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What is the Value of Bt Corn?

Abstract
A common perception is that the value of Bt corn arises from two components—Bt corn
increases expected profit and reduces profit variability. This perception encourages
farmers and the policy makers to add a risk benefit to estimates of the value of Bt corn to
account for the variability reduction. However, a conceptual model generates a useful
decomposition of the value of Bt corn and a condition determining the impact of Bt corn
on profit variability. An empirical model finds that Bt corn increases profit variability

and thus decreases the value of Bt corn by 10-25% depending on risk preferences.

Key Words: Bt Corn, European corn borer, risk reduction, conditional distribution,

Monte Carlo integration.



Introduction

Bt corn is genetically engineered to contain one of many proteins found in the soil
bacterium Bacillus thuringiensis (Bt). The protein is toxic when consumed by
lepidopterous insects such as the European corn borer (ECB), which has been estimated
to cost U.S. farmers over $1 billion annually in yield losses and control costs (Mason et
al.). Most varieties of Bt corn offer nearly one hundred percent full season control of the
ECB, which has resulted in rapid and widespread adoption. Between 1996 and 1999, the
percentage of U.S. corn acreage planted to Bt varieties increased from less than one to
more than 20 (USDA/NASS). In 2000, adoption of Bt corn decreased due to various
market and biological factors— market opposition to genetically engineered crops
increased uncertainty, and low commodity prices and less severe ECB infestations
lowered the value of pest control. Yet, it is still expected to represent almost 20 percent
of all corn acreage in 2001.

Farmers have a substantial interest in understanding the value of Bt corn in order
to make better pest control decisions in an environment of low commaodity prices and
increased marketing uncertainty. The U.S. Environmental Protection Agency (EPA) is
also interested in understanding the value of Bt corn to farmers to help facilitate its
quantitative benefit and risk assessment when reassessing the conditional registrations of
Bt corn. However, studies to help guide farmers and the EPA have been limited.
Fernandez-Cornejo and McBride use farm level survey data to estimate the ex post value
of Bt corn to farmers in 1997 and 1998. The analysis serves as useful retrospective on
the control benefits farmers enjoyed from Bt corn in its initial years of adoption, but does

not provide useful estimates of the expected value of Bt corn since ECB populations vary



substantially over time. It also does not consider the benefits of reduced risk that Bt corn
may offer. Hyde et al. explores the expected value of Bt corn for a typical Indiana farm
using estimates of the frequency and severity of ECB infestations and yield losses from
extension entomologists. The analysis provides useful estimates of the expected value of
Bt corn including the value of yield protection and risk reduction. The analysis is
however limited in scope and relies heavily on expert opinions, opinions that seem to be
changing markedly with additional experience planting Bt corn.

The most tangible benefit of planting Bt corn is yield protection in years of
significant ECB infestation. But the variability of ECB infestations means that the value
of yield protection may not always be enough to cover the technology fee paid to plant Bt
corn (Gianessi and Carpenter). Since farmers cannot accurately predict the years when
Bt corn will pay for itself, many extension entomologist and economists frame the
decision to purchase Bt corn as a decision to purchase insurance. Treating Bt corn as
insurance implies substantial risk management benefits exist in addition to value of
higher expected yields and that risk averse farmers should be willing to pay more for Bt
corn than just the value of the expected yield increase.

The insurance analogy is a powerful argument for buying Bt corn even though it
may not always prove profitable. But, how accurate is this analogy? Should farmers
attribute substantial value to Bt corn because it helps them effectively manage yield risk?
Bt corn may reduce yield stability and in fact offer a substantial insurance benefit to
farmers (see Hyde et al.), but this result is not assured. Horowitz and Lichtenberg (1994)
argue in their theoretical analysis that increased pest control does not necessarily imply

reduced risk. Their empirical analysis supports this result, though Smith and Goodwin



point out specification errors that call their empirical analysis into question. If losses due
to pests are higher in good years and lower in bad years, pests may actually serve to
reduce risk by increasing yield stability. While pests unequivocally reduce yields, if the
extra cost of planting Bt corn just equals the value of higher expected yield, any decrease
in the stability of yield could actually make risk averse farmers worse off.

Whether Bt corn is risk increasing or risk reducing is an empirical question that
depends on the relationship between yield and pest variability. The purpose of this paper
is to evaluate the value of Bt corn based on the expected frequency and severity of ECB
infestations and to explore the perception that Bt corn offers substantial insurance
benefits. Instead of relying on expert opinion, we use a variety of field data to
econometrically characterize yield protection offered by Bt corn and the severity and
frequency of ECB infestations.

The results indicate that Bt corn offers substantial value to farmers in much of the
Corn Belt, particularly in areas where adoption rates are relatively high. Decomposing
the value of Bt corn into the value of yield protection and the risk management benefit,
not surprisingly we find that the majority of the value stems from increased yield
protection. However, our analysis suggests Bt corn tends to decrease yield stability not
increase it. As a result, increased risk reduces the value of Bt corn by 10-25% depending

on the frequency and severity of ECB infestations and farmer risk preferences.

