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Regionally-varying and Regionally-uniform Electricity Pricing Policies 
Compared across Four Usage Categories  

 
Abstract 
 

The objective of our research is to predict how electricity demand varies spatially 
between status quo regionally-uniform electricity pricing and hypothetical regionally-varying 
electricity pricing across usage categories. We summarize the empirical results of a case study of 
electricity demand in South Korea with three key findings and their related implications. First, 
the price elasticities of electricity demand differ across usage categories. Specifically, electricity 
demands for manufacturing and retail uses were price inelastic and close to unit elastic, 
respectively, while those for agricultural and residential uses were not statistically significant. 
This information is important in designing energy policy, because higher electricity prices could 
reduce electricity demands for manufacturing and retail uses, resulting in slower growth in those 
sectors. Second, spatial spillovers in electricity demand vary across uses. Understanding the 
spatial structure of electricity demand provides useful information to energy policy makers for 
anticipating changes in demand across regions via regionally-varying electricity pricing for 
different uses. Third, simulation results suggest that spatial variations among electricity demands 
by usage category under a regionally-varying electricity-pricing policy differ from those under a 
regionally-uniform electricity-pricing policy. Differences in spatial changes between the policies 
provide information for developing a realistic regionally-varying electricity-pricing policy 
according to usage category. 

 
Keywords: Elasticities of electricity demand, Regionally-varying electricity pricing, Spatial 
spillovers 
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Regionally-varying and Regionally-uniform Electricity-pricing Policies 
Compared across Four Usage Categories  

 

1. Introduction 

1.1. Background 

 Many countries have addressed the need for electricity conservation in recent years, 

primarily for two reasons (Sahraei-Ardakani et al., 2012). First, global efforts to reduce 

greenhouse gas emissions (GHG) have underscored the need for cost-effective energy 

conservation (IEA, 2009). For example, the U.S. Environmental Protection Agency (NAPEE, 

2009) has emphasized the economic value of energy efficiency via reducing carbon emissions in 

terms of achieving the potential for cost-effective energy efficiency. Second, due to rapidly 

growing energy demand by emerging economies and the extreme temperatures purportedly 

associated with recent global climate change, electricity conservation has been identified as a  

key response to excessive electricity demand (e.g., 2013 South Korea power crisis (AFP, 2013); 

2012 India blackout (Reuters, 2012); Japan’s electricity crisis since the 2011 Tohoku earthquake 

(Nakano, 2011); 2005 Java-Bali blackout (Donnan, 2005); 2003 Northeast blackout (CNN, 

2003); 2003 Italy blackout (BBC News, 2003); California electricity crisis of 2000 and 2001 

(Sweeney, 2002); and 1999 Southern Brazil blackout (The New York Times, 1999).  

 Research on efficient electricity supply and pricing systems is needed to help advance 

electricity conservation (Gillingham et al., 2009; Ryan and Campbell, 2012). This study focuses 

on developing an electricity-pricing system to promote electricity conservation. Previous 

research typically attempted to quantify the influence of price changes on electricity demand by 

estimating price elasticities of demand for different uses and regions (Bohi, 1981; Bohi and 

Zimmerman, 1984; Lin et al., 1987; Espey and Espey, 2004; Paul et al., 2009; Saunoris and 
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Sheridan, 2013). The heterogeneity across uses has been evaluated for manufacturing, 

agricultural, residential, and retail (mainly used for commercial buildings) uses (e.g., Bose and 

Shukla, 1999; Kamerschen and Porter, 2004; National Institute of Economic and Industry 

Research, 2007). Previous research commonly used linear regression and panel data, time series, 

and meta-data analyses to compare price elasticities across uses. The price elatisticies of 

manufacturing, agricultural, residential, and retail electricity demand range widely from –1.82 to 

0.00, –2.39 to 0.152, –2.25 to 0.098, and –1.36 to 0.00, respectively (see Table 1).   

 Similarly, regional differences in price elasticities of electricity demand have been 

compared (e.g., Bernstein and Griffin, 2005; Fell et al., 2010; Paul et al., 2009). Specifically, 

price elasticities of demand for residential and retail uses have been examined at national, 

regional, and state levels (Alberini, et al., 2011; Bernstein and Griffin, 2005; Fell et al., 2010; 

Paul et al., 2009). For example, Fell et al. (2010) found that price-elasticity estimates vary across 

the four census regions of the United States. They found that the South (–1.02) and North (–0.82) 

were the most and least price-elastic regions with little variation across income quartiles within 

each region.  

 Despite the abundance of literature dealing with regional and usage variations in price 

elasticities of electricity demand, adequate attention has not been given to evaluating regionally 

varying electricity-pricing systems and the spatial-dynamic processes in electricity consumption. 

The lack of research evaluating regionally varying pricing systems is surprising, given that 

regionally varying pricing systems have been adopted in the United States, the United Kingdom, 

and Japan, among others, and are being considered in countries like South Korea to regulate the 

excess demand for electricity (Korean Ministry of Strategy and Finance, 2012; The Federation of 
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Electric Power Companies of Japan, 2012; Torse, 2013; UK Power, 2014; US EIA, 2014a, 

2014b). 

 Likewise, the lack of research dealing with the spatial-dynamic processes in electricity 

consumption is unexpected, because electricity consumptions in one region is likely influenced 

by electricity consumption in neighboring regions that are interrelated socially and economically 

(Blázquez et al., 2013). Our research fills these two gaps in knowledge by using a spatial-panel 

model that incorporates spatial spillover effects to simulate spatial variations in electricity 

demand by comparing regionally-varying and regionally-uniform pricing systems. 

 

1.2. Objectives and significance  

 The objective of our research is to predict how electricity demand varies spatially 

between status quo regionally-uniform electricity pricing and regionally-varying electricity 

pricing according to the source of demand (use). Using our spatial-panel model, we test three 

hypotheses: (1) price elasticities of electricity demand differ across uses, (2) spatial spillover 

effects exist for different uses, and (3) changes in electricity demand vary across regions and 

uses between status quo regionally-uniform electricity pricing and regionally-varying electricity 

pricing systems. 

 We used electricity demands for manufacturing, agricultural, residential, and retail uses 

between 2004 and 2012 in 16 regions of South Korea as a case study.1 Econometric estimates 

from the spatial-panel model were used to simulate changes in future electricity demand under 

the current government plan of increasing electricity prices with variation across uses but 

                                                            
1 Using a longer period of data would have been better for the analysis; however, consistent data were not available 
prior to 2004. 
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without regional variation and under a hypothetical scenario that increases electricity prices 

differently across regions as well as uses, given regional electricity self-sufficiency constraints 

(see details in Hypothetical electricity pricing scenarios).  

