2.4.1 we discuss how we aggregated 
multiple different nuclear technologies into one category.  
 
As previously mentioned, all UMass estimates were elicited for 2050. In order to make them more 
comparable to estimates in 2030, which was the timeframe used in the FEEM and Harvard studies, we 
backcasted the UMass 2050 estimates to 2030 assuming a constant learning rate (cost reduction 
percentage) per year -- similar to Moore’s Law for electronics.  Nagy et al. (2013) looked at a large 
amount of data for many different technologies, and found that estimated costs that used only time as a 
parameter (like Moore's law) performed nearly as well as the traditional experience curve. Equation (1) 
shows the cost curve used in the calculations. 

 
( )m t

tc c e τ
τ

− −=           (1) 
Where ct is the cost at time t, m is a parameter of this model calculated from B, the learning rate, and g, 
the growth rate of production: 

 m Bg=           (2) 
Thus, we use this method to estimate the values for 2030, namely: 

 ( )2030 2050
2030 2050

mc c e− −=       (3) 

 
To estimate the parameter m, we combine learning parameters B from the literature, with the growth 
parameter g from (Nagy, et al., 2013).  Table 4 summarizes the parameters used.  
  



 
Table 4: Parameters for backcasting UMass elicitation results.  
Technology G B m 
Solar 0.09 0.32 0.0302 
Nuclear 0.025 0.086 0.0022 
Liquid Biofuels 0.06 0.36 0.0215 
Bio-electricity 0.046 0.34 0.0156 
CCS 0.075 0.16 0.0120 
 

2.4. Aggregation Methodology 

In their surveys of methods for aggregating probability distributions obtained from different experts  
(Clemen & Winkler, 1999; Clemen & Winkle, 2007) distinguish (i) mathematical approaches and (ii) 
behavioral approaches. Behavioral approaches are qualitative and involve the direct repeated 
interaction between experts in order to reach consensus on a single “group" estimate. Given the size 
and the coverage of the elicitations included the present paper, behavioral approaches would be 
prohibitively expensive. 
 
Mathematical approaches use the individual probability distribution functions to construct a single 
probability distribution in two basic ways: either through axiomatically-justified mathematical formulas 
of aggregation, or, where possible, through Bayesian statistical methods that pay particular attention to 
issues of dependence and bias. Bayesian approaches to combine expert judgments treat each expert's 
judgment as data to be used in updating a prior distribution. They require assessment of a prior on the 
quantity of interest, usually specified as diffuse. Of greater challenge, they require specification of a 
likelihood function: a distribution of expert judgments conditional on the value of the uncertain quantity 
of interest—in other words, they require assessing the dependence among experts.  Moreover, Bayesian 
methods typically assign zero probability in the combined distribution to any value to which any expert 
assigns zero. Experts are often overconfident and assign zero to ranges to which others might assign 
positive probability.  Based on a comparison of results, simple averages typically perform almost as well 
as the theoretically superior, and technically much more complex, Bayesian methods. (Clemen, et al., 
1996). 
 
For this reason we resort to the simplest and most widely-used mathematical aggregation method of a 
weighted average or linear opinion pool. The aggregate distribution is the weighted average of the 
probability density (or cumulative probability) over the expert distributions.  This method is sometimes 
called "Laplacean mixing" (Laplace, 1812). In the present context we follow this approach and, for 
simplicity, we use equal weighting of the experts assessing each quantity in each study. 
 
 



 
Figure 2: Cumulative probability distributions (top) and probability density functions (bottom) for levelized cost 
of energy for solar in 2030 for low R&D spending for the aggregate and for each of the seven experts from the 
Harvard study. Cumulative distributions are piecewise cubic fit to 0, 10th, 50th, 90th, and 100th percentiles. 
 
