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Abstract

Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves

and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered

when agricultural groundwater extraction patterns are being determined.  A model is developed to study socially

optimal agricultural shallow groundwater extraction patterns. It becomes clear that the current price of

groundwater is inefficient and provides fewer incentives for the adoption of modern irrigation technology than

does a system that considers the cost of desiccation and groundwater contamination in the price of groundwater.

The study shows that including the impact of groundwater extraction on groundwater quality into a resource

management model is particularly significant if the recharge of groundwater is large compared to stock size.

Key words: Dynamic renewable resource management; Groundwater quantity and quality; Price reform

1. Introduction

In the Netherlands, farmers extract shallow groundwater of a high quality for low-value use,

like irrigation. This extraction can result in desiccation of neighbouring nature reserves due to

falling groundwater levels and degradation of the quality of groundwater. These externalities

are often not considered when groundwater extraction patterns are being determined.

Despite the seriousness of the pollution and desiccation problem in the Netherlands

(about one-fourth of the Dutch utilised agricultural area is desiccated), economic literature on
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the internalisation of externalities from agricultural groundwater extraction has been limited.

Two well-developed branches of economic literature focus on groundwater. One focuses on

water quantity, and emphasises the comparison between optimal pumping paths and common

property outcomes (e.g. Gisser and Sanchez, 1980, and Provencher and Burt, 1994). The

other branch focuses on water quality and analyses contamination in a pollution-control

perspective, giving special emphasis to non-point pollution as an externality imposed by

agricultural production activities (e.g. Larson, 1996, Fleming and Adams, 1997 and Byström,

1998,). Economic literature has extensively covered water quantity and its quality, but

usually separately, as illustrated by the apparent gap between joint quantity and quality

management in these two branches of literature. Palma (1999) recently brought quality into a

typical resource management model, but the model contains a number of unrealistic

simplifications with respect to the hydrological component.

The aim of this paper is to study socially optimal agricultural groundwater extraction

patterns and to show how desiccation and contamination can be integrated into an optimal

control model. In contrast to other approaches, our approach considers changes in both

quantity and quality of the stock simultaneously, because they are mutually interacting. Since

we focus on the analytical aspects, the analysis remains theoretical and is not tested on the

basis of an empirical application. We use an interdisciplinary model, which shows the

interaction between economic, hydrological, and environmental variables. The model used in

this paper builds upon models developed by Caswell and Zilberman (1985 and 1986), Dinar

and Zilberman (1991), Shah and Zilberman (1992), and Zilberman et al. (1994).

The structure of the paper is as follows. Section 2 describes the setting of the

agricultural groundwater extraction problem and shows how changes in stock quantity and

quality over time can be modelled. Section 3 shows the open access outcome and the socially
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optimal outcome and basic features of the optimal control model. Section 4 shows the

importance of joint quantity and quality management. Section 5 contains the conclusions.

2. Model approach

2.1 Basic set-up

To explain the impact of agricultural shallow groundwater extraction on groundwater quality

and quantity, we start with a schematic representation of water flows in the unsaturated and

saturated zone of agricultural soils in the Netherlands (see Figure 1). The figure shows the

groundwater stock S as a function of width X , length Y , and height H ; S XYH= with

dimension [m3]. We indicate in square brackets the dimension. A smaller stock caused by

agricultural shallow groundwater extractions, A [m3/month], is associated with lower

groundwater levels, H [m], for a given area, XY [m2], which can cause desiccation. Only part

h [-] of applied irrigation water A  is utilised by the crop, the other part (1 )h A−  [m3/month]

returns to the groundwater stock. Net natural groundwater recharge R [m3/month] is equal to

percolation minus capillary rise in that area during that time period. For simplicity, horizontal

water flows are not considered.

