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The Effects of R&D on Agricultural Productivity of Australian Broadacre 

Agriculture: A Semiparametric Smooth Coefficient Approach 

 

Abstract: This article analyses the role of research and development (R&D) in 

Australia's broadacre farming by using  the semi-parametric smooth coefficient 

model proposed by Hastie and Tibshirani (1993) and Li et al (2002) and a state-level 

dataset covering the period 1995 to 2007. While the conventional production 

function approach only captures the direct effects of R&D, this methodology 

captures both the direct impact of a change in R&D on output and the indirect impact 

through changes in efficiency of use of factor inputs in the production process.  The 

empirical results show that once both the direct and indirect effects are taken into 

consideration, R&D investments significantly increase outputs. The results also show 

that there are substantial variations in the effects of R&D on output across the states. 

Such variations need to be taken into account when designing policies for investing 

public R&D in agriculture. 

Keywords: Broadacre Agriculture, Semi-parametric smooth coefficient model, 

Productivity, Research and Development  

JEL Classification: C14, C23, D24 

1. Introduction 

There is broad consensus among economists and researchers that the growth in 

agricultural productivity has been playing a leading role in meeting the growing 

global food demand (Alston and Pardey 2014; Fuglie and Toole 2014; Pardey et al. 

2013). Over the past several decades, considerable research has been undertaken to 

analyse the impacts of research and development (hereafter, R&D) on total factor 

productivity (hereafter, TFP) in both the industrial and agricultural sectors. A number 

of studies provide empirical evidence that R&D is one of the primary sources of 

productivity growth (Alene 2010; Coe and Helpman 1995; Griliches 1998; Mullen et 

al. 2008). In agriculture, the role of public R&D in productivity has been recognized 

since the early studies of agricultural economics. For example, Schultz (1953) 
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estimates the returns to public R&D and attributes all of the productivity growth in 

agriculture to public investments in agricultural research. Similarly, Griliches (1964) 

estimates the Cobb-Douglas type agricultural production function while introducing 

a research and extension variable along with the conventional input variables.  

Recent studies have found a close correlation between investment in public R&D and 

TFP in agriculture. Studies such as Alston et al. (2011), Fuglie and Toole (2014) and 

Wang et al. (2013) provide evidence that R&D investments in agricultural research 

provide new knowledge and technologies that fuel improvements in agricultural 

productivity in US agriculture. Wang et al. (2013) has shown that R&D affects 

agricultural productivity only over the long-term. Changes in public R&D stocks 

have a significant impact on agricultural TFP growth. Similar evidence is also found 

for developing countries. For example, a study by Rahman and Salim (2013) in 

Bangladesh shows that R&D investment is one of the significant aspects that 

favourably affect TFP growth. Furthermore, Voutsinas and Tsamadies (2014) have 

found that R&D expenditure in Greek agriculture improves the rate of technological 

innovation, which affects long-run productivity growth. 

Productivity growth in agriculture has been an essential source of economic 

prosperity in Australia. The contribution of R&D expenditure to farm productivity 

growth is also evident in Australian agriculture. According to studies by Mullen 

(2007, 2010), investments in agricultural R&D and policies that affect agricultural 

R&D are central to improvements in agricultural productivity growth in Australia. 

Investments in R&D lead to a more effective use of existing resources and thereby 

increase productivity levels. Using historical data and standard time series 

techniques, Salim and Islam (2010) find that R&D affects long-run productivity 

growth in agriculture in Western Australia.  

In recent periods, there has been concern that the productivity growth in agriculture 

is slowing in developed countries. Australia has been facing slowing productivity 

growth in at least some sectors of agriculture (Islam et al. 2014; Khan et al. 2014; 

Sheng et al. 2014). Similar evidence of slowing productivity growth in recent periods 

has been seen in US agriculture (Ball et al. 2013). Piesse and Thirtle (2010) have 

also found a slowdown in TFP growth in agriculture in the United Kingdom. They 

mention a slowdown and retargeting of public R&D as one of the main factors 



4 

causing this productivity slowdown. Similarly, other studies also suggest that one of 

the primary reasons for slowing productivity growth in agriculture is that public 

investment in R&D has been declining over the past few decades (Bervejillo et al. 

2012; Mullen 2010; Pardey et al. 2013; Suphannachart and Warr 2011). These recent 

phenomena in agriculture have rekindled interest in investigating the relationship 

between public funding in agricultural R&D and productivity.  

The conventional estimation of effects between R&D and productivity generally 

focuses around country-level or state-specific (i.e., for a particular state) data, but fail 

to reflect state-level technological heterogeneity. Farms face heterogeneous R&D 

environments across states, and R&D likely has differential effects on agriculture 

across different states in Australia. The agricultural structure, physical environment 

and market circumstances are different from one state to another, which has 

implications for productivity performance variations across states. Therefore, state-

level variations need to be accounted for when estimating the impact of R&D on the 

productivity in Australian broadacre agriculture. This study aims to fill this empirical 

research gap in Australian agriculture.  

In addition, while it is widely perceived that R&D makes significant contributions to 

agricultural productivity growth, research has rarely considered non-neutral effects 

of R&D in the empirical models of agricultural TFP growth. Studies capture the 

direct effect of R&D expenditure on productivity, but they fail to capture the indirect 

effects through the efficiency with which factor inputs are used. Therefore, the 

heterogeneous impact of the R&D on input productivity has largely been neglected 

in the previous empirical estimations. Furthermore, estimates of the effects of R&D 

on productivity that have been performed by researchers who apply parametric 

models are generally based on the assumption that the error term is normally 

distributed. The non-neutrality of technical change and the non-normality of errors in 

parametric models may prompt biased estimates of the R&D impacts because they 

depend on presumptions of the functional form and the distribution of the error term 

that cannot be known a priori.  