Valuing Bt Corn: A Conceptual Framework
Let rrbe a profit from planting conventional corn. Natural variability in weather,

pest infestations, and similar factors make profit uncertain, such that F(77) and f(m)



characterize the cumulative distribution and probability density of random profit. U(7) is

the farmers utility of profit where U'(7) > 0 and U" (7)) < O—farmers are risk neutral or

risk averse. The expected utility of profit is EU :IU (rr)dF (1) where 7T and 7T

represent the upper and lower bound of profit.

Switching from conventional to Bt corn changes expected utility by changing the
distribution of profit. Lehman and Bradley have developed a convenient decomposition
of the impact of this change in profit on expected utility:

1) dEU =U '(m)d p, +}U "(n)gfdlr(z)dz%d T,
i i B

where dEU is the change in expected utility, duis the change in expected net returns and
dF(Jyis the change in the cumulative distribution function. The first term on the right
hand side of equation (1) is referred to as the mean effect and it represents the increase in
expected utility due to an increase in average profit. The second term is referred to as the
spread effect and represents the increase in expected utility due to reduced risk after
accounting for the natural tendency of the variance of profit to increase with average
profit. To understand the value of Bt corn, it is important to understand how Bt corn
affects average profit and risk.

Let p be the price of corn and C be production costs exclusive of any technology
fees paid for Bt corn. To reduce notational clutter and provide better focus, assume p and
C are known and are the same for Bt and conventional corn. Abstract from the best

management practices required by the Environmental Protection Agency for planting Bt



corn, which currently require farmers to plant a minimum proportion of conventional
corn. None of these simplifications detract from the implications of the analysis.

Let y = 0 be potential yield in the absence of European corn borer (ECB) and 1 >
A = 0 be the proportion of potential yield lost to ECB. Potential yield is stochastic as a
result of factors such as weather, random input availability, and damages from other pests
and pathogens. The proportion of potential yield lost is also stochastic, not only due to
random ECB populations, but also because of random environmental factors, the ability
of crops to compensate, and variation in the timing of pest attacks.

ECB populations can be decimated during the brief adult mating period by dry
weather (no rainfall, low relative humidity) and by wet weather at larval hatch (Mason et
al.). Because cumulative weather over the season determines corn yield, these acute
events during critical periods for ECB have little impact on yield and so no correlation
exists between yield potential and the ECB population (Showers et al.). Therefore, we
assume that potential yield and proportional yield loss are independent, an assumption
consistent with the analysis of Hyde et al. The distribution and density functions of
potential yield are H(y) and h(y) respectively, and i, and ay2 denote the mean and
variance of potential yield. The distribution and density functions of proportional yield
loss are G(A) and g(A) respectively, and 1, and 0 denote the mean and variance of
proportional yield loss.

Profit from planting conventional corn is 75 = py(1 - A) - C. The mean and
variance of conventional profitare p, = pp, (L—,)-C and o = pz(aj +0? —ZUyL)
where L = yA is total yield loss, o;° is the variance of this yield loss, and oy is the

covariance of yield and yield loss. Note the gy, > 0 because yield loss is an increasing



function of yield, and yield and the proportion of yield loss are independent. Bt corn is
virtually one-hundred percent effective, so profit from planting Btcornis /s =py—-C-T
where T is the additional technology fee paid to plant Bt. The mean and variance of Bt
profit are denoted , = pu, ~C-T and 0’ = p°0;.

Comparing profit for Bt and conventional corn reveals that Bt corn will be more
profitable on average if ppyuy > TO if the expected yield loss is greater than the
technology fee. However, the impact of Bt corn on profit variability may create an

additional insurance benefit or cost, depending on the effect of Bt corn on the dispersion

of profit after accounting for the change in average profit. Using the variance definitions

just derived, Bt corn reduces the variability of profit if NN 2p, , where py is
o
y

correlation between potential yield and yield loss. If the ratio of the standard deviations
is greater than twice the correlation coefficient between yield and losses, Bt corn reduces
variability. Note that even though pest free yield y and proportional yield loss A are
independent, pest free yield and total yield loss L = yA are positively correlated, so that
the right hand side of the condition is positive.

This condition implies that if the variance of yield loss is low relative to the
variance of potential yield, then Bt corn is not likely to reduce risk if there is some degree
of positive correlation in potential yields and yield loss. For Bt crops in areas where
yield loss is quite variable and can approach 100%, it is likely that Bt crops will reduce
the variance of yields unless the correlation between total pest losses and pest free yield

is extraordinarily high. But in much of the Corn Belt, yield losses due to ECB are



relatively small, on average less than 6% (Calvin), and a relatively minor component of
total yield variability, so that Bt corn is could actually increase yield and profit variance.

Alternatively, the condition for Bt corn to reduce yield variance can be rewritten.

and

o
Because total loss L = yA and y and A are independent, p,, = a9,

— 2,2 2,2 205 _9y . i ot
o, =u,CV o, +CV u; +a;) , where CV, =— isthe coefficient of variation of
Hy

pest free yield y. Given this, Bt corn reduces yield variance if

0,

2) CVZ< — .
(u, -7 -~ 122)

y

This condition implies that given the mean and standard deviation of proportional yield
loss for a location, which are independent of pest free yield, whether Bt corn increases or
decreases yield (and profit) variability depends on yield variability.