  Y

X

Net natural
groundwater
recharge R

Groundwater
extraction A

H

(1-h)A

Unsaturated zone

Saturated zone

Soil surface

Groundwater level

Percolation

Capillary
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Fig. 1. Schematic representation of the water flows in the unsaturated and saturated zone. The subsoil consists of

an open layer on top of an aquifer, which means that the hydraulic resistance of the top layer is low.

The equations of motion of changes in groundwater stock quantity and quality for a given

area are based on balance equations of what goes in and out of the stock and are given by1:

tttttt hARAAhRS
t
S −=−−+=≡

∂
∂ •

)1( , for 0tS ≥  and given an initial condition 0S  (1)

S
S R S ( )( )

( )
t t t

t t t
t t t

R hA AC C C C
t R hA S

• − +∂ ≡ = −
∂ − +

, for S 0tC ≥   and given an initial condition S
0C    (2)

Equation (1) indicates that changes in groundwater quantity over time tS
•

for a given area are

equal to net natural recharge flows tR plus recharge flows from applied water t(1 )h A− that is

not utilised by the crop minus agricultural extraction flows tA  (all terms in [m3/month]).

Equation (2) shows that changes in groundwater quality over time S
tC

•

[g/month] for a given

area consists of a quality and quantity component. As a quality indicator we use the nitrate

concentration [g/m3=mg/l]. The quality component is the difference between the nitrate

concentration in recharge flows R
tC and the nitrate concentration in extraction flows S

tC . The

latter is equal to the nitrate concentration in the groundwater stock. Groundwater quality will

deteriorate, if recharge flows are of a lower quality (higher nitrate concentration) than

extraction flows R
tC > S

tC . The nitrate concentration in recharge flows depends in our model

on the concentration of nitrogen in the soil. For simplicity we have assumed that the nitrate

concentration in recharge flows does not depend on the size of recharge flows. The quantity

component shows that the smaller the ratio between recharge flows and groundwater stock,

                                                          
1For convenience, we show the derivation of the equation of motion of groundwater quality in discrete time

S S R S S S R
1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t t t t t t t t t t t t t tC S C S A C R hA A C S C S C S A S C R hA A+ + + + + += − + − + ⇒ = + − − + − + ⇒

S S R
1 1( ( ) ( )) /t t t t t t t t t tC C S A S C R hA A S

•

+ += − − + − + . Substitution by tttt ShARS +−=+1 gives Equation (2).
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the larger the dilution effect and the smaller the change in stock quality. In the special case

where the groundwater stock is very large, extraction has hardly any impact on stock quality.

2.2 Irrigation technology

Farmers may apply various irrigation technologies that determine, which part h of applied

water is utilised by the crop, often referred to as the irrigation effectiveness of the technology.

Changes in stock quantity and quality depend on the effectiveness of irrigation technologies.

To show that increases in water and output prices provide incentives for the adoption of

modern irrigation technology, we turn to the following model (Zilberman and Lipper, 1999).

Output per hectare q is, ceteris paribus, given by ( )q f e= , where e  is effective water2, which

is defined as the amount of irrigation water actually used by the crop, with ' 0f >  and

'' 0f < , i.e. ( )f e is an increasing and concave agronomic function. The irrigation

effectiveness jh of technology j is the ratio between effective and applied water, according to

/j j jh e A= , and depends on land quality3, which we hold constant for the sake of simplicity.

Two irrigation technologies are considered: a traditional one ( 1)j = and a modern one ( 2)j = ,

which has a higher irrigation effectiveness 2 1h h> . Quasi-rent π  per hectare is equal to

agricultural output price p times output per hectare, minus the price of applied water w times

the quantity of water applied A  and the cost of technology jk  per hectare. Maximum

competitive quasi-rent jπ∗ is obtained by solving for the optimal level of applied water jA∗ . The

modern technology is chosen if 2 1π π∗ ∗> and 2 0π∗ > ,

                                                          
2 In case effective water use is a function of water quality, groundwater of a lower quality will reduce effective
water use. Effective water use is not a function of water quality in our analysis, because effective water use does
currently not depend on the nitrate concentration in groundwater in the Netherlands.
3 Land quality is defined in terms of the land’s ability to store water and depends on soil permeability, water-
holding capacity, and the slope of the land. Irrigation effectiveness is higher on heavier clay soils, than on sandy
soils, through which water passes rapidly. Differences in effectiveness are larger on sandy soils than on clay
soils, and gains from a switch in technology will therefore be higher on sandy soils (cf. Shah et al., 1995).
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*( ) max{ ( ) }j j j j j jA pf h A wA kπ = − − , for 1, 2j =  (3)