 
Visualizing the location of the distributions of different experts in relation to each other shows that 
many distributions have little or no overlap (Figure 2). Therefore the distributions from simple Laplacean 
mixing are often irregular with multiple modes (see Figure 3 for a typical example).  It is conceivable 
that, for a certain quantity, multiple modes may in fact reflect multiple schools of thought: For example, 
for nuclear power, some experts may believe that small modular reactors produced in large quantities 
are likely to lead to dramatically reduced cost; while other experts may not expect this to happen, and 
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so expect the cost of nuclear power to remain high.  Aggregating opinions of experts from both schools 
of thought might lead to a bimodal distribution that reflects the bimodal distributions of opinions.  
  
However, this situation is uncommon. It is more likely that the multimodal distributions result from 
some or most experts being overconfident, that is, providing distributions that are too narrow given the 
inherent uncertainty.  Accordingly, we smooth the distributions so that they are nearer "bell-shaped" 
with a single mode with tails on each side. We do this by fitting a piecewise cubic to the 0, 10th, 50th, 
90th, and 100th percentiles from the Laplacean mixing distribution (Figure 3). 

 
Figure 3:  Comparison between Laplacean mixing and fitted piecewise cubic distributions for aggregating over 
experts for levelize cost of energy for solar in 2030 for low R&D spending from the Harvard study. 
 
We also present results for a combined distribution aggregated across the three teams. We again use 
Laplacean mixing with equal weights for each team and apply piecewise cubic smoothing.  
 

2.4.1. Aggregating various nuclear technologies into a single metric 

For nuclear power, the Harvard and FEEM studies both elicited estimates for three technologies: Nuclear 
large-scale generation III+ systems, Nuclear large-scale generation IV systems, and Nuclear Factory built 
(or small modular reactors). We assume that the market and/or future power system planners will 
select whichever technology has the lowest cost. Thus, for each study, we combined these estimates 
over the technologies selecting the lowest cost technology from a Monte Carlo sample from the cost of 
each technology, assuming an 80% rank correlation between the costs of each technology. UMass 
elicited estimates for independent projects involving different nuclear technologies (including advanced 
light water reactors, High temperature gas cooled reactors, and Feeder reactors), and similarly assumed 
that only the lowest cost technology would be chosen when preparing the aggregated distribution.  
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3. Results 

Here we present results on 2030 costs of the different technologies aggregated across experts for the 
individual teams and for the combination of the different teams. We discuss the implied effectiveness of 
R&D, reporting results for different R&D funding levels. Finally, we unpack the information that gets lost 
when showing aggregate figures of probability distributions or uncertainty ranges: we discuss in detail 
the key sources driving the uncertainty surrounding these aggregate distributions in terms of the 
uncertainty that comes from disagreement between experts about the mean versus the expert-specific 
uncertainty.   

3.1. Distributions of Cost and Efficiency Metrics  

In order to evaluate the expected impact of public R&D investments on the 2030 cost and performance 
of the five technologies covered by the teams, in Figure 4 we plot the distribution of cost for  five cost 
metrics (Levelized Cost of Electricity for solar ($/kWh); non-energy cost for bio-electricity ($/kWh) and 
for biofuels ($/gallon of gasoline equivalent); additional capital cost for CCS ($/kW) and overnight capital 
cost for nuclear ($/kW)) and of performance for three efficiency metrics (conversion efficiency for bio-
electricity and biofuels, energy penalty for CCS) for three different funding scenarios: Low in red, Mid in 
green, and High in blue. To allow for an easy visual comparison of the impact of R&D within studies, for 
each of the 8 metrics presented, we plot the results for the impact of the three different R&D levels next 
to each other.  This representation also allows a relatively straightforward comparison of the differences 
across studies. The box plots show the 5th, 25th, 50th, 75th, and 95th percentiles for each of the 
distributions.  The empty spaces reflect the fact that not all studies asked questions about all 
parameters.  Only half of the metrics investigated—Solar LCOE, Bio-electricity non-energy cost, Biofuels 
non-energy cost, and Nuclear capital cost—were estimated by all three studies. Note that these studies 
were done in 2008-2010, so the experts were predicting future costs based on the current costs at that 
time.  
 
Across all studies, metrics, and budget levels, increasing levels of public R&D investment are associated 
with cost decreases and efficiency improvements, as shown by the upwards movement of the box plots 
for efficiencies and the downwards movement of the box plots for the cost categories and energy 
penalty  as R&D levels increase.   
 