Against theses backdrops, a number of studies have emerged in the broader 

economics literature that use semi-parametric or nonparametric approaches to 

address these problems (Mamuneas et al. 2006; Zhang et al. 2012; Zhao et al. 2014). 
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Parmeter et al. (2014) compared the parametric and nonparametric methods applying 

Norwegian dairy farm data and found that the nonparametric model provides 

improved out-of-sample prediction especially when employing the constrained 

estimator. The semi-parametric smooth coefficient model is one such empirical 

approach, and it has potential for the agricultural literature, particularly with regard 

to gaining a deeper understanding of the relation between R&D and TFP. The semi-

parametric estimator used to estimate the marginal effects of R&D is the kernel 

density estimator, which avoids the functional forms and distributional assumptions 

of the parametric models and permits nonlinearity in the model. The main advantage 

of using this recent methodology is that it permits all sorts of nonlinearities and 

interactions between the factors without requiring any (preliminary) parametric 

formulation. 

Unlike traditional inputs, such as capital, labour and materials, R&D is one of the 

environmental factors that characterize the production environment in general. A 

change in an environmental factor is likely to affect the productivity of the traditional 

inputs by changing the production environment (Zhang et al. 2012). Following Li et 

al. (2002) and Zhang et al. (2012), this study considers R&D as an important 

environmental variable that may not be capable of producing output directly but is 

likely to affect the ability of the farm to transform other inputs into outputs more 

effectively. Although conventional parametric models consider the effects of R&D as 

a neutral shift variable, the shift of the production function is more likely to be non-

neutral. There are some previous studies, for example Swamy (1970) and Kalirajan 

and Obwona (1995), that apply the varying coefficients regression model to capture 

the non-neutrality in terms of the observation- and input-specific response 

coefficients. However, they need restrictive assumptions in estimating their 

parametric model (Li and Racine 2007).  

This paper uses the semi-parametric smooth coefficient model proposed by Hastie 

and Tibshirani (1993) and Li et al. (2002) to investigate the impact of R&D on the 

productivity of Australia's broadacre farming in a flexible manner. This novel 

approach accommodates non-neutrality in the effect of R&D on productivity, 

allowing for varying effects on input elasticities. At the same time, it allows 

heterogeneities across observations and provides estimates of the marginal effects of 
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R&D on factor inputs and the output of each firm. Moreover, it estimates both the 

direct impact of a change in R&D on output and the indirect impact through changes 

in the efficiency of use of factor inputs in the production process.  

The remainder of the paper is organized as follows. Section 2 outlines the 

econometric methodology, beginning with parametric and Robinson’s semi-

parametric specifications, followed by the semi-parametric smooth coefficient 

model. Section 3 describes the data. Section 4 analyses the empirical results. Finally, 

Section 5 concludes.  

2. Methodology: A Semiparametric Smooth Coefficient Model 

In the standard literature, firm performance is modelled as a linear function of inputs 

and other firm level attributes. In practice, the Cobb-Douglas production function, 

Model 1, is perhaps the most widely used parametric regression model in applied 

research. With all variables measured in logarithms, the production relation being 

estimated to measure firm performance is:  

௜ݕ ൌ ଴ߙ ൅ ௜ݔ
ᇱߚ ൅ ௜߮ݖ ൅ ߳௜   (1) 

where y is output, x is a vector of firms inputs, z = R&D is the firm’s research and 

development expenditure,	ߚ is a vector of unknown parameters and ߳௜ is the 

identically and independently distributed error term. The ordinary least squares 

method can then be used to estimate the unknown parameters in Equation 1.  

There are, however, two major shortcomings with the standard Cobb-Douglas 

production function. First, it is necessary to specify the exact parametric form prior 

to estimation. Hence, it is likely that the presumed model may not be consistent and 

the inference may not be valid when the model is not correctly specified. In practice, 

the true parametric form is hardly ever known. Second, in the model, the z variable 

affects the productivity of all firms in an identical way and constrains the estimation 

to give constant marginal effects. It does not capture the effects of R&D on 

individual firms, even though effects may differ across firms and be variable for each 

firm.  
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This study considers nonparametric regression methods to address the concern about 

incorrect parametric specification in the case of modelling inputs and outputs. The 

Cobb-Douglas functional form is unable to capture the effects of firm characteristics 

on TFP through the efficiency with which factor inputs are transformed into output. 

A natural extension of this model that allows the firm characteristics to have a firm-

specific effect on TFP is a semi-parametric model. Recently, semi-parametric 

estimation techniques have drawn much attention among econometricians in the 

study of firm productivity and efficiency. 

This study uses Robinson’s (1988) semi-parametric partial linear model, denoted as 

Model 2, to extend the conventional production function with outputs and inputs 

measured in logarithms as follows: 

௜ݕ ൌ ௜ሻݖሺߙ ൅ ௜ݔ
ᇱߚ ൅ ߳௜   (2) 

where xi is a vector of inputs, ߚ is a vector of unknown parameters, and ݖ௜ is a vector 

of environmental variables that enter the model nonlinearly. The functional form of 

-ሺ൉ሻ is not specified and constitutes the nonparametric part of the model. Semiߙ

parametric models are a compromise between fully nonparametric and fully 

parametric specifications and, thus, are formed by combining parametric and 

nonparametric models. This specification is in line with the TFP model used in 

Griffith et al. (2004) where ߙሺݖ௜ሻ is regarded as TFP. The environmental variable, 

R&D, allows TFP growth to be affected in a flexible way without assuming any 

particular functional form of ݖ௜ variables.  