Quasi-rent maximisation under technology j occurs where the value of the marginal product

of effective water is equal to the price of effective water use.

j
jj h

wAhpf =)(' , for 1, 2j =   (4)

The analysis now allows to calculate the open access outcome of groundwater extraction and

the socially optimal results, where both quality and quantity aspects are considered.

3. Open Access Outcome vs. Socially Optimal Outcome

Open Access Outcome

If a large number of competitive farmers exploit a stock as a common property resource, it is

not unreasonable to suppose that farmers’ behaviour is myopic. Individual farmers do not

consider the impact of their pumping on the state of the resource and on the environment, and

take the resource stock as given each period. Only their extraction costs are considered in the

price of applied water. Farmers will maximise individual current profit each period, and it

seems reasonable to assume that they pump water until the marginal net benefit is zero.

Optimal groundwater use for a given technology at time t in the open access case is given by4:

h
SchApf t

t
)(

)(' =             (5)

The farmers will base their decisions only on the private cost and the resulting low price of

water will provide fewer incentives for adoption of modern irrigation technology than a price,

which reflects the social costs.

                                                          
4 We note that this result is independent of discount rates. Under open access, equilibrium rents are zero,
whatever discount rates are used, and a static analysis will therefore give the right results (Perman et al., 1999).
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Socially Optimal Outcome

The objective of a social planner is to maximise the sum of discounted net agricultural benefit

and environmental damage over an infinite time horizon, taking into account the changes in

quantity and quality of the groundwater stock over time. Shadow prices of changes in stock

quantity and quality are considered in our continuous-time optimal control model. The level

of damage to environmental amenities, given by S( , )t td g A C= , is assumed to increase if

farmers extract more shallow groundwater since groundwater levels will fall and if the nitrate

concentration of the stock increases, with '( ) 0tg A > and S'( ) 0tg C > . The increase in damage

becomes smaller for higher levels of extraction and higher nitrate concentrations, with

''( ) 0tg A <  and S''( ) 0tg C < . The unit cost of groundwater extraction ( )tc S increases as the

size of the stock tS declines, and the cost increase per unit is larger, the lower the remaining

stock, with ' 0c <  and '' 0c > , i.e. ( )tc S is decreasing and convex. A small stock increases the

unit cost of extraction and provides an incentive to reduce groundwater extraction. Further we

assume a constant discount rate ρ . Finally, we defineV as the annual monetary value of

goods and services provided by environmental amenities per hectare and Φ as the ratio

between the area of affected nature reserve and the area of farmland irrigated. To maximise

the total present value of the objective function, the social planner’s problem is to choose tA

for a given technology:

S

0

max ( ( ) ( , ) ( ) ) t
t t t t tpf hA Vg A C c S A e dtρ

∞
−− Φ −∫ (6)

subject to the equations of motion (Equations (1) and (2)) of the two state variables. The

maximum principle technique is used to solve the optimisation problem (Perman et al., 1999).