While these results are suggestive, to better understand the impact of planting Bt

corn on a farmer’s risk, equation (1) indicates we need to evaluate IdF (z)dz . Let Fo(m)

and fo(77) be the cumulative distribution and density of profit with conventional corn.

F1(m) and f (7)) is the cumulative distribution and density of profit with Bt corn. After

Dn+C O

ﬁmﬁg (A)dA and,

transformation, f ‘[ p- 1—
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f(m)=p*th Integration yields F, ( H A)d A and,
)= 0T o et (1) = [ 2550 ()

F ()= HMS such that
o P O



(dF (2)dz = (FH E2HCHTE_ B 2+C D0 v a;
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Equation (3) offers some important insights into how planting Bt corn affects the
distribution of profit. First, consider the case where farmers pay no technology fee. With

no technology fee, 75 > 1p for all y and A. Since H(y) is non-decreasing,
1
‘[Pr(py— pyA -C <z)g(A)dA =(>) Pr(py-C <z) when A =(>) 0. Btcorn results in

a second-order stochastic dominant shift in the distribution of profit while increasing
average profit. Equation (1) then establishes that farmers are unequivocally better off
planting Bt corn.

Once a technology fee is introduced, equation (3) unequivocally shows that Bt
corn no longer results in a second order stochastic shift in the distribution of profit and
whether average profit increases depends on the magnitude of the technology fee relative
to the expected loss. Adding a technology fee eliminates the possibility of a second order
stochastic dominance because it reduces the minimum possible profit. The minimum
possible profit for conventional corn is the cost of production, — C. The minimum

possible profit with Bt corn is the cost of production and technology fee, - C —T.

1
Therefore, Pr(py-C -T <z) > ‘!’Pr(py—py}\ -C<z)g(A)dA whenz<-C. The

maximum achievable profit for planting Bt corn is py —C —-T , where Y is the maximum

potential yield. The maximum achievable profit for planting Bt cornis py -C.



1
Therefore, Pr(py-C -T <z) > ‘!’Pr(py—py}\ -C<z)g(A)dA whenz> py-C-T.

Below — C and above py —C -T the distribution of profit for planting conventional corn

dominates the distribution for planting Bt corn. Contrary to common perception, when a
technology fee is charged, Bt corn increases the potential downside and decreases the
potential upside.

The previous analysis dispels the myth that Bt corn necessarily provides insurance
benefits to farmers by reducing yield risk. First, we showed how Bt corn could actually
increase profit variability. Then we showed why Bt corn does not necessarily reduce
downside or increase upside risk when a technology fee is charged. While the results are
demonstrated for a proportional loss function, similar arguments suffice for other
common loss functions. The first result depends on whether yield and yield loss are
correlated. The second depends on the hypothesis that losses are sometimes negligible
even without Bt corn. Yet, the practical significance of the results remains unclear.

If the results of Hyde et al. are representative of farmers throughout the Corn Belt,
these results just developed here are merely academic and farmers and the EPA should
include an insurance benefit when evaluating the value of Bt corn. However, if Bt corn
significantly increases both yield variability and downside risk and decreases upside risk,
then attributing an insurance benefit to Bt corn, as recommended in comments submitted
to the EPA at a recent scientific advisory panel, creates an upward bias of the estimated
value of Bt corn. Such a bias may mislead the development of regulatory policy and
induce farmers to pay more for the technology than it is actually worth.

The insurance benefit offered by Bt corn is an empirical question. EXisting

evidence suggests there is a valuable insurance benefit, but this evidence is limited to one



example from a region that does not experience substantial problems with ECB. The
analysis also relies heavily on expert opinion, since at the time of the study there was
little data available to obtain more concrete estimates of ECB losses on conventional and
Bt corn. We now take advantage of recent field data from several states and several years

to evaluate the proposition that Bt corn offers a substantial insurance benefit to farmers.

An Empirical Model

Because obtaining data on yield loss due to ECB is labor intensive and thus
costly, particularly before the advent of Bt corn, most data are from short-term studies for
only a few locations. Short-term data do not capture the full variability in ECB pressure
and associated yield loss under the wide variety of yield conditions possible.

Generalizing from short-term data collected at one location to other locations and to other
years is also problematic—hence the reliance of some studies on expert opinion.

The method used in this study is to link long-term and geographically dispersed
data with detailed yield data in a manner that allows greater generalization to other
locations. We do not directly estimate the unconditional distribution of proportional
yield loss g(A). Because yield loss depends on ECB and how much damage is caused to
corn plants, we estimate conditional distributions that derive their underlying uncertainty
from the unconditional distribution of the ECB pest population. By replacing the
unconditional distribution of proportional yield loss with a conditional distribution
depending on the ECB population, the model can be generalized to other locations. The
final result is a stochastic model for the value of Bt corn parameterized by the distribution

describing the local ECB population.
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The unconditional distribution of pest damages is derived from conditional
distributions in three steps. First, the unconditional distribution of the number of second
generation ECB per plant is estimated.® Next the distribution of tunneling conditional on
the number of second generation ECB is estimated. Finally, the distribution of
proportional yield loss conditional on tunneling is estimated. Combining these
distributions provides an estimate of the unconditional distribution proportional yield loss
as function of ECB population parameters. Lastly, the unconditional distribution of

potential yield is developed from USDA-NASS data.