To estimate coefficients in the Robinson model, the basic idea is to first eliminate the 

unknown function ߙሺ൉ሻ. Taking expectations conditional on ݖ௜ for both sides of (2),  

௜ሻݖ|௜ݕሺܧ ൌ ௜ሻݖሺߙ ൅ ߚ௜ሻᇱݖ|௜ݔሺܧ ൅  ௜ሻݖ|ሺ߳௜ܧ

Subtracting this expression from (2) and assuming ܧሺ߳௜|ݖ௜ሻ ൌ 0 yields; 

௜ݕ െ ௜ሻݖ|௜ݕሺܧ ൌ ሺݔ௜ െ ߚ௜ሻሻᇱݖ|௜ݔሺܧ ൅ ߳௜ 

In shorthand notation, 
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෤௜ݕ ൌ ෤௜ݔ
ᇱߚ ൅ ߳௜ 

Now, ߚ can be estimated by applying the method of least squares: 

መߚ ൌ ൥෍ݔ෤௜ݔ෤௜
ᇱ

௡

௜ୀଵ

൩

ିଵ

෍ݔ෤௜

௡

ଵ

 ෤௜ݕ

where ߚመ  depends on unknown moments ܧሺݕ௜|ݖ௜ሻ and ܧሺݔ௜|ݖ௜ሻ which can be estimated 

using a nonparametric regression method. Then, replacing them in the above 

equation yields consistent estimates of ߚመ  without modelling ߙሺݖ௜ሻ explicitly. Finally, 

௜ݕ௜ሻ can be estimated nonparametrically by regressing ሺݖሺߙ െ ௜ݔ
ᇱߚመሻ on ݖ௜. Although 

the Robinson model is widely used in applied settings and tends to be simpler to 

interpret than fully nonparametric models, it partially relies on parametric 

assumptions, and thus, the concerns regarding misspecification and inconsistency are 

as pertinent for this model as they are for parametric models.  

Robinson’s (1988) semi-parametric partial linear model introduces the ݖ௜ vector into 

the regression analysis in a fully flexible manner to explain TFP growth. However, 

this model only allows the R&D variable to have a neutral effect on the production 

function, that is, it only shifts the level of the production frontier and does not affect 

the marginal productivity of inputs. In other words, this semi-parametric model does 

not consider indirect effects of the R&D variable through factor productivity 

(independent of X variables). Moreover, because it partly depends on parametric 

assumptions, the issue of misspecification and inconsistency are still relevant. 

This study also considers a more general semi-parametric regression model, namely, 

the semi-parametric smooth coefficient model proposed by Hastie and Tibshirani 

(1993) and Li et al. (2002). Some studies, such as those of Ahmad et al. (2005) and 

Zhang et al. (2012), have applied a similar methodology in their productivity 

analysis in industrial sectors. The semi-parametric smooth coefficient model, Model 

3, is given by 

௜ݕ ൌ ௜ሻݖሺߙ ൅ ௜ݔ
ᇱߚሺݖ௜ሻ ൅ ߳௜   (3) 
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where both ߙሺݖ௜ሻ and ߚሺݖ௜ሻ denote vectors of unspecified smooth functions of ݖ௜. 

This is one of the most flexible models, and it nests a linear model and a partially 

linear model (Robinson’s semi-parametric model) as special cases. When ߚሺݖሻ ൌ  ,ߚ

this model collapses to the semi-parametric partially linear model, and for a given 

level of an R&D variable (i.e., when ߚሺݖሻ ൌ ሻݖሺߙ and ߚ ൌ  ଴), the semi-parametricߙ

smooth coefficient model reduces to constant coefficient parametric Cobb-Douglas 

functional form (Hartarska et al. 2011; Li and Racine 2007).  

Specifying input coefficients as unknown smooth functions of ݖ௜, this semi-

parametric smooth coefficient model allows indirect effects of the z variable via the 

input elasticities. For example, if labour and capital are conventional inputs and ݖ௜ 

(R&D expenditures) is an environmental variable, then Model 3 suggests that the 

input coefficients of labour and capital may directly vary with firm’s R&D. Thus, 

this model proposes that the marginal productivity of each input, say labour and 

capital, depends on the firm’s ݖ௜ variables, such as R&D.  

In addition, this generalized model considers the non-neutral impact of R&D on 

output, capturing the direct effect of ݖ௜ variables on TFP and the indirect effects 

through the efficiency with which factor inputs are used. Furthermore, it provides 

greater flexibility in the functional form than a parametric linear model or a semi-

parametric partially linear model. This functional flexibility allows the model to 

address the non-neutrality in the production function, which has plagued many 

applied studies in the past (Li and Racine 2007, 2010). Furthermore, it does not 

require a sample size as large as that for a nonparametric model. Model 3 can be 

expressed more compactly as  

௜ݕ ൌ ௜ሻݖሺߙ ൅ ௜ݔ
ᇱߚሺݖ௜ሻ ൅ ߳௜ ൌ ሺ1, ௜ݔ

ᇱሻ ൬
௜ሻݖሺߙ
௜ሻݖሺߚ

൰ ൅ ߳௜ ≡ ௜ܺ
ᇱߜሺݖ௜ሻ ൅ ߳௜ (4) 

Pre-multiplying (4) by Xi and taking expectations conditional on ݖ௜ yields 

ሺܧ ௜ܺݕ௜|ݖ௜ሻ ൌ ሺܧ ௜ܺ ௜ܺ
ᇱ|ݖ௜ሻߜሺݖ௜ሻ 

Assuming ܧሺ ௜ܺ߳௜|ݖ௜ሻ ൌ 0 and following Li et al. (2002) and Li and Racine (2010), 

the kernel method can be employed to estimate the following locally constant least 

squares estimator for ߜሺݖሻ as 
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ሻݖመሺߜ ൌ ቀ∑ ௝ܺ ௝ܺ
ᇱܭ ቀ