 Our research contributes to the literature in two ways. First, our spatial-panel model 

accommodates spatial spillovers and spatial clusters of electricity consumption. Among the many 

studies that estimate the price elasticity of electricity demand using aggregate regional panel data 

(e.g., Alberini and Filippini, 2011; Bernstein and Griffin, 2005; Blázquez et al., 2013; 

Houthakker, 1980; Hsing, 1994; Maddala et al., 1997; Paul et al., 2009), few have examined 

location-specific price elasticity estimates based on regional panel data (e.g., Bernstein and 

Griffin, 2005; Blázquez et al., 2013). The importance of incorporating spatial-dynamic processes 

in the electricity demand model was discussed by Blázquez et al. (2013). Although they 

explicitly modeled electricity demand assuming a spatial-dynamic structure, the structure was 

specified without systematic testing. Spatial econometrics literature emphasizes the need to 

identify the type of spatial-dynamic process for each dataset based on systematic testing 

(Anselin, 1988; Anselin et al., 1996; Burridge, 1980; Elhorst, 2010). Accordingly, we applied the 

general-to-specific approach for specifying the potential spatial-dynamic structure. 

 Second, the empirical findings of our spatial-panel model facilitate decomposing the 

price elasticity of demand into the direct elasticity (i.e., the effect of a change in the electricity 

price in the ith region on electricity demand in the ith region plus the effect neighboring regions’ 

demand exerting a feedback influence on the ith region’s electricity demand) and the indirect 

elasticity (i.e., the sum of the effects of a change in the ith region’s electricity price on the 

electricity demands in the other regions). The direct and indirect elasticities are summed and 

defined as the total elasticity. By doing so, we were able to perform ex-ante simulations to predict 
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and compare the spatial heterogeneities in the electricity demands between status quo regionally-

uniform electricity pricing and hypothetical regionally-varying electricity pricing across uses.  

 Our comparison of ex-ante predictions provides useful information for decision makers 

interested in restructuring the electricity pricing system from a regionally-uniform to a 

regionally-varying pricing system. The ex-ante simulations provide a useful tool for examining 

the potential impacts of implementing a regionally-varying electricity pricing system before 

changes in the pricing system are actually implemented, helping to identify and avoid any 

potential down-side risks of implementation.  

In the following section, we present the conceptual framework for the electricity demand 

equations based on the input-cost minimization problem for a production input for 

manufacturing, agricultural, and retail uses and the electricity demand function from the utility 

maximization problem for residential use. Empirical models are specified following the 

conceptual framework. A description of the study area and data, empirical results, and 

conclusions follow. 

 

2. Methods 

2.1. Conceptual framework 

The electricity demands for manufacturing, agricultural, and retail uses are derived from 

the input-cost minimization problem because electricity is an input used in producing the outputs 

of these sectors. The production function for output Q is: 

( , , )Q f K L S       (1) 
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where K is capital, L is labor, S is source of energy including electricity, petroleum, coal, and 

natural gas. Based on the duality between the cost and production functions (Hackman, 2008), 

the solution to the input-cost minimization problem yields a cost function C: 

( , , , )C r w s Q ,      (2) 

where , ,r w and  s are, respectively, prices of K, L, and S. Assuming homothetic separability 

(Chambers, 1997; Hackman, 2008; Lewbel, 2003),2 the separability of S from (K, L) in the 

production function is equivalent to the separability of s from ( , )r w  and Q in the cost function. 

The homothetic separability assumption gives a cost function for electricity CE that is 

independent from the level of output Q and the prices of non-energy inputs (i.e., ,r w):   

( , , , )E E P C NC P P P P ,      (3) 

where , , ,E P C NP P P P are, respectively, prices of electricity, petroleum, coal, and natural gas. 

Applying Shephard’s lemma (Hackman, 2008) to the above cost function, the conditional factor 

demand function for electricity E is: 

( , , , , )E P C NE P P P P Q ,       (4) 

Assuming electricity is a good demanded by households, electricity demand for 

residential use is determined from households’ desires to maximize utility given their income 

constraints. The solution to the utility maximization problem yields the electricity demand 

function for residential use, which is a function of the prices of electricity, other substitute 

energy sources and other goods, and household income Y:  

                                                            
2 Homothetic separability is commonly assumed in modeling firm production and estimating production or cost 
functions (Lewbel, 2003). Suppose we have a homothetic function 0 1 1 1 0( , ,..., ) [ ( ),..., ( ), ]k k kr x x x h g x g x x  for 

vectors 0 1, ,..., Kx x x , where h is strictly monotonic and g is linearly homogeneous, homothetic separability implies 

that each kg function can be estimated separately.  
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( , , , , )E P C NE P P P P Y .             (5) 

Here, energy prices and income are expressed in real terms—deflated by a price index 

representing the prices of other goods as the numeraire—because conditional input demand 

functions are homogeneous of degree zero in prices of goods and income (or output) (Fuss and 

McFadden, 1978; Nicholson and Snyder, 2012). 

 

2.2. Empirical model 

 Following the conceptual framework expressed in equations (4) and (5), we specify the 

electricity demand equations for the four uses as3: 

ln ln γ ln βit it it i t itE P X u       ,     (6) 

where subscripts i and t represent region i (i = 1, 2, ... , 16) and year t (t = 2004, 2005, …, 2012), 

repectively; Eit is electricity demand in gigawatt hours (GWh); Pit is a vector of prices of 

electricity in Korean won (KRW) per kilowatt hour (KRW/KWh), petroleum (KRW/liter), coal 

(KRW/ton), and natural gas (KRW/m3); itX is a vector of other electricity demand factors (i.e., 

value-added, work force, population, and weather and climate); and β are vectors of the 

parameters to be estimated; iu captures region-specific, year-invariant effects; t  captures time-

specific, region-invariant effects; and it is an independently and identically distibuted error 

terms, it ~ (0, 2
 ). 

The quantities of output Q in equation (4) for manufacturing, agricultural, and retail uses 

are represented by the respective values-added for the three sectors, and the sum of the values-

                                                            
3 For simplicity, notation for the four uses is suppressed as the same model is applied for each use. 
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added for those sectors represents aggregate household income Y in equation (5). The work 

forces employed in the manufacturing, agricultural, and retail sectors control for the scale of 

electricity demand in those sectors, total population controls for the scale of residential electricity 

demand (Darmstadter, 2004; Neelsen and Peters, 2011; Stern, 1993). Annual heating days, 

annual cooling days, and average temperature control for the effects of weather and climate-

related factors in the four electricity demand equations (Krese et al., 2011; US EIA, 2009).  