Larval Population: n~v(n)

Longitudinal data for state average second-generation ECB populations (4" or 5"
instar ECB per plant) from Bullock and Nitsi were available for Illinois (1943-1984,
1987-1996), Minnesota (1963-1998), and Wisconsin (1963-1998). Examining
histograms and time trends indicated a rightward skew and potential upward drift in the
mean and variance over time for Minnesota and Wisconsin. Since the pest population
must be positive, a lognormal and gamma distribution with a time trend were fit to the
data using maximum likelihood. Time trends were statistically insignificant at the 5%
level and removed. We choose the lognormal distribution since it produced a higher
maximized value for the log-likelihood function than the gamma distribution with the
same number of parameters (Pollack and Wales). The Durbin-Watson test using a 5%
level of significance indicated no significant autocorrelation in the prediction errors for

the lognormal distribution.

! Most regions of the Corn Belt experience two generations of ECB per year. However, most field
collection efforts focus only on obtaining estimates of second-generation populations.

11



These results agree with the literature. Chiang and Hodson do not find significant
correlation in ECB populations from one year to the next over a ten-year period at a
location in Minnesota. Similarly, in a five-year study, Chiang et al. found that first
generation ECB densities were not correlated with the second-generation density of the
previous fall and the over-wintering density from the same spring. Showers et al. found
the surviving ECB population is independent of egg laying by the previous generation
and that short term climatic conditions explained 83-91% of the variation in populations.

Based on our analysis and these findings, we assume an unconditional distribution
for the annual population of second-generation 4™ and 5" instar ECB larvae per plant.
Table 1 reports estimates of the median m and shape parameter s of the lognormal density
for each state, as well as the implied mean and coefficient of variation of the ECB
population. Calvin reports county level data for 1960-1969 for Boone County, 1A, and
Hall and Cuming Counties, NE. Following the previous analysis, Table 1 reports

estimates for the same parameters for each county.

ECB Tunneling: t ~ w(t|n)

ECB cause yield loss by tunneling, which reduces nutrient and water flow to
developing ears, accelerates senescence, exposes plants to pathogens, and causes stalk
lodging and ears to drop (Mason et al.). Because many factors influence the amount of
tunneling per individual ECB (e.g. hybrid planted, corn phenology during stalk boring,
age and health of the ECB, temperature during boring), total tunneling depends
stochastically on the ECB population. Field-level data collected in 1997 from Bt field

trials conducted by collaborators in 9 states (IA, IL, MD, MN, MO, NE, OH, SD, and

12



W1) were obtained from Monsanto. The average number of second-generation larvae per
plant and average tunneling (cm) were reported for 292 Bt fields and 211 non-Bt fields.
Most of the fields (76.7%) were from sites in IA, IL, and NE. Because Bt corn provided
effective control of ECBO the average number of larvae per plant was 0.006 and average
tunneling was 0.050 cm—only data from non-Bt fields are used for estimation. Figure 1
plots observed field average tunneling against observed field average ECB larvae for the
non-Bt fields.

Field average tunneling must be strictly non-negative. Furthermore, conditional
histograms of tunneling indicated that as the larval population increased, histograms
changed from L-shaped to unimodal curves with rightward skewing. As such, a gamma
or lognormal density seemed appropriate. The data also indicated that the standard
deviation of tunneling increased approximately linearly with the ECB population. Figure
1 indicates that as the ECB population increases, average tunneling increases less than
proportionally. Various maximum likelihood models were evaluated for the distribution
of tunneling conditional on the ECB population, assuming a gamma or lognormal
distribution. Several non-linear models were evaluated for mean tunneling, including
combinations of linear, quadratic, negative exponential, square root and hyperbolic terms.
In all cases a zero intercept was imposed.

The model that included both a linear term and a square root term for the mean as
a function of the ECB population performed best (R? = 0.822). The lognormal
distribution is used since it yielded a higher maximized value of the log-likelihood

function than the gamma distribution with the same number of parameters (Pollack and

2
Wales). As aresult, w(t|n) = Lexpﬁwg, where s =
tsv2m 23
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§n§a1n+a2 \/ﬁ)z +(b, +b,n)? %In§a1n+a2\/ﬁ)2 %B and m= (a1n+a2 x/ﬁ)z /

\/(aln +a, \/ﬁ)z + (bO + bln)2 are the shape parameter and median of the lognormal
distribution, and aj, a, bo, and b; are parameters to estimate. Since the mean of the

lognormal density is mexp(0.5s?) and the standard deviation is mexp(s?)/exp(s?) +1,

mean tunneling is a,n +a,/n and the standard deviation is b, +b,n. Figure 1 also plots

the estimated mean with the observed data and Table 2 reports parameter estimates.
Though data were from several locations in the Corn Belt, all observations were
from one year. Because environmental conditions that vary from year to year may
influence the relationship between ECB larvae and tunneling and more data are not
currently available to address this variation, sensitivity analysis determines how robust

conclusions are to parameter estimates.