௭ೕି௭

௛
ቁ௡

௝ୀଵ ቁ
ିଵ
ൈ ቊ෍ ௝ܺݕ௝ܭ ቀ

௭೔ି௭

௛
ቁ

௡

௝ୀଵ
ቋ (5) 

where ܭሺ൉ሻ is a kernel function; h is a smoothing parameter or bandwidth, which can 

be selected via the least squares cross validation method (Li and Racine, 2007); and 

 ௜ is the datum at which the kernel function is evaluated. The semi-parametricݖ

varying coefficient model has the advantage that it allows greater flexibility in 

functional forms than a parametric linear model or a semi-parametric partially linear 

model. At the same time, it avoids much of the “curse of dimensionality” problem 

(Ahmad et al., 2005).  

3. Data 

This study uses state-level agricultural input and output data collected from annual 

farm surveys provided by ABARES (Australian Bureau of Agricultural and Resource 

Economics and Sciences) for the period 1995-2007. The dataset consists of 

observations on quantities of agricultural inputs, outputs and values of each state for 

every year during the period. Four major inputs are used: land, labour, capital, and 

materials. The aggregate value of agricultural production of broadacre agriculture is 

the measure of output. Data on public investment in agricultural R&D is obtained 

from Professor John Mullen, who derives the data from the Australian Bureau of 

Statistics’ (ABS) biannual Australian Research and Innovation surveys.1 The R&D 

expenditure in broadacre agriculture alone is calculated based on broadacre 

agriculture’s share in the total value of agricultural production.  

All estimates except R&D are state-level per farm averages, and all financial 

estimates are expressed in 2011–2012 Australian dollars as per data sources from 

AgSurf.2 In the dataset, Land includes all land areas in hectares operated on 30 June 

by the farm. Labour represents the total number of weeks worked by all farm 

workers, including hired labour. Capital includes the value of all assets used on the 

                                                            
1 Public agricultural R&D includes expenditure by Australian, state and territory governments as 
well as research institutions and universities. Funds from research and development 
corporations (excluding grower levies) and other external funders for agriculture (excluding 
research in fisheries and forestry) are also included. 
2 AgSurf reports state-level per farm average data from the Australian agricultural and grazing 
industries survey (AAGIS) and Australian dairy industry survey (ADIS) conducted by ABARES 
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farm, including leased equipment but excluding machinery and equipment either 

hired or used by contractors. ABARES uses the market value of livestock/crop 

inventories and replacement value less depreciation for plants and machinery in 

calculating the value of capital. Materials includes farm expenditures on seeds, crop 

and pasture chemicals, fuel oil and grease, livestock materials, contracts (cropping 

and livestock), fertilizer, shearing crutching and other materials and services. The 

final sample includes 65 observations (5 states over 13 years) with complete records 

for the variables mentioned above.  

Studies suggest that there is a lag relationship between R&D and productivity 

growth, and a credible estimate of the effects of R&D on subsequent productivity 

relies on specifying the lag structure (Griliches 1998). There are various lag 

structures used in studies in estimating the impacts of R&D expenditure on 

productivity, which may vary between 10 to 30 years to approximate the right lag 

structure. However, the short data series restricts us from directly modelling the 

length and shape of the R&D lag in this study. As one of the simplest ways of 

accommodating the lag structure in empirical studies, TFP is specified as a function 

of knowledge stocks, which are determined by current and past R&D expenditures 

(Griliches 1979; Thirtle and Schimmelpfennig 2008). This thesis constructs a simple 

R&D knowledge stock variable using a perpetual inventory model (PIM). In this 

method, R&D stocks are calculated from flow of R&D expenditures based on the 

following equation:  

௧ܭ ൌ ௧ܦ&ܴ ൅ ሺ1 െ  ௧ିଵ   (6)ܭሻߜ

where ܭ௧ is the R&D knowledge stock at time t, ܴ&ܦ௧ is the agricultural R&D 

expenditure at the time t and ߜ is the depreciation rate for R&D knowledge stock.  

The initial stock is calculated as:  

଴ܭ ൌ
଴ܦ&ܴ
݃ ൅ ߜ

 

where ܴ&ܦ଴ is the R&D expenditure in the first year available, and ݃ is the average 

annual logarithmic growth of R&D expenditure for every state over the period of 
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analysis. This PIM method is used as a simple alternative to a complex time-lag 

structure between current productivity and the flow of past R&D investments.  

However, a limitation of the PIM method is the need to choose a depreciation rate, 

which varies within the range 0.05 to 0.10 across econometric studies in agriculture 

(Thirtle et al. 2008). This research sets a depreciation rate of R&D fixed at 8 per 

cent. Table 1 reports the summary statistics for the natural logarithms of the 

variables. Figure 1 shows state-level heterogeneity in output means. As can be seen 

from the figure, there are large variations in terms of output across states. 

Table 1: Summary statistics 

Variable Obs Mean Standard deviation Minimum Maximum 

ln Output 65 12.7858 0.32580 12.07448 13.46515 

ln Capital 65 14.6511 0.37637 14.05605 15.52822 

ln Labour 65 4.62423 0.13361 4.35671 4.89035 

ln Land 65 8.34441 1.12009 6.40853 9.60407 

ln Materials 65 11.0072 0.37565 10.30189 12.08648 

ln R&D 65 14.4151 0.87196 12.98421 15.68413 

Source: Authors’ own calculations 

Figure 1: State-level output variations 
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4. Empirical Results 

In this section, results are presented from the different production function 

specifications mentioned in the methodology section, starting with a simple Cobb-

Douglas model and generalizing it stepwise through a semi-parametric partial linear 

model and a semi-parametric smooth coefficient model. These models are nested, 

which means that the semi-parametric smooth coefficient model can reduce with 

appropriate restrictions to the traditional Cobb-Douglas production model with 

constant elasticities. Hence, the specifications can be tested against each other.  