 We performed three tests (i.e., test for fixed or random effects, test for serial correlation, 

and test for spatial autocorrelation) for each of the four equations represented by equation (6) to 

determine the most appropriate estimation framework. F-statistics for the test of spatial fixed 

effects across the 16 regions ranged from 14.6 to 2,169.1 for the four uses, which indicated the 

presence of spatial heteroscedasticities (p-value = 0.000), while F-statistics for the test of time 

fixed effect across the nine years ranged from 0.06 to 0.71 for the four uses, which indicated no 

temporal heteroscedasticities. Breusch and Pagan Lagrangian multiplier tests (Baltagi et al., 

2008; Breusch and Pagan, 1979) found significant random effects for retail electricity demand 

( 2  = 479.56, p-value = 0.000), however, the Hausman test (Baltagi et al., 2008; Greene, 2008) 

rejected the null hypothesis that the random-effects model is preferred over fixed effects model 

for retail use ( 2  = 34.93, p-value = 0.000). Therefore the spatial fixed effect models were 

chosen for all four uses.    

 Serial correlation across the nine years may result in inefficient parameter estimates when 

estimating the panel data model specified in equation (6). Wooldridge tests (Drukker, 2003; 

Wooldridge, 2002) for serial correlation produced F-statistics of 202.3, 339.0, 432.0, and 44.5, 

respectively, for manufacturing, agricultural, retail, and residential uses, which indicate rejection 

of the null hypothesis of no serial correlation. Thus, we identified a number of time lags using 
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the Augmented Dickey Fuller (ADF) test (Im et al., 2003). According to the ADF test results, we 

used a first-order autoregressive (AR(1)) panel framework for all four uses.    

 We hypothesized the spatial lag of electricity demand and spatially correlated errors of 

the equation based on different row-standardized spatial weight matrices (i.e., K-nearest 

neighbor (KNN, K= 3, 4, and 5), Thiessen polygon, inverse distance, and hybrids between 

inverse distance and KNN or Thiessen polygon matrices).4 The robust spatial Lagrange 

multiplier (LM)-lag statistics of 0.65 – 18.574 suggest that at least 4 of 9 weight matrices for 

each sector rejected the aspatial model over the spatial lag model, and the robust spatial LM-

error statistics of 0.042 – 52.021 suggested that at least 5 of 9 weight matrices for each sector 

rejected the aspatial model over the spatial error model (critical value = 3.84). Based on these 

results, we re-specified equation (6) using the Spatial Autocorrelation (SAC) Model (Elhorst, 

2010; LeSage and Pace, 2009) to accommodate both spatial lag and spatial error processes in the 

AR(1) panel framework (referred to as SAC-AR(1) model): 

, 1
1

1

ln ln + ln γ ln ln β
n

it i t ij it it it i it
j

n

it ij it it
j

E E w E P X u e

e w e

 

 






    

 




   (7) 

where ijw is element (i, j) of the spatial weight matrix W,  is the parameter of spatially lagged 

electricity demand, and it is the independently and identically distibuted error terms for i and t, 

                                                            
4 The KNN matrix identifies the number (k) of nearest regions as neighbors based on Euclidian distance between the 
centroids of regions. The Thiessen polygon weight matrix calculates the regions surrounding a region in a method 
that recognizes the adjacent neighbors (Anselin 1988). The inverse distance matrix captures continuous distance-
decay effects among regions at different distances. The hybrid matrix was created by joining inverse distance and 
either a Thiessen polygon weight matrix or a KNN weight matrix. This approach computes the Euclidian distances 
between the centroids of regions before taking the inverse values and using them as the off-diagonal elements of the 
spatial weight matrix. The KNN and Thiessen polygon weight matrices only account for discrete classification of 
neighbors, whereas the hybrid matrix accounts for both continuous distance-decay effects and the effects of discrete 
classification of neighbors. 



10 

 

it ~ (0, 2
e ). The lagged dependent variable in equation (7) is assumed to be predetermined in 

the AR(1) panel framework (Arellano and Honoré, 2001) and uncorrelated with the error term.  

We estimated equation (7) for manufacturing, agricultural, retail, and residential uses 

with the Stata module for spatial panel data created by Belotti et al. (2013) using maximum 

likelihood based on the following log-likelihood function for n = 16 regions and T = 9 years (Lee 

and Yu, 2010):  

  2 '
n,T 2

1

1
ln ln(2 ) ln | | ln | | ,

2 2

T

n n nt nt
t

nT
L T W V V  

 

       I W I  (8) 

where  ( ) ( )nt n nV y Z     I W I W in which Z denotes vectors of independent variables 

and η is a vector of corresponding parameter estimates.  

Once the parameters of the four models were estimated, we estimated direct, indirect, and 

total price elasticities using the spatial dependence structure (LeSage and Pace, 2009). The total 

elasticity of the kth variable was estimated as: 

1 1 1
,

1 1

( ) γ γk

n n

n n n n i j
i j

kn n v    

 

 
      

 
I W I ,     (9) 

where γk is the coefficient of the kth variable and ,i jv is the (i, j) element of 1( )n  I W . The total 

elasticity is equal to the sum of all elements in    on the left side of equation (9) divided by n. 

The direct elasticity was estimated as: 

1 1 1
,

1

γ( ) γ
n

n n i ik k
i

n tr n v  



        
I W I .     (10) 
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The direct elasticity is equal to the sum of the diagonal elements of    on the left side of 

equation (10) divided by n. The indirect elasticity is the total elasticity minus the direct elasticity 

and is equal to the sum of the off-diagonal elements of    on the left side of equation (10) 

divided by n.   