Proportion of Yield Lost: A ~q(A|t)

Data from on-farm field trials conducted by several cooperating farmers in 22
counties in lowa from 1997-1999 are used to estimate the distribution of proportional
yield loss conditional on ECB tunneling. A Bt hybrid and a non-Bt isoline hybrid were
planted side by side and yield for each strip determined by machine harvest. Data were
available for three different Bt events (MON810, Bt11, DBT418) in a variety of hybrids.
A total of 138 observations were available that included Bt yield, non-Bt yield, and
measured stalk tunneling due to ECB. The yield loss due to ECB was converted to a
proportion of the Bt yield since average yields differed across locations and years. Figure

2 plots the observed proportion of yield lost versus observed ECB tunneling.
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Conditional histograms indicated a symmetric distribution, so a normal
distribution was assumed. The mean loss increased with the ECB population at a
decreasing rate. Also, the mean loss logically should approach some maximum. As
such, a negative exponential model seemed appropriate so that the proportional yield loss
asymptotically approaches the maximum. Figure 2 indicates that the variability of loss
decreases as the ECB population increases. To capture this trend, a linear model is used
for the standard deviation as a function of the ECB population. Given these assumptions,

the conditional distribution of proportional yield loss is normal with mean

)T(l—exp(—Kt)) and standard deviation d, +d,t, where A is the maximum expected

proportional yield loss, k determines the rate of increase toward the maximum, and do
and d, are respectively the estimated intercept and slope of the standard deviation as a
function of ECB tunneling t. Table 3 reports maximum likelihood estimates of the
parameters. Figure 2 illustrates the model fit by plotting the estimated conditional mean.

Treating the predicted mean as a regression prediction, R? = 0.366. The low R®
results because the data exhibit substantial variation for any given level of tunneling.
This result is consistent with published research concerning ECB damage that finds other
factors such as corn phenology and weather also contribute to deviations from pest free
yields (Bode and Calvin; Calvin et al.; Jarvis et al.). Other researchers report similar low
correlation between ECB tunneling and yield loss (Berry and Campbell; Lynch,
Robinson, and Berry). Again, sensitivity analysis indicates the robustness of results to
damage model assumptions.

Note that the proportion lost is negative for 38 observations (27.5%) because the

non-Bt hybrid yielded more than the Bt hybrid. As yield monitor data show, yields from

15



contiguous strips do differ, even when under the same treatment, as a result of site-
specific differences that vary from year to year (Bakhsh et al.). The observed negative
losses occurred at low observed tunneling and are due to these random site-specific
differences. These random site-specific errors are not pertinent to the analysis here and

so the additive normal error is dropped. However, to preserve the inherent randomness in
proportional yield loss conditional on tunneling, the parameters k and A are treated as
random—following the normal distribution with the estimated mean and a standard

deviation equal to the estimated standard error.

Pest Free Yield: y ~h(y)

The beta distribution is a commonly assumed density for crop yields (Nelson and
Preckel, Hennessy and Babcock). As such, we assume pest free yield follows a beta
distribution with four parametersC] the minimum and maximum potential yield, plus two
shape parameters a and w. The four-year average (1997-2000) of the state average corn
yield reported in USDA-NASS data available on-line are used for Illinois, Minnesota and
Wisconsin. The four-year average (1997-2000) of the county average corn yield are used
for Boone county, 1A (dryland) and Cuming and Hall counties, NE (irrigated). These
averages are reported in Table 6.

Field-level variability of corn yields is much higher than for county level or state
level yields because the area averaged across is much smaller. As a reasonable
assumption, the coefficient of variation for corn yield is set at 30%. For comparison,
Hennessey, Babcock and Hayes report a coefficient of variation of 29.4% as the average

for 10 corn farms in Sioux County, IA.
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Minimum yield was assumed to be zero for total crop loss. Maximum yield was
set at the mean yield plus two standard deviations. However, because the standard
deviation is determined by the mean, maximum yield is simply 1.6 larger than the mean
yield. Given the mean, standard deviation, minimum, and maximum, the shape
parameters a and cware determined by first rescaling the beta density to the standard
minimum of zero and maximum of one. The rescaled mean is 1/1.6 = 0.625 and, because
the standard deviation is assumed to be 30% of the mean, the rescaled standard deviation
is 0.3/1.6 = 0.1875. Given these, the standard formulas for the mean and standard
deviation as functions of the parameters a and cware inverted to obtain the implied a and
w for this mean and standard deviation, namely a = 3.542 and w= 2.125.

This analysis assumes pest free yield is uncorrelated with the ECB population and
thus uncorrelated with observed ECB damage. As previously argued, empirical evidence
supports this independence assumption, since yields depend on cumulative weather
events throughout a season, while weather events during critical life stages greatly

influence ECB populations (Showers et al.).