 
 



Figure 4: 2030 costs and efficiency elicitation results across studies and R&D levels. We show the combined 
distribution of the three studies using equal weights (“Combined”), the FEEM aggregate, the Harvard aggregate, 
and the UMass aggregate and technologies by R&D level (Low, Mid, and High). The box plots show the 5th, 25th, 
50th, 75th, and 95th percentiles for each of the distributions, the diamond the mean value, and the black number 
the skewness of the distribution. 
 
The experts seem to agree that R&D investments are expected to have a major impact on Solar LCOE by 
2030. At the median, LCOE is expected to be reduced by 20% from low to medium funding, and by 
another 20% by increasing investments from the medium to the high funding levels. Note that the solar 
results are particularly difficult to compare across the three teams, since the harmonization required 
applying common exogenous assumptions about insolation and discount rates, among other factors, to 
the Harvard and UMass component data to make them comparable to the FEEM data.  As mentioned 
above and illustrated in Table 2, FEEM used a somewhat pessimistic assumption of a 12% capacity value. 
Moreover, the price of solar has decreased rapidly since the time that these studies were done. Current 
estimated solar prices of about $0.75/Wp would translate into an LCOE of between $0.17 and $0.28, 



depending on assumptions about BOS. The lower estimate is about equal to the median 2030 cost 
estimated by the combined teams at low R&D investment. This implies that the very rapid reduction in 
solar costs over the last few years were a surprise, and the experts have perhaps underestimated the 
possibility of cost reduction over the next 20 years.  
 
Bio-electricity non-energy costs show a relatively consistent range of outcomes across the three studies, 
ranging from 0.025 to 0.125 $/kWh for the interquartile range.  The Biofuels non-energy cost shows 
distributions that are significantly skewed upwards (with skewness coefficients that generally range 
from 0.8 to 2.12, with one exception), indicating a large probability of high cost outcomes, when 
compared to the distributions of the other metrics. 
 
CCS additional capital costs exhibit a less pronounced upper tail, but still show wide uncertainty. We see 
similar outcomes between the two teams with data for the Low R&D scenario, but very different ones 
for the High R&D scenario.  While Harvard experts expected that, at the median, R&D would reduce 
additional CCS capital cost by about $200/kW, UMass experts expected costs to come down by 
$800/kW.   
 
Nuclear capital cost shows a wide range of perspectives for the future of nuclear power in 2030.  The 
aggregated distributions of the FEEM and Harvard studies suggest that nuclear capital costs will be 
around $5,000/kW, similar to the estimate in the MIT 2009 Update to the Future of Nuclear study 
(Ansolabehere, et al., 2009). 
 

3.2. Returns to R&D1 

In (Anadon, et al., 2014c), we report on the returns to R&D. Specifically, Figure 5 shows  the percentage 
increase (for efficiency) or decrease (for cost and energy penalty) in each metric as we move from low to 
mid funding, or mid to high funding. We found that most of the technologies had similar returns in the 
20% range (with CCS the exception); and that no technology fared well in all three studies (i.e., across 
the elicitation studies conducted by FEEM, Harvard and UMass).  

                                                           
1 This section draws heavily from Anadon et al 2014 



 
Figure 5: The marginal returns on the aggregated median of each study, when compared to the next 
lower R&D level (change from low to mid and from mid to high R&D levels). 

 

Thirteen of the 24 panels with two points in Figure 5 clearly show decreasing marginal returns to scale, 
with a lower return for the Mid-to-High investment than the Low-to-Mid. In almost all the other cases in 
which the Mid-to-High return is higher, the additional investment to get from Mid to High is also very 
large. Thus, marginal return per dollar of R&D investment is in fact decreasing in all cases, except for CCS 
energy penalty as assessed by UMass. Thus, we see that the results imply that experts have a model of 
decreasing marginal returns to additional R&D dollars.   
 