The current value Hamiltonian function for the optimisation problem can be stated as:
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 S R S ( )( ) ( , ) ( ) ( ) ( )
( )

t t t
t t t t t t t t t t t

t t t

R hA AH pf hA Vg A C c S A R hA C C
R hA S

λ µ − += − Φ − + − − −
− +

  (7)

where tλ and tµ are the current value shadow prices or co-state variables associated with

changes in the quantity and quality of the resource over time, i.e. the values of respectively a

unit change in both the availability and the nitrate concentration of the groundwater stock at

time t (cf. Conrad and Clark, 1987). Optimal allocation rules are given by:

R S

2

( )( )'( ) '( ) ( ) 0
( )

t t t t t t
t t t t

t t t t

C C R hS SH pf hA h Vg A c S h
A R hA S

µλ − − +∂ = − Φ − − − =
∂ − +

(8)

R S

2

( )( )'( )
( )

t t t t t t
t t t t t

t t t t

C C R hA AH c S A
S R hA S

µλ ρλ ρλ
• − − +∂= − = + −

∂ − +
  (9)

S
S

( )'( )
( )
t t t t

t t tt
t t t t

R hA AH Vg C
C R hA S

µµ ρµ ρµ
• − +∂= − = + Φ −

∂ − +
(10)

The first optimality condition (Equation (8)) can be rewritten as:

R S

2

'( ) ( ) ( )( )'( )
( )

t t t t t t t t
t t

t t t

Vg A c S C C R hS Spf hA
h h h R hA S

µλΦ − − += + + +
− +

                (11)

To achieve socially optimal agricultural groundwater extraction, the value of marginal

damage to environmental amenities, the extraction costs and shadow prices of changes in the

quantity and quality of the stock over time have to be considered in the price of water use.

Agricultural groundwater extraction will have a negative impact on groundwater quality if

R S
t tC C> and a positive impact if R S

t tC C< . The price of water will be higher in the first case,

when extraction causes a negative externality. The significance of this impact on the price of

water will become smaller if stock size increases, due to the dilution effect.

The rate of change over time in shadow prices can be obtained from Equations (9) and (10).



10

R S

2

'( ) ( )( )
( )

t t t t t t t t t

t t t t t t

c S A C C R hA A
R hA S

µλ ρ
λ λ λ

•
− − += + −

− +
          (12)

S'( ) ( )
( )

t t t t t

t t t t t

Vg C R hA A
R hA S

µ ρ
µ µ

•
Φ − += + −

− +
                                   (13)

The rate of change in the resource value associated with delayed extraction by one period

(Equation (12)) (i.e. the cost of not mining the resource) is equal to the sum of three effects:

1) The discount rate, which is positive and serves as a compensation for delayed benefits;

2) The extraction-cost effect, where larger stocks reduce extraction cost; and

3) The dilution effect, where larger stocks tend to slow down changes in quality. The dilution

effect will reduce the cost of maintaining stocks if R S
t tC C> and it will increase the cost if

R S
t tC C< . In the latter case, water quality is not improved due to delayed extraction.

If the initial stock size is relatively large, the extraction-cost and dilution effect may be

negligible, because a marginal change in stock quantity is unlikely to cause a substantial

change, neither in the unit pumping cost nor in the stock quality. In that case, the rate of

change in the shadow price of stock quantity will be equal to the discount rate. If the initial

stock size is small relative to recharge flows (i.e. if the extraction-cost and the dilution effect

are stronger than the discount-rate effect), the rate of change in the shadow price will decline

over time. It will decline over time because the extraction-cost and dilution effect will

become stronger over time, if tλ declines over time.

The rate of change in the shadow price of stock quality over time (Equation (13)) is

also equal to the sum of three effects: 1) the discount rate, 2) environmental damage-effect,

which is positive (higher nitrate concentrations increase damage costs) and 3) dilution effect.

Appendix A shows the derivation of the steady state of the renewable groundwater stock.

We would like to emphasise that the rate of change over time in shadow prices,

equation (12) and (13) differ from the results of the dynamics of renewable resource
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economics found in the literature (Zilberman et al., 1993). The rate of change in the resource

value associated with delayed extraction by one period depends in the literature generally on

a resource-growth effect (where maintaining stocks tends to increase resource growth),

instead of on a dilution effect like in our analysis. When the resource is a population of some

livestock species, for instance a fish population, population growth depends on the initial

population size (reflected in the growth function). Insight into the importance of stock size to

slow down changes in stock quality is therefore an extension of existing work in this field.

