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Nonparametric Regression under
Alternative Data Environments

Abdoul G. Sam and Alan P. Ker *
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Abstract

This paper proposes a momparametric bias-reduction regression estimator
which can accommodate two empirically relevant data environments. The first
data environment assumes that at least one of the predictor variables is dis-
crete. In such an empirical framework, a “cell” approach, which consists of
estimating a separate regression for each discrete cell has generally been em-
ployed. Howewver, the “cell” estimator may be inefficient in that it does not
include data from the other cells when estimating the regression function for a
given cell. The second data environment assumes that the researcher is faced
with a system of regression functions that belong to different experimental units.
In each case, the new estimator attempts to reduce estimation error by incor-
porating extraneous data from the remaining experimental units (or cells) when
estimating a given individual regression function. Consistency of the proposed
estimator is established and Monte Carlo simulations demonstrate its strong
finite sample performance.

Keywords: Extraneous information, bias reduction, correction factor, data
environments.
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1 Introduction.

Consider {(X;,Y;)}™, a sequence of independently and identically distributed
RP*t'_valued random vectors where Y; represents the response variable and X; an
RP-valued vector of predictor variables. In this paper, we concern ourselves with
the estimation of the conditional mean E(Y|X = z). In doing so the following

specification is assumed:

Y; = m(X;) + o€ (1)

where ¢; is a zero-mean unit variance independently and identically distributed error
process. For notational simplicity we will allow x; and ¥; to denote both the random
variables X; and Y; and their sample counterpart. Parametric estimation of the con-
ditional mean requires an assumption about the form of the data generating process
(DGP). This assumption is the source of both the strength (y/n-convergence rate
under the null) and weakness (mispecification under the alternative) of parametric
methods. On the other hand, nonparametric regression methods such as kernel esti-
mators have become widespread because they eliminate the issue of mispecification
and are consistent under mild regularity conditions.

Let z; in (??) be R-valued, then the Nadaraya-Watson (NW) estimator of the

conditional mean is given by:

2oy e yiln (i — 1)
) = S R — 2)

where h is the smoothing parameter and Kj(u) = + K (%) withK (u) being the Kernel

(2)

function. Denoting us = [ 22K (2)dz and R(K) = [ K?(z)dz, the standard properties
of the NW estimator are:

B(in(x)) — m(z) = SuahPm(z) + 2 ()

f'(z)
f(@)

+ o(h?)



Var(m(z)) = o*(nhf) 'R(K) + O(h/n)

where f is the probability density function of z. Since the bias is O(h?) and h = h(n)
goes to 0 as n becomes large, it is follows that the NW is consistent.

However, the downside of the NW estimator is its finite sample bias which can
be quite large. In empirical applications, the finite sample bias constitutes the main
concern when using Kernel estimators in general. Several papers have proposed es-
timators which reduce (Hardle and Brownman, 1988; Hjort and Glad, 1995; Glad,
1998) or eliminate Racine (2001) the bias of Kernel methods.

In this paper we propose a new type of nonparametric estimator with two at-
tractive features; the new estimator may substantially lower the bias of the Kernel
estimators and accommodates alternative data environments. The first data envi-
ronment assumes that at least one of the explanatory variables is discrete. While
this situation is easily accommodated in a parametric framework, the continuity as-
sumptions required for nonparametric regression are violated. As a result, a separate
nonparametric regression estimation is required for each unique discrete value. That
is if one of the explanatory variables is discrete and can only take values {1,2, 3,4},
then the sample data must be partitioned into four subsets corresponding to four
discrete values. In the nonparametric literature this is termed the “cell” estimator
as a separate estimation is required for each of the four cells. As a result, the non-
parametric regression estimation for one subset of data does not utilize the data in
the other subsets. Recently, Racine and Li (2003) have developed a nonparametric
estimator that smoothes across the discrete values this reducing variance at a cost of
an increased bias. Conversely, our proposed estimator attempts to reduce the bias by
making use of the entire data set in estimating the shape of the regression curves. The

second data environment assumes that one is required to estimate a set of regression
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curves rather than a single regression curve. Empirically, this situation arises often
and led to the famous Stein’ s Paradox. Altman and Casella (1995) have developed
a Stein-type Bayesian nonparametric estimator that uses empirical Bayes techniques
pointwise across the function space to reduce estimation error. A requirement of the
Altman and Casella estimator is that the design be fixed. In essence the latter data
environment can be viewed as a generalization of the former with each of the discrete

cells representing an experimental unit.