Table 2 shows the results from Models 1, 2 and 3. Model 1 is a simple Cobb-Douglas 

production function where (log) output is modelled as a linear function of (log) factor 

inputs and is extended to include an environmental variable, (log) R&D investment. 

The R&D variable is introduced additively and parametrically and the model is 

estimated using OLS. The estimates of the conventional Cobb-Douglas production 

specifications are reported in column 2 under the heading Model 1. The results show 

that the estimated coefficients of two major inputs, capital and labour, are both 

positive and significant. The estimated coefficient of R&D captures the marginal 

effect of R&D on productivity, which is constrained to be the same across the states. 

The results do not suggest R&D has a significant influence on productivity growth.  

Model 2, which estimates Robinson’s semi-parametric partial linear model is used to 

bring flexibility into the specification. It allows the effects of R&D in a flexible 

manner and captures the state-specific impact of the R&D variable on productivity 

through TFP.3 In this model, (log) output is modelled as a linear function of (log) 

factor inputs as in Model 1, and the R&D variable enters the model 

nonparametrically by introducing the intercept term as an unknown (flexible) 

function of the R&D variable. Model 2 captures the non-linearity in the relation 

between the output and R&D. The estimates of the semi-parametric partially linear 

model are presented in column 3 in Table 2, which shows that the coefficients of the 

                                                            
3 Model 2 is estimated with semipar package of STATA software where the variable R&D enters 
the model nonlinearly. The Gaussian kernel function is used to estimate the regressions 
nonparametrically in a local weighted polynomial fit. In addition, in Model 2 intercept term 
could not be identified separately from the unknown function ߙሺ∙ሻ. 
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capital and labour inputs are positive and significant, as in Model 1. In addition, it 

shows a negative but insignificant partial effect of the environmental variable R&D. 

Table 2: Parametric and semi-parametric regression coefficients: pooled data 

Variables Model 1 Model 2 Model 3 

 OLS Robinson’s 
Semi-parametric 

Semi-parametric 
smooth coefficients 

Capital 0.251** 0.290*** 0.3136*** 

 (0.113) (0.0790) (0.1144) 

Labor 1.254*** 0.664** 0.8298** 

 (0.315) (0.303) (0.1477) 

Land 0.0152 -0.0849** 0.0988 

 (0.0361) (0.0368) (0.0884) 

Materials 0.119 -0.0386 0.00832 

 (0.130) (0.108) (0.1267) 

R&D  -0.0696 -0.1153 0.0653* 

 (0.0443) (.0717) (0.0386) 

Constant 2.879**  3.406** 

 (1.190)  (0.5530) 

Observations 65 65 65 

R-squared 0.801 0.416 0.9303 

Robust standard errors in parentheses in Model 1 & 2. Model 3 reports bootstrapped standard errors. *** 

p<0.01, ** p<0.05, * p<0.1 

Finally, Model 3, which is termed the semi-parametric smooth coefficient model, 

brings more flexibility in the specifications where both intercept and input 

coefficients are unknown, and it provides a smooth function of the environmental 

variable R&D. In both Models 1 and 2, R&D shifts the production frontier neutrally, 

i.e., the input elasticities are invariant with respect to R&D, although in Model 2, 

R&D allows TFP growth to be affected in a flexible manner.  

In Model 3, R&D is allowed to non-neutrally affect the production function, where 

both the intercept and slope coefficients are modelled as an unknown smooth 

function of the R&D variable.4 Thus, in this model, the input coefficients, i.e., the 

                                                            
4 Model 3 is computed using the np package of the R software (version 3.1.0 "Spring Dance"). The 
smooth coefficient Kernel Regression npscoef functions is used with the bandwidth selection 
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elasticity of output with respect to capital, labour, land, and materials are allowed to 

vary with respect to R&D. This model is estimated nonparametrically using the semi-

parametric smooth coefficient model proposed by Li et al. (2002) and Li and Racine 

(2010), where the local constant least squares procedure is applied to estimate these 

functional coefficients. Table 2 reports the mean values for Model 3, as it gives rise 

to observation-specific estimates (detailed results of Model 3 are reported in Table 

3).  

There are some variations in terms of magnitude, sign and significance across the 

three different models presented in Table 2. The elasticities of output with respect to 

the capital (ߚመଵ) and labour (ߚመଶ) inputs are positive and significant across each of the 

three specifications. The marginal effect of R&D on output is positive and significant 

only in Model 3. The negative effects of R&D in both the Cobb-Douglas parametric 

model (Model 1) and Robinson’s semi-parametric model (Model 2), though 

insignificant, are inconsistent with conventional expectations.  

Model 3 as a local-linear regression follows the rule-of-thumb that the bandwidth 

needs to be less than twice the standard deviation (ߪ௭) of the continuous variable to 

enter the model non-linearly.5 This implies that the R&D variable does not enter the 

model in the linearly and additively separate fashion assumed in the conventional 

parametric specification – Model 1. These statistical results are economically 

meaningful and make the semi-parametric smooth coefficient model (Model 3) more 

appealing than the corresponding parametric model or Robinson’s semi-parametric 

model. 