The Value of Bt Corn

Given the series of conditional distributions and the assumed density functions,
Monte Carlo integration (Greene) is used to solve the needed integrals to determine the
effect of switching from conventional to Bt corn on the mean and variance of profit. A
C++ program using algorithms reported Press et al. was developed to draw random
variables and conduct the analysis. Experimentation indicated that 50,000 random

variates for each probability density were sufficient for estimates to stabilize.
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Table 4 reports the mean proportional yield loss as a percentage over a wide range
of ECB population means and coefficients of variation. As expected, as the mean ECB
population increases, the expected proportional yield loss increases. The ECB
population’s coefficient of variation has some effect. Because the proportional yield loss
is concave in the realized ECB population, as the coefficient of variation increases, the
expected proportional yield loss decreases. Table 4 can be used to determine the
expected profit change from planting Bt corn. Because the ECB coefficient of variation
has a minor impact, a reasonable estimate of proportional yield loss can be determined
from just the ECB mean. The product of this expected loss, the expected yield and
expected price can then be compared directly to the technology fee.

Table 6 reports the results of such an analysis for the six locations with ECB
population data, assuming a corn price of $2.00 and the reported mean yields in the table.
The results indicate an expected profit increase ranging from a high of $22.68 in Hall
county, NE to a low of $12.26 in Wisconsin. For these price and mean yield
assumptions, these results indicate sufficient value to planting Bt corn to cover the typical
technology fee of $10.00 in all these locations. However, this analysis does not take
variance changes into account.

For the same wide range of ECB population means and coefficients of variation,
Table 5 reports the critical coefficient of variation for pest free yield calculated using
equation (2). A coefficient of variation for pest free yield that exceed this critical value
means that Bt corn increases yield variance, while a coefficient of variation below this
critical value decreases yield variance. Over this wide range of ECB population

assumptions, Table 5 indicates that the pest free yield coefficient of variation must
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remain fairly low (generally < 10%) for Bt corn to decrease the variance of profit.

Indeed, given the results in Table 5, it seems likely that Bt corn will increase the variance
of profit for almost all growers, since this range of ECB population parameters should
cover most areas that have economically important ECB populations.

Again assuming corn price of $2.00 and using the reported mean yields, Table 6
reports the increase in the standard deviation of profit due to switching to Bt corn for the
six locations with ECB population data. The increase ranges from $3.23 per acre in
Wisconsin to $6.42 per acre in Hall county, NE, or about a 4-7.5% increase. However,
quantifying the impact of these variance increases on Bt corn adoption incentives requires
specify a utility function in order to estimate expected utility. Changes in adoption
incentives are monetarized by inverting the utility function to convert expected utility to
certainty equivalents, then using the difference in certainty equivalents to estimate farmer
willingness to pay for Bt corn.

A negative exponential utility function is assumed since it exhibits constant
absolute risk aversion, which eliminates wealth effects, and serves as a reasonable
approximation of preferences. Following Babcock, Choi, and Feinerman, the constant of
absolute risk aversion (R,) is chosen so that the implied risk premium is a reasonable
percentage of the standard deviation of profit. For results reported in Table 6, the price of
corn is $2.00 per bushel and mean yield is as reported in Table 6. The average of the
standard deviation of profit with conventional and Bt corn is used. For moderate risk
aversion, the risk premium is 20% of the average standard deviation of profit, while for
extreme risk aversion it is 40%. Table 6 reports the associated constants of absolute risk

aversion for each location.
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Using these values of R, for each location, Monte Carlo integration is used to
estimate expected utility for conventional and Bt corn, then certainty equivalents are

calculated as —In(L1-EU)/R,_, where EU is expected utility. Table 6 then reports the

estimated willingness to pay (WTP) for Bt corn, calculated as the difference in certainty
equivalents, for assuming R, for both the 20% and 40% risk premiums. These estimates
of WTP indicate that relative to the risk neutral farmer, the variance increase associated
with planting Bt corn reduces the value of Bt corn by about 12% for moderately risk
averse farmers and by about 27% for extremely risk averse producers. The magnitude of
these adjustments for risk aversion imply that ignoring the variance increasing impact of
Bt corn leads to a significant bias in estimating the value of Bt corn.

Table 6 also reports Monte Carlo estimates of the mean and standard deviation of
proportional yield loss and total yield loss, the correlation between pest free yield and
total yield loss, and the critical value of the pest free yield coefficient of variation, above
which Bt corn increase the variance of yield and profit. These results are as expected
given the results reported in Tables 4 and 5.

To graphically evaluate equation (3), Figure 3 plots the empirical cumulative
probability distributions of profit for Minnesota for conventional and Bt corn. The
assumed corn price is $2.00, yield mean as reported in Table 6 (145), and the cost of
production C = $180.00, a reasonable estimate obtained from University if Minnesota
Extension budgets. The top plot assumes a technology fee T = $0, while the bottom plot
assumes the more typical technology fee of T = $10.00. The top plot shows that when no
technology fee is charged, Bt corn first-order stochastically dominants conventional

corn—Bt corn has the same maximum and minimum profit outcomes, but a higher mean.
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The bottom plot shows that with a technology fee, stochastic dominance of conventional
corn by Bt corn is no longer possible, since Bt corn has more probability mass at low
profit realizations—the technology fee changes the distribution of profit so that the
minimum profit with Bt corn is now less than that for conventional corn.