Such a model may be explained by two different underlying beliefs. One is a “fishing-out” model (Jones, 
1995). This implies that there is only a certain amount of innovation available in any one category, and 



so with large enough investments the ideas start to get fished out and returns decrease. Another is a 
model of decreasing returns within a period, but a recharging between periods (Nordhaus, 2002). The 
increase in R&D amounts in most of the studies were presented as increasing amounts over a fixed 
amount of time, rather than an extension of the period of research. Thus, while the experts may have 
been envisioning a fishing-out model, it is also possible that they were identifying decreasing returns 
within a period. It would be very interesting in future research to test whether explicitly asking experts 
to think about having additional time to devote to a particular research project has a different effect on 
experts than adding funding over a set period of time.  
 
Table 5 shows each team’s ranking of the technologies, with technologies listed by the highest median 
return for each technology in either the low to mid or the mid to high funding increase. Clearly there is 
very little agreement between the teams on which technologies have the best prospects for significant 
improvements in response to R&D.  
 
 
Table 5: Rankings of the technologies in terms of prospects for advancement 
 

Combined FEEM Harvard UMass 
CCS Solar CCS Nuclear 
Nuclear Bio-fuels Bio-electricity CCS 
Solar Nuclear Solar Bio-electricity 
Bio-electricity Bio-electricity Biofuels Biofuels 
Bio-fuels  Nuclear Solar 

 

3.3. Sources of uncertainty 

 
In an expert elicitation with multiple experts (and in this case also with multiple studies), there are 
multiple sources of uncertainty. Each individual expert incorporates uncertainty into his estimate. 
Differences between experts then add additional uncertainty. Finally, in this case, the differences 
between the studies adds a final dimension of uncertainty. 
 
Uncertainty within each expert’s estimate reflects each individual expert’s assessment of how much is 
known about the particular question (in this case future costs and performance contingent on public 
R&D investments). However, it is important to note that experts tend to be systematically over-
confident: they assess distributions which are too narrow and lead to numerous surprises (Lin & Bier, 
2008). Uncertainty between experts reflects disagreement between the experts, which in turn reflects 
different knowledge sets (and to some degree, different biases). Averaging different experts 
counterbalances the over-confidence seen in individual experts. In fact, a distribution that is derived 
from averaging across well-calibrated experts (that is, experts who are not over-confident) will be 
under-confident, or too diffuse (Hora, 2004). Given, however, that individuals are almost always over-
confident, this is a correction.  Finally, disagreement between studies leads to yet more uncertainty. This 
may reflect different biases that may be related to the different metrics elicited, question wording, and 
modes of data collection (Anadon, et al., 2014b); or it may reflect that the different studies worked with 



significantly different sets of experts. 
 
Here we decompose the uncertainty into two of these factors.  Figure 5 illustrates the contribution of 
variance allocated between the individual-experts and the between-experts in the FEEM and Harvard 
studies. (We did not calculate these values for the UMass study as the individual probabilities were first 
aggregated and then continuous distributions were estimated.) Equation (4) decomposes the overall 
variance of a distribution into two parts, where wi is the weight given to each individual expert i, σi is the 
standard deviation of each individual expert’s distribution, µi is the mean of individual i’s distribution 
and µx is the mean of the aggregated distribution. We interpret the first term as representing the 
individual experts’ variances and the second term as the between-expert variance. (See Jenni et al.2013 
for a similar method). 
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Figure 5: Contribution of the variance of individual experts vs. the variance among experts to the variance in the 
individual aggregated studies. 
 
As shown in Figure 5, we find that both factors—intra-expert and inter-expert uncertainty (or 
disagreement)--are significant contributors. In most of the studies, more than half of the variance is 
attributed to the between-expert variance; this is particularly strong in the Harvard study for solar 
power when compared to the FEEM study. This may indicate that individual experts are over-confident 
(a typical finding in the literature [ (Henrion & Granger Morgan, 1990); Lin and Bier, 2008]). A large 
number of studies have shown that experts are not well-calibrated, with between 20% to 45% of correct 
values falling outside of assessed 98% intervals (rather than the expected 2%). Overconfidence can also 
be judged by the degree to which experts overlap. A lack of overlapping in distributions indicates that 
non overlapping experts (at least all but one of them) are overconfident; we see this in many cases in 
our data. The large between-expert variance also may imply that information about the technologies is 