The remainder of the paper is organized as follows. The second section outlines the
Racine and Li and the Altman and Casella estimators while the third section lays out
the proposed estimator and investigates its asymptotic properties. The fourth section
studies the finite sample performances of the competing estimators: our estimator,
the Racine and Li, the Altman and Casella and the Locally linear Kernel estimators.

Finally, the fifth section summarizes the findings.

2 Nonparametric Estimation of Multiple Curves

In many relevant empirical studies we must estimate a set of regression curves, say
one for each experimental unit of interest. These regression curves can be arranged

into a system of equations as follows:

Yij = mj(zij) + oj€i5,1 = 1..nj, j = 1...Q (3)
where j references the j* experimental unit, y;; is the scalar response variable, z;; is
the vector of explanatory variables, m;(z;;) is the true conditional mean function and
€;; & zero-mean and unit variance independent and identically distributed error pro-

cess. Note that the two data environments fall under this model with the latter being

directly related while the former simply sets Q, the number of curves, equal to the



number of values the discrete explanatory variable can take. Standard Kernel regres-
sion techniques (NW, Locally linear Kernel, Gasser-Miiller) estimate each individual
conditional mean separately thus ignoring the data from the other experimental units.
However, if the conditional means m,, ms...mg are functionally similar, it would be
inefficient not to exploit the abundance of information to overcome the paucity of
data. A limited number of studies have proposed estimators built upon the idea of
using of extraneous data to improve the efficiency of individual estimates. For exam-
ple Hart and Wehrly (1986) used hourly measurements of plasma citrate for a sample
of 10 human subjects to estimate a population mean plasma concentration as func-
tion daytime. Abaffy and al (2003) evaluate the position of eleven European Union
members in the Euro bond market by assuming that their underlying yield curves
can be nonparametrically modeled as a sum of an individual factor and a common
factor. The common factor captures cross-country similarities, which resulted from
the elimination of exchange rate risk (due to the launching of the Euro). Ker (2000)
proposed a Stein-type empirical Bayes estimator for crop insurance rating which uses
extraneous yield data from counties that belong to the same crop-reporting district
than the county of interest. The rationale for the inclusion of extraneous yield data
is the belief that these individual yield densities are functionally similar as they are
sampled from the same population (crop-reporting district in the latter case) where
factors such as weather pattern, soil type, technology, chemical products used etc.
are comparable. Hence when estimating the density of county j, it seems reasonable
to use information from the remaining counties in the same crop-reporting district
for potential efficiency gains. This section outlines the Racine and Li (2003) non-
parametric estimator and the Altman and Casella (1995) semiparametric estimator;

which both accommodate multiple curve estimation.



2.1 The Racine and Li Estimator

This estimator is motivated by the failure of nonparametric methods to estimate
categorical data satisfactorily. The goal is to adequately estimate regression functions
with many discrete independent variables without having to split the data into subsets
the number of which depends on the values of the categorical variables. Suppose
we have data on one experimental unit: y; a scalar response variable, z{ a vector
of continuous variables and z¢ an r-dimensional vector of discrete regressors. The
continuous variables are smoothed using a c-variate kernel function while the discrete
variables are smoothed as follows:

ed _
1 if z§, = x§

d o d ) —
Slag, 2, A) = { A otherwise ,0 < )\ <1 @

th d
t z‘-

where x4 is the component of the vector z{. The resulting estimator is a NW

estimator with a product weight function:

~ RL( c d) — Z?:l inh,)\(mf’mc’xgaxd) (5)
Z?:l Wh,A(xzca xc’ .’17;'1, xd)

where W), \(z¢, 2%, 28, 2%) = Ky (x§ — 2°) [T;_; S(x4, z¢, \).
The estimator can be easily adapted in a context of multiple equation estimation

to allow the use of extraneous data. This is done first by vertically concatenating

the observation pairs (y;;, ;) in (??) and then generating a discrete “regressor” zf;
that references the experimental unit to which the pair (y;;, x;;) belongs, hence for a
system of () regression equations the domain of x% is {1,2,...Q}'. Then the Racine

and Li estimator for curve j is:

. RL S Wz, (@0, @, 2, %)
m;(r) = =5 i 2 (6)
El:]_ Whj,)\j (‘,'El,x7xl 71. )

Tt is implicitly assumed here that the vector of explanatory variables z;; contains no discrete
components; this assumption involves no loss of generality.



where N = 2?21 n;. When estimating the conditional mean for experimental unit 7,
the discrete smoother S(zf, z¢, \;) controls the inclusion of extraneous information
by assigning a weight A\; (0 < ); < 1) to the data belonging to the remaining
experimental units. The boundedness of A\; within the unit interval allows the Racine
and Li estimator to nests both the pooled and the NW estimator. When the individual
mean functions are dissimilar, A; should be as small as possible reverting the estimator
back to the NW estimator. When the conditional means are functionally similar,
the weight placed on the “external” observations should be close to 1 to reflect the
similarities, hence boosting the performance of the estimates 2.

The smoothing parameters A; and h; can be both chosen by minimizing the cross-
validation function:

N
CV (hj, Nj) = Yy — g ()]
=1

RL

where m;i(z) is a leave-one out estimator.
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2.2 The Altman and Casella Estimator

The Altman and Casella estimator is a nonparametric empirical Bayes estimator.
It assumes that each experimental unit is measured at equispaced design points z; =
i/n so that (3) can be rewritten as y;; = m;(z;) + €;. It is also assumed that each
curve can be written as m;(z;) = m(z;) + n;(x;); that is the curve for experimental
unit j at design point x; is the population mean curve plus a term which captures

the deviation from the population mean curve. Underlying this last assumption is

2 The pooled estimator vertically concatenates the entire data set to estimate a unique condi-
tional mean without accounting for potential dissimilarities between the regression functions. At
the contrary the ordinary Kernel estimators treat the different regression functions as separate and
estimate individual conditional means. When ); goes to zero, it simply means that the extraneous
data is getting a weight of zero: S(z,z¢, ;) goes to zero for the extraneous data while the ob-
servations belonging to the equation of interest get a weight of S(zg,z¢,A;) = 1 which amounts to
using the NW estimator for each individual curve. When A; goes to 1, the estimator becomes the
pooled estimator since Wi, x, (zf, 2%, zf, %) = Kp(zf — 2°)S(z{, 2%, ;) = Kp(zf — 2°).



the fact that the curves are all sampled from the same population hence share certain
intrinsic characteristics. Denote m; the nonparametric estimator of m;; since m; is
typically biased, it can be expressed as m; = ¢; + v; where v; is an error term such
that E[v;(i)] = 0 and var[v;(¢)] = a*/n. Based on the asymptotic properties of the
nonparametric estimator /m;, Altman and Casella form a hierarchical model (m;|®,
is normally distributed, and ¢; and m; are jointly normally distributed) and derive

the posterior mean of m;:

mj(x) = m(z) + a(z)[m;(z) — ¢(z)] (7)

In practice, the hyperparameters are replaced by sample estimates, which leads to

the Altman and Casella estimator for experimental unit j:
;< () = §o + G(2) [y (z) — m(z)] (8)

where 3, = %Z?Zl Ygj is the cross-individual sample mean of the data at design
point z, &(z) = %ﬁ is the ratio of the covariance between the data and the non-
parametric estimates and the variance of the nonparametric estimates, and m(z) =
%Z?:l m;(z). The reader is directed to Altman and Casella (1995) for a complete

derivation of the model. Notice that this estimator uses the data from the other indi-

viduals in the population in the regression of the curve of interest through 7 (x)and

Y-

If the individual curves are similar then [17;(t) — 7(t)] goes to zero and the final
estimates behave like 7, which is unbiased for the population mean curve. This
estimator performs better when the number of experimental units is large enough so

that y, provides a good approximation of the population mean.