4. Usefulness of the approach

In this section, we show the importance of bringing the impact of groundwater extraction on

groundwater quality into a resource management model. We study water-pricing reform, a

key element in the proposed European Water Framework Directive (COM (97)164) in the

presence of negative and positive externalities from agricultural groundwater extraction on

stock quality. Such positive externalities may arise if R
tC becomes smaller than S

tC , which

might for instance be the result of current restrictions for maximum allowable concentrations

of nitrates. According to the Nitrate Directive (Council Directive 91/676/EEC), waters must

be protected against pollution by nitrates from agricultural sources by not allowing the nitrate

concentration in groundwater to exceed the legally accepted EU limit of 50 mg/l.

In the Netherlands, most farmers currently only pay the energy costs of lifting water

from the stock to the field (i.e. about € 0.04 per m3 ) although extraction is subject to two acts

for a financial contribution to the government. Farmers are subject to a tax (of € 0.08 per m3)

under the ‘Act Taxes on Environmental Basis’ introduced in January 1995, but only a small

percentage of farmers (about 2%) exceed the tax-free threshold of 40,000 m3 of groundwater

extraction per annum (Van Staalduinen et al., 1996). They are also subject to a levy under the
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‘Groundwater Act’, adopted in 1983. The levy-free threshold and tariffs vary among

provinces. The levy is relatively low compared to the tax. The main part of agricultural

extraction is, however, not subject to the levy under the Groundwater Act. This means that

the price of irrigation water is currently equal to the price in the open access case. Such a low

price is inefficient from a social point of view in the presence of externalities such as

desiccation and contamination and provides fewer incentives for the adoption of modern

irrigation technology than optimal. The costs of these externalities have to be internalised in

the price of water, to achieve socially optimal agricultural groundwater extraction patterns.

Article 12 of the proposed European Water Framework Directive obliges member states

to implement ‘full cost recovery’, which means that the price of water should not only reflect

the costs of the water-use services, but also environmental and resource depletion costs. This

will provide incentives for the adoption of modern irrigation technology. Whether the modern

technology will be adopted depends among others on the gap between relative costs of both

irrigation technologies, like explained in section 2.2. The extent of divergence between the

private and social price of water (Equation (5) and (11)) represents the optimal volumetric tax 

T that induces farmers to behave in the socially optimal way:

R S

2

'( ) ( )( )
( )

t t t t t t t
t

t t t

Vg A C C R hS ST
h h R hA S

µλΦ − − += + +
− +

          (14)

Agricultural groundwater extraction will have a negative impact on groundwater quality, if

R S
t tC C>  and a positive impact, if R S

t tC C< . Contamination is reflected in a higher required

tax on agricultural groundwater extraction and improvements in water quality are reflected in

a lower required tax. The significance of this impact on the tax rate will become smaller if

stock size increases, due to the dilution effect. If negative externalities of extraction are not

internalised in the tax, contamination will be accelerated because the price will be too low

and extraction may be higher than optimal. If positive externalities of extraction are not
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internalised in the tax, improvements in quality will be slowed down because the price will be

too high, which may decrease extraction and increase both stock size and the irrigation

effectiveness. In other words it will affect the time path of changes in stock quality over-time.

Larson et al. (1996) suggest that water may be the better input to regulate in terms of

achieving non-point source reduction goals at lower cost, whereas often only a tax on

nitrogen input is considered in the analysis for efficient pollution regulation, like in Fleming

and Adams (1997). The cost-effectiveness of second-best policies in achieving joint quantity

and quality management can be evaluated along the lines of Larson et al. (1996).