Table 3 summarizes the detailed results from the semi-parametric smooth coefficient 

production specification - Model 3. Because Model 3 gives observation-specific 

estimates, the summary results are reported at the mean, 1st Quartile (25th percentile), 

Median (2nd Quartile), and 3rd Quartile (75th percentile), along with minimum and 

maximum values.  The results show a large variation in the marginal impacts of 

environmental variable R&D on farm performance in the semi-parametric smooth 

coefficient model. This heterogeneity in impact suggests that the traditional Cobb-
                                                                                                                                                                         
npscoefbw function, bwmethod = “cv.ls” (least squares cross validation), ckertype (continuous kernel 
type) = “gaussian”. Semi-parametric fits of the estimates are obtained using the bootstrapped 
standard error. 
5 2 ൈ ௭ߪ ൌ ݈ܾ݁ܽ݅ݎܽݒ	ܼ	ݎ݋݂	݄ݐ݀݅ݓ݀݊ܽܤ	݀݊ܽ	1.7438 ൌ 0.2057. 
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Douglas production model capturing the average (or mean) impact of the R&D 

variable is not appropriate. The marginal effects of R&D on the elasticities of the 

factor inputs at the mean and at each of the three quartile values suggest that impact 

of R&D on production technology is not input neutral.  

The environmental variable, R&D, affects the marginal productivity of inputs in a 

non-neutral manner, as indicated in Table 3. It has both a direct effect through TFP 

 with which the inputs (መ௜/∂lnܼߚ∂) and an indirect effect via the productivity (መ଴/∂lnܼߚ∂)

are used in the production process. The marginal effect of the environmental variable 

on overall productivity, ∂lnY⁄∂lnܼ, (here ܼ is R&D) is given by 

 

߲݈ܻ݊
߲݈ܼ݊

ൌ
መ଴ߚ߲
߲݈ܼ݊

ฑ
൅
መଵߚ߲
߲݈ܼ݊

݇ ൅
መଶߚ߲
߲݈ܼ݊

݈ ൅
መଷߚ߲
߲݈ܼ݊

ܽ ൅
መସߚ߲
߲݈ܼ݊

݉
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ

																		ሺ7ሻ 

where ݇ is (log) capital, ݈ is (log) labour, ܽ is (log) land and ݉ is (log) materials.  

The seventh column of Table 3 reports the marginal productivity of R&D (i.e., the 

elasticity, ∂lnY⁄∂lnܼ). R&D has a positive and statistically significant effect on output 

with a mean value of 0.0653, which means that for a 1 per cent increase in R&D 

investment, the output responds positively by 0.0653 per cent, on average. 

Direct Effect Indirect Effects
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Table 3: Summary of the results for semi-parametric smooth coefficients  

1 2 3 4 5 6 7 8 9 10 11 12 

Variable ߚመ଴ ߚመଵ ߚመଶ ߚመଷ ߚመସ ∂lnY⁄∂lnܼ ∂ߚመ଴/∂lnܼ መଵ/∂lnܼߚ∂ መଶ⁄∂lnܼߚ∂ መଷ⁄∂lnܼߚ∂ መସ⁄∂lnܼߚ∂

Mean 3.406 0.3136 0.8299 0.0988 0.0083 0.0653 5.264 0.0136 0.0807 -0.1995 0.1555 

 (0.5530) (0.1144) (0.1477) (0.0884) (0.1267) (0.0386) (1.2619) (0.0796) (0.2752) (0.1123) (0.0867) 

1st Qu. 2.088 0.0357 0.4866 -0.052 -0.262  0.0435 -1.281 -0.4573 -0.7503 -1.1110 -0.4238 

 (0.0528) (0.0291) (0.0921) (0.0382) (0.0436) (0.0135) (0.9957) (0.0305) (0.1395) (0.1030) (0.0721) 

Median 3.351 0.3566 1.1284 0.0802 -0.110 0.0521 4.543 0.1913 0.3342 -0.2201 -0.1123 

 (0.2654) (0.0613) (0.1806) (0.0277) (0.0621) (0.0081) (0.9014) (0.1330) (0.2270) (0.0306) (0.2020) 

3rd Qu. 3.809 0.5925 1.5343 0.2994 0.2822 0.0728 11.440 0.4328 1.1600 -0.0664 0.6140 

 (1.2196) (0.0819) (0.2573) (0.0177) (0.0432) (0.0115) (1.1288) (0.0829) (0.3990) (0.1965) (0.0386) 

Min -3.077 -0.188 -0.891 -0.169 -0.406 -0.1084 -10.490 -1.4270 -6.6310 -1.4330 -1.2170 

 (0.0537) (0.0004) (0.0890) (0.0169) (0.0261) (0.0334) (1.3571) (0.2192) (0.1580) (0.1375) (0.4321) 

Max. 9.738 0.7167 1.9141 0.3811 0.6059 0.5199 27.510 0.8374 3.4310 0.3567 1.4320 

 (1.0442) (0.0234) (0.0992) (0.0206) (0.0814) (0.2429) (7.870) (0.1580) (0.6602) (0.0066) (0.2425) 

Bootstrapped  standard errors in parentheses 
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The results also show that there is some variation in the marginal effects of R&D on overall 

productivity, with a range of effects from -0.11 per cent to 0.52 per cent. These marginal 

effects are the combined effect of both direct and indirect effects of R&D on productivity. 

The results reported in column 8 show substantial heterogeneity in the direct effects of R&D 

on TFP (∂ߚመ଴/∂lnܼ). This article follows the residual based wild bootstrap method to estimate 

standard errors in the semi-parametric smooth coefficient model.6  

The marginal effects of R&D on the factor productivity of inputs vary across the inputs as 

well as over the observations in the sample. On average, the effects of R&D on input 

productivity are 0.0136 per cent, 0.0807 per cent, -0.1995 per cent and 0.1555 per cent for 

capital, labour, land and materials, respectively. These results indicate that all inputs except 

land have positive contributions of R&D to productivity, and the effect is biased towards the 

increased productivity of materials. The greatest variation is found in the marginal effect of 

R&D on the contribution of labour to output (∂ߚመଶ⁄∂lnܼ), with minimum and maximum values 

of -6.63 per cent and 3.43 per cent, respectively.  