Results reported here are contrary to those reported by Hyde et al. ECB
population data for Indiana were not available to estimate population parameters and thus
conduct simulations to generate results for Indiana comparable to those reported for other
locations. However, equation (2), which indicates whether Bt corn increases or decreases
yield variability, demonstrates that the source of the difference stems from differences in
the estimated variability of pest free yield and the correlation between pest free yield and
yield losses. Using probabilities and yields reported by Hyde et al. for the various
branches of their probability tree, their estimated model implies a mean yield of 131.7
bushels, with a coefficient of variation of 14.56%, and a mean proportional yield loss of
1.42%, with a standard deviation of 2.75%. Using equation (2), these statistics for
proportional yield loss imply a critical coefficient of variation for pest free yield of
16.6%, which is greater than the estimated yield coefficient of variation. As such, their

estimated model implies that Bt corn decreases yield variance, as they correctly conclude.

Conclusion

Bt corn offers farmers a powerful new tool for controlling European corn borer
(ECB), but it is not always clear when the value of Bt corn is worth the added technology
fee. The common perception is that the value of Bt corn has two important components.

First, Bt corn increases profits by reducing yield losses from ECB. Second, Bt corn
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reduces profit variability by reducing the variability of yield losses from ECB. This
perception has framed the decision to buy Bt corn in the context of the decision to buy
insurance, which encourages farmers and the Environmental Protection Agency to add a
risk benefit to their calculations of the value of Bt corn. But previous work concerning
pesticides shows that pest control, even complete pest control such as Bt corn offers, does
not necessarily reduce risk and hence provide insurance benefits.

Analytically, we derive the conditions under which Bt corn will increase the
variability of profits. We find that when the variation of yield losses attributable to ECB
is low relative to other natural sources of variation in the potential yield and there is
positive correlation between yields and yield losses, Bt corn tends to increase profit
variance. We also show that when a technology fee is charged planting Bt corn tends to
increase downside risk, while also decreasing upside risk. Together, these results dispel
the conventional wisdom that Bt corn necessarily provides an insurance benefit.

An empirical application based on the analytic framework shows that the potential
for Bt corn to increase risk is more than a theoretical possibility. Not surprisingly, the
analysis finds that Bt corn is valuable to many growers and that the primary source of this
value is reduced yield losses. However, the analysis also indicates that Bt corn increases
profit variability and so increases, not decreases, risk. As a result, risk averse farmers
should not pay more for Bt corn than the expected value of increased yields and the EPA
should not increase estimates of the value of Bt corn to farmers above the estimated
expected value of increased yield to account for the insurance benefit. Indeed, our
analysis indicates that the increased risk can decrease the value of Bt corn as much as 10-

25% depending on risk preferences.
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Table 1. Maximum likelihood estimates of median m and shape parameter s (standard
errors in parentheses) for the lognormal density of ECB per plant, plus calculated
mean and coefficient of variation.

Coefficient
Location m p value s pvalue Mean of Variation
Illinois® 0.976 <0.001 0.641 <0.001 1.199 0.713
(0.087) (0.063)
Minnesota® 0.588 <0.001 0.796 <0.001 0.807 0.940
(0.078) (0.094)
Wisconsin® 0.379 <0.001 0.867 <0.001 0.551 1.058
(0.055) (0.102)
Boone County, I1A° 0.621 <0.001 0.784 <0.001 0.845 0.922
(0.154) (0.175)
Cumming County, NE” 1.429 <0.001 0.711 <0.001 1.840 0.811
(0.321) (0.159)
Hall County, NE” 1.591 <0.001 0.498 <0.001 1.801 0.531
(0.251) (0.1112)

& Using state average data from Nitsi and Bullock.

b Using county data from Calvin.
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Table 2. Maximum likelihood estimates of parameters for w(t | n), the distribution of
tunneling (cm) conditional on the second-generation ECB larvae population.

Parameter Estimate Standard Error p value
a 2.555 0.8393 0.002
a 5.654 1.0221 <0.001
bo 3.397 0.7563 <0.001
b, 1.730 0.5534 0.002

Table 3. Parameter estimates and associated statistics for q(A |t), the distribution of the
proportion of yield lost A conditional on tunneling t.

Parameter Estimate Standard Error p value
A 0.1014 0.0170 <0.001
K 0.1618 0.0613 0.008
do 0.06587 0.00526 <0.001
d; -0.002302 0.000794 0.004
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Table 4. Average proportion of yield lost over a range of assumptions for the ECB
population mean and coefficient of variation.