not well-diffused through the community (Jenni, et al., 2013). Particularly striking is the different 
between FEEM and Harvard in the solar studies. One interpretation is that European experts are much 
closer to consensus than US experts. On the other hand, this difference may also be driven by the fact 
that the Harvard LCOE costs were calculated using disaggregated cost components provided by experts: 
it may be that the European experts anchored more strongly on available estimates for LCOE, whereas 
few similar available estimates exist for the metrics assessed in Harvard study. 

 
Figure 6: Contribution of the variance of individual Studies vs. the variance among studies to the variance in the 
combined distribution. 
 
In a similar way, Figure 6 illustrates the relative contribution of within-study variance and between-
study variance. The two variances are calculated according to equation (4), where, in this case, i is the 
individual study and x is the combined distribution.  Here we see that while there is a great deal of 
disagreement between studies when looking at the median values of the cost and performance, most of 
the variance in the combined distribution comes from the uncertainty expressed in the individual 
studies.  
 

4. Conclusions 

Given that significant amounts of funding are being invested in R&D in energy and low-carbon 
technologies by some public agencies, and that many stakeholders have requested an increase in these 
investments, it is crucial to obtain estimates of the possible returns to society of such activities, both 
economic and environmental.  This paper summarizes the result of a multi-team study, comparing a 
number of expert elicitations in five important technology areas performed independently.  The starting 
point for this study was a set of existing expert elicitations. For this study, we harmonized the results 
over R&D funding amounts, metrics, and timing. We then aggregated the results, first across experts 
within each expert elicitation study, and then across the various elicitation studies covering each 



technology. We present results for each team and for the aggregation over teams, and indicate the 
amount of variation that occurs between experts and teams.  
 
It was very challenging to harmonize and compare the disparate elicitations, yet this is crucial for 
researchers and policy makers to get an understanding of the current state of knowledge. An important 
suggestion for future elicitation studies is for all such studies to make assumptions very explicit in order 
to ease future comparisons. Moreover, a central database for collecting and comparing energy 
technology probability distributions would provide great benefits to future researchers. Along this vein, 
the results of these surveys are available on-line at http://megajoule.org/.  
 
Balancing out the great challenges of harmonizing this data, there is considerable value in this process 
and the outcomes. In particular, we see a considerable amount of disagreement between the studies, 
both on the absolute values of the metrics elicited and on the possible returns from higher investments 
in R&D.  For example, we see that when comparing technologies in terms of the median return to R&D, 
each team has a different ordering for the technologies. A policy maker who stopped at one study may 
be overconfident about the relative value of additional R&D investment in one technology area when 
compared to another area, given the current state of information. This study suggests that our 
understanding of what R&D can buy us is at an early stage for most of these technologies.  Moreover, in 
providing a combined data set along with the underlying team data sets, we allow researchers and 
policy makers to make near-term decisions based on the best available information, with a clear 
understanding of the amount of disagreement and uncertainty underlying it. 
 
Typical of expert elicitation studies, we see a considerable amount of overconfidence among the 
individual experts, illustrated by the many non-overlapping distributions as well as the large amount of 
variance allocated to the difference between experts (as opposed to the variance being reported by 
each expert). Future studies may want to include some additional techniques for reducing over 
confidence, such as presenting  experts with past surprises for related quantities, such as periods during 
which a technology costs increased or dropped rapidly — e.g. cost of photovoltaic modules increased 
from 2004 to 2008, and then dipped by a factor of about 4 from 2008 to 2012; incorporating 
information about past learning curves; and having experts participate in group discussions before the 
elicitations to ensure that the current state of knowledge among the participating experts is well 
disseminated among them.  
 