 

2.3. Forecasting electricity demand  

 We forecasted electricity demands for the 2013 – 2020 period for each of the 16 regions 

using the direct, indirect, and total elasticities obtained from the SAC-AR(1) model. We assumed 

the electricity-price increases in the current government plan and in a hypothetical scenario, 

ceteris paribus. The electricity demands for the four uses were forecasted using the following 

equation: 

     1 1 1

, 1ln 1 ln 1 γ ln 1 ln βit ij i t ij it ij itE w E w P w X   
  

      .  (11) 

 The current government plan to increase electricity prices based on expected inflation 

was finalized in February 2013 as a part of the 6th Electricity Supply and Demand Plan by the 

Ministry of Trade, Industry, and Energy of South Korea (Hoe, 2013; Jeon, 2013). While the plan 

is still under public criticism and also has potential to be revised, we applied the current 

government plan as our baseline scenario for the ex-ante simulations. Specifically, for the 

baseline scenario with regionally-uniform electricity pricing, we assumed nominal electricity 

prices increase by 5.9%, 5.9%, 7.1%, and 21.4% between 2013 and 2020 for manufacturing, 

agricultural, retail, and residential uses, respectively. For consistency with elasticity estimates 

from the model based on the conceptual framework, we deflated the planned electricity prices by 

the projected consumer price index (Hoe, 2013) to obtain real prices before performing the 
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simulations. The real electricity prices in the baseline scenario decrease by 9.6%, 9.6%, and 

8.5% for manufacturing, agricultural, and retail uses and increase by 3.7% for residential use 

during the 2013 – 2020 period (see Table 2 for the planned annual changes of in nominal and 

real prices). 

 The hypothetical scenario was simulated based on suggestions from electricity market 

experts in South Korea, who have emphasized the need for regionally-varying electricity prices 

that incorporate the varying costs of electricity supply (Korean Ministry of Strategy and Finance 

2012). The experts suggested that electricity prices should be lower in regions with self-

sufficiency in electricity supply than in regions without self-sufficiency (HRI, 2013). Their 

argument is that the cost of supplying electricity to the regions without self-sufficiency is greater 

than the cost of supplying the self-sufficient regions because of the extra cost to construct 

transmission facilities to transmit electricity to the regions without self-sufficiency.  

 Following the experts’ suggestions, we developed a hypothetical scenario by revising the 

current government plan to reflect regionally-varying electricity pricing based on electricity 

supply self-sufficiency (HRI, 2013). In the hypothetical scenario, six self-sufficient regions (i.e., 

Busan, Chungnam, Gyungbuk, Gyungnam, Incheon, and Jeonnam) received a lower electricity 

price than the baseline scenario and 10 regions lacking self-sufficiency (i.e., Chungbuk, Daegu, 

Daejeon, Gangwon, Gwangju, Gyeonggi, Jeju, Jeonbuk, Seoul, and Ulsan) received a higher 

electricity price than the baseline scenario. Specifically, we assumed hypothetical nominal 

electricity price increases of (i) 50% less than the baseline scenario for the 6 regions with self-

sufficient electricity supply and (ii) 50% more than the baseline scenario for the 10 regions 

without self-sufficient electricity supply. We calculated the price increases for the hypothetical 

scenario with regionally-varying electricity pricing for all four uses as: 
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2012 2012 2012 2012

2012 2012 2012 2012

( ) 0.5

( ) 1.5

ss c

ns c

P P P P

P P P P

 

 

 

 

   

   
      (12) 

where 2012
ssP  is the hypothetical price for the 6 regions with self-sufficient electricity supply in 

2012+ , 2012
nsP  is the hypothetical price for the 10 regions without self-sufficient electricity 

supply in 2012+ , 2012P is the actual electricity price in 2012, 2012
cP  is the baseline price of the 

current government plan in 2012+ ,  and τ = 1,2,…,8. 

 Once we calculated the hypothetical nominal price increases, we deflated the price 

increases by the projected consumer price index (Hoe, 2013) before performing the simulations. 

Real electricity prices were projected to increase by 12.0%, 12.0%, 11.5%, and 4.8% over the 

2013 – 2020 period for manufacturing, agricultural, retail, and residential uses for the 6 regions 

with self-sufficient electricity supply. Alternatively, real electricity prices were projected to 

decrease by 7.2%, 7.2%, and 5.7% for manufacturing, agricultural, and retail uses and to increase 

by 12.4% for residential use for the 10 regions without self-sufficient electricity supply. 

We conducted sensitivity analysis using the hypothetical scenario with regionally-varying 

nominal electricity price increases of 25% and 75% less than the baseline scenario for self-

sufficient regions, and increases of 25% and 75% more than the baseline scenario for the regions 

lacking self-sufficiency. We graphed the electricity demand forecasts from 2013 to 2020 for the 

current government plan and for the hypothetical scenario with 50% lower nominal increases for 

self-sufficient regions and 50% higher nominal increases for the other regions (referred to as “the 

50% scenario”). We also mapped the predicted spatial variation of the changes in electricity 

demands between the baseline and the 50% scenario. 
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2.4. Data 

 The electricity demands and prices across the entire region for 2004 – 2012 were 

obtained from the Yearbook of Energy Statistics, published by the Korean Energy Economics 

Institute (KEEI, 2013). The anticipated electricity prices under the current government plan were 

obtained from the Ministry of Trade, Industry, and Energy of South Korea (Hoe, 2013; Jeon, 

2013). Gasoline prices, natural gas prices, and fossil fuel prices for 2004 – 2012 were obtained 

from the Korea Energy Statistics Information System (KESIS, 2013). The work forces, total 

populations, and the values added at the regional level for 2004 – 2012 were collected from the 

Korean Statistical Information Service (KOSIS, 2013). The electricity prices, gasoline prices, 

natural gas prices, fossil fuel prices, and the values added were deflated by consumer price index 

(KOSIS, 2013).  

The average annual high and low temperatures, which were used to indicate the number 

of days for energy needed to heat (i.e., the temperature is less than or equal to 18 degrees 

Celsius) and cool (i.e., the temperature is greater than or equal to 26 degree Celsius) buildings, 

respectively, were collected at the regional level for 2004 – 2012 from the Monthly Energy 

Statistics published by the Korea Energy Economics Institute (KEEI, 2013). Annual average 

temperatures were collected from the Annual Climatological Report published by the Korea 

Meteorological Administration (KMA, 2013). Meteorological measurements of temperature 

were observed from 78 stations throughout the country. We assigned the average temperatures of 

synoptic stations that fell within the boundaries of each region for 2004 – 2012. The boundary 

data of the 16 regions were collected in shape files from BIZ-GIS.com (BIZ-GIS, 2013).   
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3. Results and Discussion 

3.1. Estimation results and discussion 

 We estimated the SAC-AR(1) models for manufacturing, agricultural, retail, and 

residential electricity demand using the K-nearest neighbor (K=5), K-nearest neighbor (K=5), 

inverse distance, and inverse distance weight matrices, respectively, based on best goodness of 

fit. The selection of a spatial weight matrix had minor influence on the overall fit (i.e., AIC 

values of -443.0 ~ -413.3, -397.0 ~ -394.8, -318.7 ~ -316.3, -545.0 ~ -534.8, respectively, for 

manufacturing, agricultural, retail, and residential electricity demand).  