Figure 2 plots the partial effects for each observation in the sample ordered by the value of 

the estimated coefficient, along with bootstrapped confidence bounds for each of the partial 

effects. The advantage of this type of plot is that it shows statistical significance for the 

partial effect of each observation.7 Here the plot shows substantial heterogeneity in the 

coefficients of the observation-specific partial effects of capital (ߚመଵ), labour (ߚመଶ), land (ߚመଷ) 

and R&D (∂lnY⁄∂lnܼ). For most of the observations the lower bounds of the input 

coefficients, ߚመଵ, ߚመଶ, and ߚመଷ, are greater than zero, indicating positive and statistically 

significant estimates of output elasticities with respect to capital, labour and land. Turning to 

the marginal effects of R&D, ∂lnY⁄∂lnܼ (where Z is R&D), Figure 2 also shows a plot of the 

marginal effects of the R&D. It is found that although R&D has both positive and negative 

effects on output, the effect at the mean is positive and statistically significant. Therefore, 

                                                            
6 Following steps are followed: (i) Obtain fitted residuals, εො୧, from the sample; (ii) Generate wild 
bootstrap disturbance, ε୧

∗, such that the distribution of two points is as follows: ε୧
∗ ൌ aεො୧ with probability 

r ൌ ሺ√5 ൅ 1ሻ/ሺ2√5ሻ and ε୧
∗ ൌ bεො୧ with probability 1 െ r, where a ൌ െሺ√5 െ 1ሻ/2 and b ൌ ሺ√5 ൅

1ሻ/2, as suggested by Mammen (1993); (iii) Resample the response variable y୧
∗ based on the bootstrapped 

disturbance, ε୧
∗; (iv) Refit the model using the fictitious response variables; and (v) Repeat steps 2 and 4 a 

statistically significant number of times, say, B=99. 
7 The following procedure is followed to construct these plots. For any given estimate, say, ߚመଵ, ߚመଵ is 
plotted against ߚመଵ, which plots ߚመଵ along the 45 degree line. Then, to obtain the confidence bounds the 
standard error is added (subtracted) twice from ߚመଵ, which gives the upper (lower) confidence bounds. 
The upper and lower confidence bounds are plotted against ߚመଵ. 
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only considering the impact of R&D on the average can be misleading when there is non-

neutrality in the effects of R&D investment. 

Figure 2: Semi-parametric fits: estimates with confidence intervals  

 

To check the robustness of the estimates, we treat the dataset as a panel (repeated cross 

section over periods) and use both the fixed effects and the semi-parametric smooth 

coefficient model. These panel specifications control state-level unobserved fixed effects in 

analysing the data. Table 4 presents estimates of the parametric (fixed effects) and semi-

parametric smooth coefficient models (plot of the marginal effects of R&D based on panel 

data is reported in appendix Figure A.1). Like the OLS model, the fixed effects model shows 

that the input coefficients for both capital and labour are positive and significant and that the 

R&D coefficient is negative but insignificant. In turn, the partial effect of R&D is positive 

and significant for the semi-parametric smooth coefficient model with panel data. These 

results suggest the estimates are robust for panel data as well. 

Table 4: Fixed effects and semi-parametric smooth coefficients: panel data 
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Variables Fixed Effects Model Semi-parametric smooth 

coefficient model 

Capital 0.346* 0.2889** 

 (0.162) (0.0886) 

Labor 0.856* 0.8525** 

 (0.323) (0.284) 

Land 0.0457 0.1433 

 (0.214) (0.0834) 

Materials -0.0590 0.1154 

 (0.176) (0.0844) 

R&D  -0.140 0.1024* 

 (0.182) (0.0507) 

Constant 7.477** 1.0497 

 (2.230) (1.5153) 

Observations 65 65 

R-squared 0.590 0.9048 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Several model specification tests are applied to formally test for the correct specification. 

Firstly, to test the parametric specification of Model 1, the Ramsey RESET model 

specification test is used. The test using powers of the independent variables produces a 

significant test statistic F (12, 48) = 4.00 with Prob > F = 0.0003 for specification error. This 

test suggests rejection of the null hypothesis that the model has no omitted variables, and it 

indicates that the parametric specification is not a correct specification. Secondly, Hardle and 

Mammen (1993) specification test is implemented to check whether the nonparametric fit can 

be approximated by a polynomial fit in any order. Absence of rejection of the null (i.e., 

“accepting” the parametric model) means that the polynomial adjustment is at least of the 

degree that has been tested. The test statistics reported in Table 5 show that the parametric 

model could be approximated with a polynomial fit of degree 3 of R&D. 