On the other hand, this study shows that the process of eliciting and combining multiple experts results 
in less overconfidence in each of the study’s aggregated distributions. This is illustrated by the fact that 
the overall variance in the combined distribution is due almost entirely to the variance in the underlying 
team distributions, rather than to disagreement among the teams. What this means is that, even though 
the individual team elicitations disagree in terms of medians and means, in most technology areas each 
of the studies does a pretty good job of covering a wide range: a draw from the distribution in one study 
is not highly likely to be a surprise in the distribution of another study.  On the other hand, we still see a 
significant amount of between-study variance in one technology (nuclear). Given that it is hard to know 
where these widespread disagreements will take place, there is still value in  multi-team studies like this, 



not only for understanding disagreements between experts over the central values, but also  for 
establishing well calibrated probability distributions.   
 
One result coming out of the data is that the experts have a model, implicit or explicit, of decreasing 
returns to scale in R&D investment. This brings up a couple of interesting questions for future work. 
First, are the experts reporting decreasing returns to scale because this is such a common model for 
investment, or do the decreasing returns accurately reflect their views of the particular technology they 
are analyzing? The second question is whether the experts are assessing decreasing returns consistent 
with a fishing-out model or consistent with a recharge model. 
 
One particular challenge of using expert judgment to inform energy technology R&D decisions is the 
very large number of technologies that can potentially be part of a portfolio. Expert elicitation studies 
are very resource intensive. One question that this study brings up related to this is whether it would be 
better to have very detailed, resource-intensive interviews with a small number of experts for each 
technology; or whether it would be better to have much lower cost elicitations (such as automated 
online surveys) with a large number of experts. The fact that between-study variance was low for many 
(but not all) technology areas may indicate that it does not strongly matter in terms of getting a 
reasonable probability range, so that the deciding factor may be the overall cost. However, this study 
was not designed to test this question and it only provides some very general indications.  
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Appendix 
A1. List of experts for each study by technology 
 

Harvard – Bioenergy (bioelectricity and biofuels) 
Name Affitiation 
David Austgen Shell 
Joe Binder UC Berkeley 
Harvey Blanch UC Berkeley 
André Boehman Penn State University 
Robert Brown Iowa State University 
Randy Cortright Virent 
Eric Larson Princeton 
Lee Lynd Dartmouth 
Tom Richard Penn State University 
Phillip Steele Mississippi State University 
Bob Wallace Penn State University 
Bryan Willson Solix 

 
Harvard - nuclear 
Name Affitiation 
John F. Ahearne NRC, NAS nuclear power, Sigma XI 
Joonhong Ahn University of California at Berkeley 
Edward D. Arthur Advanced Reactor Concepts 
Sydney J. Ball Oak Ridge National Laboratory 
Ashok S. Bhatagnar Tennessee Valley Authority 
Bob Budnitz Lawrence Berkeley National Laboratory 
Douglas M. Chapin MPR Associates 
Michael Corradini University of Wisconsin 
B. John Garrick U.S. Nuclear Waste Technical Review Board 
Michael Warren Golay Massachusetts Institute of Technology 
Eugene S. Grecheck Dominion Energy, Inc. 
Pavel Hejzlar TerraPower USA 
J. Stephen Herring Idaho National Laboratory 

Thomas Herman Isaacs 
Stanford University and Lawrence Livermore National 
Laboratory 

Kazuyoshi Kataoka Toshiba 
Andrew C. Klein Oregon State University 
Milton Levenson Retired (previously at ORNL, Bechtel, and EPRI) 

Regis A. Matzie 
RAMatzie Nuclear Technology Consulting, LLC 
(previously at Westinghouse) 

Andrew Orrell Sandia National Laboratory 



Kenneth Lee Peddicord Texas A&M University 
Per F. Peterson University of California at Berkeley 
Paul Pickard Sandia National Laboratory 
Burton Richter Stanford University 
Geoffrey Rothwell Stanford University 
Pradip Saha Wilmington, North Carolina 
Craig F. Smith Livermore/Monterey Naval Post Graduate School 
Finis H. Southworth Areva 
Temitope A. Taiwo Argonne National Laboratory 
Neil Emmanuel Todreas Massachusetts Institute of Technology 
Edward G. Wallace Pebble Bed Modular Reactor (Pty) Ltd. 