ECB Coefficient of Variation

ECB 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Mean

05 4.7% 4.7% 4.6% 4.5% 4.4% 4.4% 4.3% 4.2%

06] 51% 5.0% 5.0% 4.9% 4.8% 4.7% 4.6% 4.6%

0.7] 54% 5.4% 5.3% 5.2% 5.1% 5.0% 4.9% 4.9%

08] 57% 5.6% 5.6% 5.5% 5.4% 5.3% 5.2% 5.1%

09] 6.0% 5.9% 5.8% 5.7% 5.6% 5.5% 5.4% 5.3%

10| 6.2% 6.1% 6.0% 5.9% 5.8% 5.7% 5.6% 5.5%

11| 6.4% 6.3% 6.2% 6.1% 6.0% 5.9% 5.8% 5.7%

12| 6.6% 6.5% 6.4% 6.3% 6.2% 6.1% 6.0% 5.9%

13| 6.8% 6.7% 6.6% 6.5% 6.4% 6.3% 6.2% 6.1%

14| 6.9% 6.8% 6.7% 6.6% 6.5% 6.4% 6.3% 6.2%

15| 7.1% 7.0% 6.9% 6.8% 6.6% 6.5% 6.4% 6.3%

16| 7.2% 7.1% 7.0% 6.9% 6.8% 6.7% 6.6% 6.5%

1.7 7.3% 7.2% 7.1% 7.0% 6.9% 6.8% 6.7% 6.6%

1.8 7.5% 7.3% 7.2% 7.1% 7.0% 6.9% 6.8% 6.7%

19| 7.6% 7.5% 7.3% 7.2% 7.1% 7.0% 6.9% 6.8%

20| 7.71% 7.6% 7.4% 7.3% 7.2% 7.1% 7.0% 6.9%
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Table 5. Critical coefficient of variation for pest free yield, above which Bt corn

increases the yield variance and below which Bt corn decreases yield variance,
over a range of ECB population means and coefficients of variation.

ECB Coefficient of Variation

ECB 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2

Mean
05] 9.0% 9.2% 9.4% 9.6% 9.8% 10.0% 10.2% 10.4%
06| 87% 8.9% 9.1% 9.4% 9.6% 9.8% 10.0% 10.2%
0.7] 85% 8.7% 8.9% 9.1% 9.4% 9.6% 9.8% 10.0%
08| 8.2% 8.5% 8.7% 8.9% 9.2% 9.4% 9.6% 9.8%
09] 8.0% 8.3% 8.5% 8.7% 9.0% 9.2% 9.4% 9.6%
1.0] 7.9% 8.1% 8.3% 8.6% 8.8% 9.0% 9.3% 9.5%
11| 7.7% 7.9% 8.2% 8.4% 8.7% 8.9% 9.1% 9.3%
1.2 7.6% 7.8% 8.1% 8.3% 8.5% 8.8% 9.0% 9.2%
13| 7.4% 7.7% 7.9% 8.1% 8.4% 8.6% 8.8% 9.0%
141 7.3% 7.5% 7.8% 8.0% 8.3% 8.5% 8.7% 8.9%
15| 7.2% 7.4% 7.7% 7.9% 8.1% 8.4% 8.6% 8.8%
16| 7.1% 7.3% 7.6% 7.8% 8.0% 8.2% 8.5% 8.7%
1.7 7.0% 7.2% 7.4% 7.7% 7.9% 8.1% 8.4% 8.6%
1.8 6.9% 7.1% 7.4% 7.6% 7.8% 8.1% 8.3% 8.5%
19] 6.8% 7.0% 7.3% 7.5% 7.7% 7.9% 8.2% 8.4%
20| 6.7% 6.9% 7.2% 7.4% 7.6% 7.9% 8.1% 8.3%
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Table 6. Summary of results for each location.

Variable Illinois  Minnesota  Wisconsin  Boone County, IA Cuming County, NE  Hall County, NE
Mean Yield p, 140.25 145.00 136.00 151.83 151.50 153.00
St. Dev. Yield o, 42.08 43.50 40.80 45.55 45.45 45.90
Mean 71, 82.46 94.40 80.25 107.02 101.33 103.13
Mean 11, 100.36 109.87 92.51 123.58 122.97 125.81
Expected Profit Change du, 17.89 15.46 12.26 16.56 21.64 22.68
St. Dev. m, 78.85 82.81 78.03 86.97 84.48 85.38
St. Dev. m, 83.69 86.92 81.26 91.47 90.48 91.80
St. Dev. Profit Change do, 4.85 4.11 3.23 4.50 6.00 6.42
R, 20% Risk Premium 0.00506  0.00484 0.00516 0.00461 0.00470 0.00464
Ra, 40% Risk Premium 0.01108  0.01061 0.01131 0.01009 0.01029 0.01016
WTP 20% Risk Premium 15.74 13.67 10.82 14.61 19.00 19.90
WTP 40% Risk Premium 13.03 11.35 8.99 12.15 15.72 16.46
Mean Loss u, 0.064 0.053 0.045 0.055 0.071 0.074
St. Dev. Loss u, 0.028 0.030 0.030 0.030 0.028 0.026
Critical Yield CV 8.1% 9.2% 10.0% 9.1% 7.6% 6.9%
Mean Total Loss p, 8.96 7.74 6.11 8.28 10.82 11.34
St. Dev. Total Loss o, 4.92 5.04 4.58 5.33 5.49 5.39
Correlation Coefficient p,, 0.537 0.457 0.402 0.470 0.589 0.634
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Figure 1. Observed and predicted field average tunneling (cm) versus field average
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