                                                            
8 The pseudo R-squared is derived as the square of the Pearson product moment correlation coefficient, 
r. This correlation coefficient is based on the correlation between the predicted values and the actual 
values in the model, which can range from -1 to 1, and so the square of the correlation then ranges from 
0 to 1.  
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Table 5: Hardle and Mammen’s (1993) specification test 

H0: Parametric and nonparametric fits are not different 

Polynomial Degree Approximate P-value Decision 

1 0.0 Linear approximation rejected 

2 0.07 Quadratic approximation rejected 

3 0.21 Cubic approximation cannot be rejected 

Thirdly, to choose the preferred model, we also use the Cai, Fan and Yao model specification 

test proposed by Cai et al. (2000). This test is used to determine which model best fits the 

data between the parametric and smooth semi-parametric models. This test is based on a 

comparison of the residual sum of squares (RSS) from both parametric and semi-parametric 

fittings. The test statistic is defined as  

௡ܶ ൌ
൫ோௌௌ೛ೌೝೌିோௌௌೞ೐೘೔೛ೌೝೌ൯

ோௌௌೞ೐೘೔೛ೌೝೌ
ൌ

ோௌௌ೛ೌೝೌ
ோௌௌೞ೐೘೔೛ೌೝೌ

െ 1  

where a large value of ௡ܶ suggests rejection of the null hypothesis. A nonparametric bootstrap 

approach is used to evaluate the p-value of the test. The bootstrapped test statistic ௡ܶ
∗ is 

calculated from the generated bootstrap residuals from the semi-parametric fit. The p-value of 

the test is simply the relative frequency of the event ௡ܶ
∗ ൒ ௡ܶ in the bootstrap samples. The 

goodness-of-fit test statistics suggest rejecting the null hypothesis that both the parametric 

and nonparametric fittings are the same with a p-value equal to 0.00. Hence, the semi-

parametric smooth coefficient model is the preferred specification in this case. This result 

confirms that the production function is of the variable coefficient type and that the impact of 

R&D on output is non-neutral and input specific. Therefore, the semi-parametric smooth 

coefficient model is more appealing because of its ability to capture both direct and indirect 

effects of the environmental variable, R&D.  

Finally, a likelihood ratio test is also performed for adding a time variable to the model. The 

test gives the likelihood ratio test statistic, a chi-square of 0.53 with one degree of freedom, 

as well as the associated p-value of 0.4658 (LR chi2(1 = 0.53; Prob > chi2 = 0.4658). Thus, 

according to the data, it cannot be rejected the null hypothesis that the model excludes a time 

variable. The results show that adding time as a predictor variable does not result in a 

statistically significant improvement in model fit. Moreover, an F test is performed to see if 

time-fixed effects are needed when running a fixed effect model. The null is that no time-
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fixed effects are needed and that all-year dummies are jointly non-significant. In the case of 

our sample, the test statistic is 1.55 with a p-value 0.3404 (F (4, 4) = 1.55; Prob > F = 

0.3404). This indicates that the sample data are compatible with the null hypothesis that no 

time-fixed effects are needed in the model. 

These specification tests generally reject the parametric specifications in favour of more 

flexible counterparts. This result is consistent with studies that apply similar methodologies 

but perform the tests in the manufacturing sector. For example, Li et al. (2002) use the 

nonparametric kernel method to estimate the semi-parametric varying coefficient model with 

China’s non-metal mineral manufacturing industry data. They find that the semi-parametric 

varying coefficient model is more appropriate than either a parametric linear model or a semi-

parametric partially linear model. Similarly, using a provincial-level dataset Zhang et al. 

(2012) suggest that the semi-parametric model yields outcomes that are more intuitive and 

have fewer economic violations than the parametric counterpart in China’s high technology 

industry.  

5. Conclusion 

The conventional econometric approaches ordinarily produce point estimates of the effect of 

R&D on the productivity of the average unit of analysis assuming implicitly that 

environmental variables influence productivity neutrally, through the TFP alone, and the 

differential effect of R&D on factor inputs is not recognized. As a result, the policy 

implications for R&D investment turn into a one-size-fits-all sort of strategy. Against this 

backdrop, this article uses a novel econometric methodology, the semi-parametric smooth 

coefficient model to analyse the effect of R&D on productivity in Australian broadacre 

farming. This approach gives rise to the observation-specific estimates of input coefficients. 

Using state-level average farm data, estimates are provided of the state-level effect of R&D 

on productivity and the marginal productivity with which factor inputs are used in the 

production process.  

The results show that the R&D does not have the same effect on TFP and productivity at the 

average farm level across states within Australia. By specifying intercept and slope 

coefficients as a function of the environmental variable, R&D, the model gives rise to 

significant variation in the state-level effects of R&D. Therefore, this study confirms the non-

neutrality in the effects of R&D on productivity. The estimates of the effect of R&D 
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investments on productivity in broadacre farming are more useful than that of parametric 

estimates in terms of policy implications. First, the results suggest that Australia may enhance 

its farming productivity by improving investment in public R&D. Second, the large variations 

in the state-level average farm effects of R&D on productivity imply that initiation of the 

same R&D policy in different states can have considerably diverse effects on the productivity 

of inputs. Furthermore, R&D expenditure is found to have a direct impact on productivity and 

indirect effects through impacting the marginal productivity of factor inputs such as labour 

and capital. Importantly, none of these issues come into consideration in the parametric 

regression specifications of modelling the impact of R&D on productivity. This is the 

fundamental point of interest of using this novel methodology.  

Finally, the results provide evidence that the effect of environmental variables on economic 

performance needs to be revisited. Specifically, consideration should be given to the 

variations in the effect of R&D on farms. This study has limitations in that it could not 

consider the effect of private R&D due to data unavailability. However, other studies show 

that increased spending on public research appears to supplement private research in 

agriculture (Wang et al., 2013). Another limitation is that the within-state variations in the 

effects of R&D are not estimated, as data are available only at the aggregate state level. In 

addition, the possibility of errors of measurement with the state-level public R&D data cannot 

be ruled out. Nevertheless, this research explores the relationship from a novel 

methodological point of view and broadly confirms the results of previous studies regarding 

the average impact of R&D on productivity, and it provides the additional insight that R&D 

affects productivity non-neutrally and differentially across farms. 
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Appendix 

Figure A.1: Semi parametric fits with panel data  
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