 
Harvard - CCS 
Name Affitiation 
Janos Beer Massachusetts Institute of Technology 
Jay Braitsch U.S. Department of Energy 
Joe Chaisson Clean Air Task Force 
Doug Cortez Hensley Energy Consulting LLC 
James Dooley Pacific Northwest National Laboratory 

 
Joint Global Climate Research Institute 

Jeffrey Eppink Enegis, LLC 
Manoj Guha Energy & Environmental Service International 
Reginald Mitchell Stanford University 
Stephen Moorman Babcock & Wilcox 
Gary Rochelle University of Texas at Austin 
Joseph Smith Idaho National Laboratory 
Gary Stiegel National Energy Technology Laboratory 
Jost Wendt University of Utah 

 
Harvard - PV 
Name Affitiation 
Allen Barnett University of Delaware 
Sarah Kurtz NREL 
Bill Marion NREL 
Robert McConnell Amonix, Inc. 
Danielle Merfeld GE Global research 
John Paul Morgan Morgan Solar 
Sam Newman Rocky Mountain Institute 
Paul R. Sharps Emcore Photovoltaics 
Sam Weaver Cool Energy 
John Wohlgemuth NREL 



 
U Mass - Biofuels 
Name Affitiation 
Richard Bain National Renewable Energy Lab 
Robert Brown Iowa State University 
Bruce Dale Michigan State University 
George Huber University of Massachusetts, Amherst 
Chris Somerville and Harvey 
Blanch 

University of California, Berkeley 

Phillip Steele Mississippi State University 
 

U Mass - Nuclear 
Name Affitiation 
Robert Budnitz  Lawrence Berkeley National Laboratory 
 Darryl P. Butt  Boise State 
Per Petersen  U.C. Berkeley 
Neil Todreas MIT 

 
U Mass - CCS 
Name Affitiation 
Richard Doctor  Argonne National Laboratory 

Barry Hooper  
Cooperative Research Centre for Greenhouse 
Gas Technologies 

Wei Liu  Pacific Northwest National Lab 
Gary Rochelle The University of Texas at Austin 

 
U Mass - PV 
Name Affitiation 
Nate Lewis  The California Institute of Technology 
Mike McGehee  Stanford University 
Dhandapani Venkataraman 
(DV) University of Massachusetts, Amherst 

 
U Mass - Bio-eletricity 
Name Affitiation 
Bruce Folkdahl  University of North Dakota 
Richard Bain  NREL 
Dave O’connor  EPRI 
Evan Hughes  EPRI 

 
FEEM - PV 



Name Affiliation 
Rob Bland McKinsey 
Luisa F. Cabeza University of Lleida 

Roberta Campesato Centro Elettrotecnico Sperimentale Italiano  

Carlos del Canizo Nadal Universidad Politecnica de Madrid 
Aldo Di Carlo UniRoma2 
Ferrazza Francesca Ente Nazionale Idrocarburi 
Paolo Frankl International Energy Agency 
Arnulf Jäger-Waldau  European Commission DG JRC 
Roland Langfeld  Schott AG.  
Ole Langniss  FICHTNER GmbH & Co. KG 
Antonio Luque  Universidad Politecnica de Madrid  
Paolo Martini  Archimede Solar Energy 
Christoph Richter  German Aerospace Center 
Wim Sinke  Energy Research Centre 
Rolf Wüstenhagen  University of St. Gallen 
Paul Wyers  Energy Research Centre 

 
FEEM – Bio-electricity 
Name Affiliation 
Alessandro Agostini JRC - Joint Research Centre  
Göran Berndes Chalmers University of Technology 

Rolf Björheden 
Skogforsk - the Forestry Research Institute of 
Sweden 

Stefano Capaccioli ETA - Florence Renewable Energies 
Ylenia Curci Global Bioenergy Partnership  