The spatial strucutre for manufacturing reflected in the K-nearest neighbor weight matrix 

can be explained by clustering in the manufactring sector of South Korea. As examples, the 

manufacturing sector has two industrial clusters—Seoul and its neighboring regions and the 

Gyeongsang regions (Choi and Kim, 2010). The two clusters are not contiguous and thus the 

selected K-nearest neighbors spatial weight matrix fits the spatial relationships in the two 

clusters’ electricity demands. On the other hand, the spatial demand relationship in the 

residential sector is well characterized by the inverse distance matrix that captures continuous 

distance-decay effects. The continuous distance-decay effects portray the global spatial 

dependence in residential electricity demands across the country as a whole.  

 Table 3 presents the parameter estimates and their standard errors from the SAC-AR(1) 

models for the four electricity demand equations. The spatial lag of electricity demand ( ) is 

positive for manufacturing and residential uses, negative for agriculture use, and not significant 

for retail use. These findings suggest (i) positive spatial spillovers in electricity demand for 

manufacturing and residential uses, (ii) negative spatial spillovers in electricity demand for 

agricultural use, and (iii) no spatial spillovers in retail use.  
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 The spatial spillovers capture spatial linkages associated with electricity demands other 

than those captured by the explanatory variables in the regressions. For example, the positive 

spillovers in manufacturing might be explained by the electricity demand in a region with 

automobile assembly facilities affecting the electricity demands in neighboring regions where 

automobile parts are produced and supplied to the assembly facilities. The positive spillovers in 

residential use capture the dependence of residents’ socio-economic activities among 

neighboring regions, including life-style trends and consumer behaviors that result in similar 

patterns of residential electricity demand within neighboring regions (Jeeninga and Huenges 

Wajer, 2007).  

In contrast, the negative spillovers in agricultural use suggest that an increase in 

agricultural electricity demand in one region is associated with lower agricultural electricity 

demand in neighboring regions. This finding implies that neighboring regions are more 

dissimilar in agricultural electricity demand than if regions were distributed randomly (Kao and 

Bera, 2013). The lack of spatial spillovers in retail use suggests that electricity demands vary 

randomly across regions. The significant spatial error coefficients ( ) suggest that a random 

shock in a spatially significant omitted variable that affects electricity demand for agricultural (or 

retail use) in a region triggers a positive change in the electricity demand in that region and a 

positive (negative) change in agricultural demand (retail demand) in neighboring regions.   

 The direct, indirect, and total elasticities of the explanatory variables are presented in 

Table 4. A 1% increase in time-lagged electricity demand in a region increased current-period 

electricity demand by (i) 0.57%, 1.00%, and 0.56% in the same region, (ii) 0.24%, -0.21%, and 

0.10% in neighboring regions, and (iii) 0.81%, 0.80%, and 0.66% in South Korea as a whole, 

respectively, for manufacturing, agricultural, and retail uses. Although the total elasticities of 
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time-lagged electricity were quite similar across the uses, the indirect elasticities varied 

substantially (between 0.24 for manufacturing use and -0.21 for agriculture use). The positive 

indirect elasticity of time-lagged electricity demand for manufacturing use is associated with the 

positive spatial spillover in manufacturing use. Likewise, the negative indirect elasticity of time-

lagged electricity demand for agriculture use is associated with negative spatial spillovers in 

agriculture use. 

 The total price elasticities of electricity demand were -1.10 and -1.21, respectively, for 

manufacturing and retail uses while their counterparts for agriculture and residential uses were 

not significant. These findings suggest that demands for manufacturing and retail uses were price 

elastic, while they were not significantly different from zero for agricultural and residential uses. 

These price elasticity estimates are within the range of those reported in the literature (see Table 

1). 

 The cross-price elasticities of demand with respect to prices of petroleum, coal, and 

natural gas show various results. The total cross-price elasticities suggest that a 1% increase in 

the petroleum price decreases electricity demand for manufacturing and retail uses by 0.16% and 

0.19%, respectively, suggesting that petroleum and electricity are complement inputs in the 

manufacturing and retail sectors. Similarly, the total cross-price elasticity for coal indicates that a 

1% increase in the coal price decreases electricity demand for retail use by 0.24%, reflecting 

complementarity between coal and electricity in the retail sector. In contrast, the total cross-price 

elasticity of demand with respect to the natural gas price (0.16%) indicates substitutability 

between natural gas and electricity in the retail sector.  

 The work-force elasticities of electricity demand are positive for manufacturing use. 

Specifically, a 1% increase of the work force in a region increased electricity demand for 
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manufacturing use in that region, in neighboring regions, and in the entire country by 0.31%, 

0.13%, and 0.44%, respectively.  

 A 1% increase in value-added increased South Korean electricity demands for 

manufacturing and retail uses by 0.31% and 0.86%, respectively. Spatial spillover effect for 

manufacturing was 0.09%, but no significant for retail use. These findings suggest that increases 

in electricity use in the manufacturing sector increase the level of manufacturing output (i.e. 

value-added) through spatial spillovers, confirming previous findings in the literature (Lam and 

Shiu, 2004; Narayan et al., 2008; Melliciani and Peracchi, 2006). 

 The significant total elasticities for average temperature and average cooling and heating 

days have the expected signs. A 1% increase in average temperature or cooling days increased 

electricity demand for agricultural use by 0.66% and 26%, respectively, and a 1% increase in 

heating days increased electricity demand for retail use by 0.74%. These positive total elasticities 

for the agricultural sector likely imply greater electricity demand by greenhouse operations in 

warmer regions of the country, while the positive total elasticity for heating days suggests greater 

demand for electricity by retail outlets in cooler regions of the country. The insignificant average 

temperature for the manufacturing, retail, and residential sectors are consistent with the 

insignificant time fixed effects reported earlier. 

 

3.2. Simulation results and discussion 

 Fig. 1 shows that electricity uses between 2013 and 2020 in the manufacturing, 

agricultural, and retail sectors were forecast to increase by 19.8%, 38.4%, and 27.4%, 

respectively, for the baseline scenario, and 19.3%, 37.1%, and 23.2%, respectively, for the 50% 

scenario, while residential use was forecast to decrease by 0.7% for the baseline and 1.1% for the 
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50% scenario. These predicted changes were closely associated with the decreases in real 

electricity prices for manufacturing, agricultural and retail uses and the increase in the real 

electricity price for residential use between 2013 and 2020.  