The theoretical framework of efficient water-pricing schemes is clear, but there are

some caveats. Firstly, it is hard to determine the level of taxes, since monetary values have to

be attached to damage caused by excessive use of groundwater, whereas perpetrators of

externalities usually evaluate damage less severely than other interest groups. Solutions

suggested for the monetary valuation of environmental damage caused by excessive

groundwater extraction are very controversial, which makes direct application of Equation

(11) and (14) fragile. Secondly, water-pricing schemes often ignore information needed for

implementation. Implementation problems are linked to enforcement, monitoring,

institutional limitations, conflicting policies, political interests, and welfare implications.

Thirdly, the introduction of price reform is conditional upon the size of the social gains

relative to the transaction costs. Finally, water-pricing reform only has a positive influence on

water conservation if the price elasticity of water demand is significantly different from zero

and is negative. Agricultural water demand is usually inelastic only up to a given price level

(Garrido, 1999). This ‘price threshold’ depends on the productivity of water, the set of

alternative production strategies, the proportion of land devoted to permanently-irrigated

crops, and the irrigation technologies.
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In this paper we only focused on water-pricing reform as an instrument in achieving

socially optimal agricultural groundwater extraction patterns. Other instruments such as water

markets can be used as well (see Giannias and Lekakis, 1997 and Wichelns, 1999), although

they do not provide the same incentives for the adoption of modern irrigation technology.

Policy instruments can be combined in such a way that they reinforce each other.
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5. Conclusions

This study shows the importance of bringing the impact of agricultural shallow

groundwater extraction on groundwater quality into a resource management model. It studies

the dynamics of socially optimal agricultural shallow groundwater extraction management.

This is not only of great interest in the Netherlands, but also for countries with a comparable

hydrological setting and similar problems.

It becomes clear that the current low price of agricultural groundwater use is inefficient

and provides fewer incentives for the adoption of modern irrigation technology than does a

system that considers the cost of desiccation and contamination in the price of water.

 It becomes also clear that internalisation of the negative as well as positive externalities

from agricultural shallow groundwater extraction on stock quality in the price of groundwater

is particularly significant if the recharge of groundwater is large compared to stock size. This

impact will become smaller if stock size increases, due to the dilution effect. If these

externalities are not internalised in the price of groundwater, contamination will be

accelerated and quality improvements will be slowed down. It will affect the time path of

changes in groundwater stock quality over-time. This stresses the importance of considering

developments in nitrate policy when designing water-price reforms, as proposed under the

European Water Framework Directive.
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Appendix A

Usually, inter-temporal optimisation models are closed by adding some sort of terminal

condition. If there is no recharge, the stock would always be decreasing, so the problem

would necessarily reach a point where nothing will be extracted, because either the stock is

depleted or extraction has become prohibitively expensive. If groundwater is a renewable

resource, it is possible to have a steady state with extraction, for which: 
•
S =0, SC

•

=0, 
•
λ =0,

and 
•
µ =0. If the quantity and quality of the stock do not change over time, and consequently

shadow prices remain constant, a renewable resource system will be in a steady state. The

results are expressed in the following equations:

h
RA =           (A1)

R S( )( ) 0
( )

C C R hA A
R hA S

− − + =
− +

         (A2)

R S

2

'( ) ( )( )
( )

c S A C C R hA A
R hA S

µλ
ρ ρ

− − += − +
− +

              (A3)

S'( )
( ) /( )

Vg C
R hA A R hA S

µ
ρ

Φ= −
− − + − +

                      (A4)

If extraction and recharge flows are of the same size, the stock size will not change over time

(Equation (A1)). Neither will stock quality change over time, if nitrate concentrations in

recharge and extraction flows are equal R SC C= , if there is no recharge 0R hA A− + = , or if

stock size is very large S → ∞ , (Equation(A2)). The shadow price of changes in the quantity

of the resource over time will be smaller for larger stocks (Equation (A3)). The shadow price

of changes in quantity are zero, if stock size is very large and a quality-only model will be

appropriate. The smaller the ratio between the recharge flows and the groundwater stock, the

smaller the shadow price of changes in quality of the resource (Equation (A4)).
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