Bernhard Drosg 
BOKU - University of Natural Resources and 
Life Science 

Berit Erlach  TU Berlin - Technische Universität Berlin 
André P.C. Faaij Utrecht University 
Mario Gaia Turboden s.r.l. 
Rainer Janssen WIP - Renewable Energies 
Jaap Koppejan Procede Biomass BV 

Esa Kurkela VTT - Technical Research Centre of Finland 

Sylvain Leduc 
IIASA - International Institute for Applied 
Systems Analysis 

Guido Magneschi DNV KEMA 

Stephen McPhail 
ENEA - Agenzia nazionale per le nuove 
tecnologie, l’energia e lo sviluppo economico 
sostenibile 



Fabio Monforti-Ferrario JRC - Joint Research Centre 
 
 

FEEM - Biofuels 
Name Affiliation 
David Chiaramonti Università degli Studi di Firenze 
Jean-Francois Dallemand Joint Research Centre (Ispra) 
Ed De Jong Avantium Chemicals BV 

Herman den Uil 
Energy Research Centre of the Netherlands 
(ECN) 

Robert Edwards Joint Research Centre (Ispra) 
Hans Hellsmark Chalmers University of Technology 

Carole Hohwiller 
Commissariat à l'énergie atomique et aux 
énergies alternatives (CEA) 

Ingvar Landalv CHEMREC 

Marc Londo 
Energy Research Centre of the Netherlands 
(ECN) 

Fabio Monforti-Ferrario  Joint Research Centre (Ispra) 
Giacomo Rispoli Eni S.p.A. 
Nilay Shah Imperial College London 
Raphael Slade Imperial College London 
Philippe Shild European Commission 
Henrik Thunman Chalmers University of Technology 

 
 FEEM - Nuclear 
Name Affiliation 
Markku Anttila VTT (Technical Research Centre of Finland) 

Fosco Bianchi 
Italian National Agency for New Technologies, Energy and 
sustainable economic development (ENEA) 

Luigi Bruzzi University of Bologna 

Franco Casali 

Italian National agency for new technologies, Energy and 
sustainable economic development ENEA; IAEA; University of 
Bologna 

Jean-Marc Cavedon Paul Scherrer Institut 
Didier De Bruyn SCK CEN, the Belgian Nuclear Research Centre 
Marc Deffrennes European Commission, DG TREN, Euratom 

Allan Duncan 
Euratom, UK Atomic Energy Authority, HM Inspectorate of 
Pollution 

Dominique Finon 

Centre national de la Recherche Scientifique (CNRS), Centre 
International de Recherche sur l’Environnement et le 
Developpement (CIRED) 



Konstantin Foskolos Paul Scherrer Institut 
Michael Fuetterer Joint Research Centre - European Commission 
Kevin Hesketh UK National Nuclear Laboratory 
Christian Kirchsteiger European Commission, Directorate-general Energy 
Peter Liska Nuclear Power Plants Research Institute 

Bruno Merk 
Institute of Safety Research 
Forschungszentrum Dresden-Rossendorf 

Julio Martins Montalvão e 
Silva 

Instituto Tecnologico e Nuclear 

Stefano Monti 
Italian National agency for new technologies, Energy and 
sustainable economic development (ENEA) 

Francois Perchet World Nuclear University 

Enn Realo 
Radiation Safety Department, Environmental Board, Estonia; 
University of Tartu 

Hans-Holger Rogner International Atomic Energy Agency (IAEA) 
David Shropshire Joint Research Centre - European Commission 

Simos Simopoulos 
National Technical University of Athens; Greek Atomic Energy 
Commission, NTUA 

Renzo Tavoni 
Italian National agency for new technologies, Energy and 
sustainable economic development (ENEA) 

Andrej Trkov Institute Jozef Stefan 
Harri Tuomisto Fortum Nuclear Services Oy 

Ioan Ursu 
Horia Hulubei National Institute of Physics and Nuclear 
Engineering (IFIN-HH) 

Bob van der Zwann Energy Research Centre of the Netherlands (ECN) 
Georges Van Goethem European Commission, DG Research, Euratom 
Simon Webster European Commission, DG Energy, Euratom 
William Nuttall  
 

University of Cambridge  
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