 The electricity demands of the hypothetical scenario were lower than those of the 

baseline throughout the period of 2013 – 2020 across all four uses. The gap for retail use 

widened by 6.77 terawatts (from 0.87 to 7.64 terawatts) from 2013 to 2020, while corresponding 

gaps for manufacturing, agricultural, and residential uses widened by much smaller amounts of 

1.29, 0.20, and 0.25 terawatts, respectively. The gap is wider in 2020 for retail use mainly 

because regions without self-sufficiency in electricity consumed 33% more electricity for retail 

use than self-sufficient regions, and the total price elasticity for retail use has a relatively larger 

negative effect (less than -1) than the price elasticities for the other uses (greater than -1). The 

sensitivity tests performed by the 25% and 75% scenarios show that the widening gap in 

electricity demand for retail use relative to other uses is not sensitive to the degree of regionally-

varying electricity pricing.  

Fig. 2 visually highlights spatial variations between differences in the 50% scenario and 

the baseline scenario by showing regional differences in the percentage changes in electricity 

demand. The maps shows that the 10 regions without self-sufficient in electricity supply would 

have lower electricity demands under the 50% scenario than under the baseline scenario by 4.8% 

to 7.3%, 2.2% to 18.5%, 8.6% to 10.0%, and 0.7% to 1.2% for manufacturing, agricultural, 

retail, and residential uses, respectively. Conversely, the maps show that the 6 regions with self-

sufficient electricity supply would have higher electricity demands under the 50% scenario than 

under the baseline scenario by 4.0% to 6.4%, 9.9% to 16.4%, 8.2% to 8.8%, and 0.5% to 0.8% 

for manufacturing, agricultural, retail, and residential uses, respectively. Thus, spatial variation 
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in differences between electricity demands was highest for agricultural use and lowest for 

residential use.  

 The information in Fig. 2 also suggests that electricity use in all sectors would be 

decentralized if regionally-varying electricity pricing were adopted. For example, the share of 

agricultural electricity use in the Gyeonggi region (highest use region) would decline from 

23.5% to 19.4% in 2020, while the share in the Chungnam region would increase from 11.4% to 

13.1% (see Table 5). Consequently, electricity demand in the 6 regions with self-sufficiency 

would increase by 27% (from 195 terawatts to 247 terawatts) and in the 10 regions without self-

sufficiency it would increase by 11% (from 274 terawatts to 305 terawatts) by 2020 (see Table 

6). In contrast, electricity demand was predicted to increase by about the same amount (i.e., 

19.7% and 20%) by 2020 in the two regions under the government plan (baseline scenario) of 

regionally-uniform pricing.  

 

4. Conclusions and Policy Implications 

 We summarize our empirical results of the South Korean case study with three key 

findings and implications that can be generalized to other countries where spatial-dynamic 

processes in electricity demand exist and regionally-varying pricing policies are being 

considered. First, we found that price elasticities of electricity demand differ according to use. 

Specifically, electricity demands for agricultural and residential uses were close to perfectly 

inelastic and those for manufacturing and retail uses were inelastic and close to unit elastic, 

respectively. This information is important to policy makers in designing electricity-price policy. 

Our results suggest that particular care should be exercised in determining future price increases 
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for manufacturing and retail uses, because the potential for slower growth in electricity demand 

could slow the rates of development of those sectors. 

 Second, our findings confirm that spatial spillovers in electricity demands vary across 

different uses. Specifically, positive spatial spillovers were found in the manufacturing and 

residential sectors, negative spatial spillover was found in the agricultural sector, and no spatial 

spillovers were found in the retail sector. Understanding the spatial structures of electricity 

demand in these sectors will help policy makers anticipate the spatially-varying impacts of 

electricity-pricing policy across regions. The positive spatial spillovers in manufacturing and 

residential uses will be particularly useful in designing an energy policy that includes regionally-

varying electricity pricing. For example, increasing the electricity price for manufacturing use in 

clusters of manufacturing regions (e.g., Ulsan, where major automobile manufacturers are 

located) would not only decrease manufacturing electricity demand in those regional cluster, but 

also in neighboring regions (e.g., Gyeongbuk). Likewise, increasing the residential electricity 

price in a region would result in a decrease in residential electricity demand in that region and in 

neighboring regions. For example, an increase in the residential electricity price in Seoul would 

decrease the electricity demand for residential use in Seoul and in its neighboring region, 

Gyeonggi. As a result, residential use in the Seoul and Gyeonggi regions, which include 46% of 

South Korea’s total residential use, would be affected by the price increase instead of residential 

use in Seoul alone, which constitutes only 23% of residential electricity use. 

 Third, our simulations show that spatial variations between electricity demands with 

regionally-varying electricity pricing and those with regionally-uniform electricity pricing vary 

by use. For example, our results suggest that differences in spatial variation between the two 

pricing policies would be highest for agricultural use and lowest for residential use. The higher 
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regional variation between the two pricing policies for agricultural use implies more regional 

sensitivity in electricity demand with the regionally-varying pricing policy. This finding suggests 

more care by policy makers in determining future electricity price increases in that sector than 

for residential use. In addition, our predicted differences in the spatially-varying impacts on 

electricity demands between the two policies will help policy makers in considering establish 

more realistic regionally-varying electricity pricing according to use. 

 Although our study provides a useful comparative analysis of anticipated changes 

between regionally-uniform and regionally-varying pricing policies according to use, we do not 

provide information about the economic consequences of implementing regionally-varying 

electricity-pricing policy. A complementary analysis identifying the potential economic impacts 

would help South Korean policy makers anticipate the regional and national economic 

consequences of a regionally-varying electricity pricing policy. Future analyses linking impacts 

on electricity demand and economy activity would be beneficial in generating more complete 

information for restructuring electricity-pricing policy.  

 Although we deal with the spatial-dynamic processes in the dependent variable 

(electricity demand), the explanatory variables are treated as spatially invariant. This assumption 

is consistent with our electricity demand equations because the explanatory variables are 

spatially invariant (i.e., electricity price, petroleum price, coal price, and natural gas price) in 

South Korea. A larger study area (e.g., the United States) would require specification of spatial-

dynamic processes in both dependent and explanatory variables (e.g., electricity price), which are 

more likely spatially variant. For such cases, a spatial Durbin model (Anselin 1988) may be more 

appropriate. 
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Table 1  
Price elasticities of manufacturing, agricultural, residential, and retail electricity demand found in 
previous literature. 

Authors Estimation 
methods 

Manufacturing Agricultural Retail  Residential 

Alberini et al. 
(2011) 

Dynamic 
panel 

-1.10 ~ -0.08 
 

   

Beenstock et 
al.(1999) 

Dynamic, 
OLS 

-0.44 ~ -0.31    

Bernstein & Griffin 
(2005) 

Panel    -0.32 ~ -0.24 

Bjørner et al. (2001) Panel -0.57   -0.36 ~ -0.13 
Bohi & Zimmerman 

(1984) 
Meta analysis -1.05 ~ -0.00  -0.7  

Bohi (1981) Dynamic -1.60 ~ -0.56    
Bose&Shukla 

(1999) 
Panel -0.45 ~ -0.04 -1.35 -0.26 -0.65 

Espey & Espey 
(2004) 

Meta analysis    -2.25 ~ -0.04 

Fan & Hyndman 
(2011) 

Time series -0.428 ~  
-0.363 

   

Fell et al. (2010)  OLS, GMM    -1.02 ~ -0.82 
Inglesi-Lotz & 

Blignaut (2011) 
SUR -0.869 0.152   

Jamasb & Meier 
(2010) 

Panel    0.098 

Kamerschen & 
Polemis (2004) 

Time series -0.55 ~ -0.34    

KEEI (2011) ARDL -0.1    
KEEI (2012) OLS, Time 

series AR(1) 
-1.043 ~  
-0.023 

-2.389 ~  
-2.208  

 -0.496 ~  
-0.354  

Kim (1996) OLS   -0.004  
Lee et al. (2011) Panel     
Park et al. (1994) Dynamic   -0.97 -0.27 ~ -0.22 
Paul et al. (2009) Fixed effect 

OLS 
   -0.36 ~ -0.13 

Polemis (2007) Time series -0.85    
Reiss & White 

(2005)  
GMM    -0.35 ~ -0.15 

Silk & Joutz (1997) Co-integration    -0.25 
Taylor (1975) Review paper -0.22 ~ -1.82  -1.36 ~ -0.17 -1.20 ~ -0.14 
Yu (1996) OLS, CCR, 

ARDL 
-1.59 ~ -1.42   -0.10 ~ 0.00  -0.38 

Average  -0.63 -0.60 -0.44 -0.48 
Note: AR is autoregressive model, ARDL is autoregressive distributed lag model, CCR is 
correlated component regression model, GMM is generalized method of moments, OLS is 
ordinary least square, and SUR is seemingly unrelated regressions. 
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Table 2  
Planned electricity prices for four uses in South Korea between 2013 and 2020 (Korean won per 
kilowatt hour). 

Year Manufacturing Agricultural Retail Residential  
2013 93.3 (84.2) 44.4 (40.0) 110.9 (100.0) 128.0 (115.5) 
2014 94.7 (82.9) 45.0 (39.4) 112.4 (98.4) 133.0 (116.5) 
2015 95.6 (81.3) 45.4 (38.6) 113.4 (96.4) 138.3 (117.6) 
2016 96.2 (80.2) 45.7 (38.1) 114.5 (95.4) 140.9 (117.4) 
2017 96.8 (79.1) 46.0 (37.6) 115.5 (94.4) 144.4 (118.0) 
2018 97.5 (78.1) 46.4 (37.2) 116.6 (93.4) 148.0 (118.6) 
2019 98.1 (77.0) 46.7 (36.7) 117.7 (92.4) 151.7 (119.1) 
2020 98.8 (76.1) 47.0 (36.2) 118.8 (91.5) 155.4 (119.7) 

Note: Numbers in parenthesis are prices deflated by the projected consumer price index (Hoe, 
2013). Planned prices for different uses are calculated based on annual price-increase rates 
according to the 6th Electricity Supply and Demand Plan by the Ministry of Trade, Industry, and 
Energy of South Korea (Jeon, 2013).  
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Table 3  
Parameter estimates and standard errors of the SAC-AR(1) models for electricity demand by use 
category. 
Variables Manufacturing Agricultural Retail  Residential 
ln(Electricity demand in 
the previous year) 

0.563* 0.996* 0.555* -0.031 
(0.056) (0.054) (0.092) (0.090) 

ln(Electricity price)  -0.762* -0.920 -1.032* -0.086 
 (0.185) (0.512) (0.148) (0.203) 
ln(Petroleum price) -0.108* -0.037 -0.163* 0.016 
 (0.041) (0.171) (0.028) (0.039) 
ln(Coal price)  0.061 0.027 -0.203* 0.017 
 (0.043) (0.092) (0.055) (0.048) 
ln(Natural gas price)  0.251* -0.136 0.125* 0.057 
 (0.120) (0.187) (0.052) (0.107) 
ln(Work force)† 0.295* 0.032 -0.090 0.637 
 (0.057) (0.022) (0.052) (0.437) 
ln(Value-added)  0.224* -0.010 0.745* 0.173 
 (0.050) (0.044) (0.158) (0.136) 
ln(Annual average 
temperature) 0.092 0.825* -0.067 

0.613 

 (0.223) (0.336) (0.166) (0.386) 
ln(Annual cooling days)  -0.089 0.320* -0.015 0.000 
 (0.059) (0.151) (0.037) (0.082) 
ln(Annual heating days)  0.292* 0.195 0.623* 0.210 
 (0.137) (0.210) (0.109) (0.179) 
Spatial lag electricity 
demand ( )  0.308* -0.247* 0.151 

0.527* 

 (0.082) (0.121) (0.135) (0.211) 
Spatial error ( )  -0.146 0.384* -1.124* -0.862 
 (0.247) (0.162) (0.292) (0.570) 

† Total population is used for residential use. * Represents significance at the 5% level. 

 



33 

 

Table 4  
Direct, indirect, and total elasticities by use category for the explanatory variables of the SAC-AR(1) models. 

Variables 
Manufacturing Agricultural Retail Residential 

Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total 
ln(Electricity 
demand in the 
previous year) 

0.57* 0.24* 0.81* 1.00* -0.21* 0.80* 0.56* 0.10 0.66* -0.03 -0.01 -0.04 

(0.05) (0.09) (0.12) (0.05) (0.08) (0.09) (0.08) (0.11) (0.14) (0.11) (0.21) (0.31) 

ln(Electricity 
price)  

-0.77* -0.33 -1.10* -0.89 0.20 -0.69 -1.02* -0.19 -1.21* -0.08 -0.05 -0.13 

(0.21) (0.18) (0.38) (0.57) (0.16) (0.43) (0.17) (0.20) (0.29) (0.26) (0.53) (0.75) 
ln(Petroleum 
price) 

-0.11* -0.05 -0.16* -0.02 0.01 -0.02 -0.16* -0.03 -0.19* 0.02 0.01 0.03 

(0.05) (0.03) (0.08) (0.19) (0.04) (0.15) (0.03) (0.03) (0.05) (0.06) (0.14) (0.2) 
ln(Coal price)  
 

0.06 0.02 0.09 0.03 -0.01 0.02 -0.20* -0.04 -0.24* 0.02 0.01 0.02 

(0.04) (0.02) (0.06) (0.09) (0.02) (0.07) (0.06) (0.05) (0.1) (0.05) (0.1) (0.14) 
ln(Natural gas 
price)  

0.26 0.11 0.37 -0.11 0.02 -0.09 0.13* 0.03 0.16* 0.08 0.09 0.18 

(0.13) (0.08) (0.20) (0.20) (0.04) (0.16) (0.05) (0.03) (0.08) (0.13) (0.19) (0.3) 
ln(Work force) 
 

0.31* 0.13* 0.44* 0.04 -0.01 0.03 -0.08 -0.02 -0.10 0.17 0.14 0.31 

(0.06) (0.06) (0.11) (0.02) (0.01) (0.02) (0.06) (0.03) (0.08) (0.14) (0.21) (0.32) 
ln(Value-added) 
  

0.22* 0.09* 0.31* -0.01 0.00 -0.01 0.73* 0.12 0.86* 0.75 0.75 1.5 

(0.05) (0.04) (0.07) (0.05) (0.01) (0.04) (0.17) (0.12) (0.19) (0.91) (2.14) (2.98) 
Annual average 
temperature 

0.09 0.04 0.14 0.84* -0.18 0.66* -0.05 -0.02 -0.07 0.7 0.74 1.44 

(0.22) (0.10) (0.32) (0.33) (0.10) (0.26) (0.16) (0.04) (0.19) (0.49) (1.23) (1.61) 
ln(Annual 
cooling days)  

-0.09 -0.04 -0.13 0.32* -0.07 0.26* -0.02 0.00 -0.02 0 -0.01 -0.01 

(0.06) (0.03) (0.09) (0.16) (0.05) (0.13) (0.04) (0.01) (0.05) (0.09) (0.14) (0.22) 
ln(Annual 
heating days)  

0.29 0.13 0.42 0.20 -0.05 0.15 0.63* 0.11 0.74* 0.24 0.28 0.52 

(0.04) (0.33) (0.07) (0.05) (0.05) (0.19) (0.23) (0.13) (0.01) (0.21) (0.48) (0.64) 
* Represents significance at the 5% level. 
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Table 5  
Simulated shares (%) of forecasted electricity consumption by region and use in 2020. 

 Manufacturing Agricultural Retail Residential Total 

Region Baseline 
Hypothet

ical 
Baseline 

Hypothet
ical 

Baseline 
Hypothet

ical 
Baseline 

Hypothet
ical 

Baseline 
Hypothet

ical 
Seoul 0.832 0.793 0.079 0.078 20.197 18.937 22.76 22.634 10.078 9.490 
Busan 3.029 3.212 0.728 0.856 5.720 6.470 6.937 7.028 4.357 4.705 
Daegu 2.450 2.338 0.457 0.395 3.996 3.793 4.751 4.74 3.196 3.057 
Incheon 5.064 5.365 0.753 0.872 4.551 5.119 5.41 5.474 4.786 5.147 
Gwangju 1.207 1.154 0.479 0.393 2.388 2.270 2.805 2.79 1.779 1.700 
Daejeon 1.128 1.051 0.194 0.169 3.105 2.933 2.913 2.892 1.984 1.869 
Ulsan 9.797 9.374 0.578 0.487 2.251 2.141 2.165 2.159 6.017 5.806 
Gyeonggi 21.203 19.747 23.493 19.412 22.644 21.208 23.846 23.71 22.015 20.628 
Gangwon 2.644 2.494 3.350 2.898 4.750 4.474 2.862 2.853 3.426 3.225 
Chungbuk 5.717 5.382 4.474 3.831 3.919 3.696 2.928 2.908 4.733 4.472 
Chungnam 14.387 15.238 11.371 13.138 4.996 5.627 3.971 4.01 9.836 10.607 
Joenbuk 4.843 4.511 7.979 6.767 3.664 3.462 3.492 3.472 4.381 4.109 
Joennam 7.511 7.955 16.432 19.285 3.683 4.149 3.401 3.435 5.997 6.503 
Gyeongbuk 12.235 13.080 9.919 11.432 6.290 7.098 4.692 4.753 9.239 10.039 
Gyeongnam 7.869 8.227 11.901 13.185 6.455 7.308 6.079 6.156 7.295 7.828 
Jeju 0.084 0.080 7.813 6.802 1.390 1.315 0.989 0.985 0.880 0.814 
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Table 6  
Forecasted electricity consumption (terawatts) for regions with electricity self-sufficiency and without self-sufficiency in 2020 for the 
baseline, 50%, 25% and 75% price-increase scenarios. 

 Regions Manufacturing Agricultural Retail Residential Total 
% change 

between 2012 
and 2020 

Baseline Self-sufficient 142.8 8.9 62.1 19.4 233.4 19.7 
 No self-sufficient 142.3 8.5 133.7 44.3 328.8 20.0 
Hypothetical         

50% Self-sufficient 150.6 10.1 67.3 19.6 247.7 27.1 
 No self-sufficient 133.2 7.1 120.8 43.8 304.9 11.3 

25% Self-sufficient 148.6 10.1 66.2 19.5 244.6 25.5 
 No self-sufficient 135.6 7.1 123.8 43.9 310.4 13.3 

75% Self-sufficient 152.7 10.1 68.5 19.6 250.9 28.8 
 No self-sufficient 130.7 7.1 118 43.8 299.9 9.3 
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Fig. 1. Simulation results of forecasted electricity demands for four use categories with 
regionally-uniform electricity pricing (baseline scenario) and with regionally-varying electricity 
pricing (25%, 50%, and 75% scenarios) during 2013 – 2020. 
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Fig. 2. Spatial variation in percentage differences in electricity demands between the 50% scenario and the baseline scenario in 2020. 

 

 

 

 