3 Nonparametric Estimator with a Pooled Start

Underlying our estimator is that we presume that the curves in a set are similar
in shape without explicitly modeling the extent of similarity. If the curves were
identical, that is if m; = my = ...mg = m, the efficient estimator would pool the
data and estimate one common curve for all the experimental units. Conversely, if
the curves were not similar the efficient estimator would estimate a separate curve
for each experimental unit. We are purposively vague with respect to the form or
extent of similarity between the curves because in an empirical situation it is generally
impossible to know if the curves are either identical, similar and to what extent and
how, or completely dissimilar in structure. We have adapted the Hjort and Glad
(1995) estimator to the situation of combining pooled and individual nonparametric
estimators. As a result, the proposed estimator resembles the pooled estimate if the
curves are identical and the individual estimate if the curves are dissimilar. Again, a
major advantage of the proposed estimator is that the form or extent of similarity is
not required to be known.

Without loss of generality, let the z;; in (??) be R-valued, then we propose that

the conditional mean for experimental unit j be estimated as follows:

n Tp(z)
X o im1 Vil oy K, (w35 — )
y(a) = iy ()5 () = = (©)
1= G\ 2]

The new estimator is implemented in two-steps. The first step pools the measurements
from all experimental units to estimate a pooled estimator denoted 1, (). The second
step consists of multiplying the pooled estimator by a nonparametrically estimated
correction factor 7;(z) to account for individual effects. The new estimator is designed
so as to outperform standard Kernel methods when the hypothesis of similarity is
tenable but also produce reliable estimates when the curves are dissimilar.

The motivation behind the construction of the estimator is the reduction of the
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finite sample bias seen in the ordinary Kernel estimators such as the NW and the
Locally linear Kernel estimators. Intuitively, if the curves are identical, that is if
my = my = ...Mg = My, 7;(x) is an estimate of unity and the efficiency gains in this

case are substantial because our estimator behaves like the pooled start. In general

[

when the guide is not distant from m;(z) in the sense that ||m,(z) — m;(x)
o(1), m,(x) is more efficient than the ordinary Kernel estimator since it pools the
measurements from all the experimental units and the correction factor will be less
rough than m;(z) resulting in smaller bias than in the NW estimator for example.
This claim will be more apparent in the next section. The asymptotic bias and
variance properties and finite sample performance of the new estimator are explored
next. The basic properties of the new estimator show that the asymptotic variance
of the NW estimator and that of the new estimator differ only by O(Nh,)™")) where
N = Z?Zl n; while the bias of the new estimator can be substantially lower when the

nonparametric guide is in the vicinity of the individual conditional mean.

3.1 Estimation with a Non-random Start

We first start by assuming that the guide belongs to class of fixed functions and
expand our findings by allowing the feasible guide to be a nonparametric estimate.
Suppose that the start m, belongs to a class of non-random functions but the correc-
tion factor is itself nonparametrically estimated using the NW estimator. This leads

to the following version of the proposed estimator:

z'nzl yi[:nn:((;))]Kh(xi - .T)
Yy Kn(zi — z)

m(z) = my(z)i(z) = (10)

after then dropping the subscript j for notational convenience. In deriving the asymp-
totic mean, variance, and ditribution of the new estimator we will assume the following
regularity conditions generally made in the asymptotic theory of Kernel estimators

(see Pagan and Ullah, 1999).
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A1 The z;;’s are i.i.d and independent of the error process ¢;;

A2 The density function f(z) and the conditional mean m(x) € C*(©) with finite

second derivatives and f(z) # 0 in ©, the neighborhood of point z.

A3 The density function g(z) and the conditional mean m,(z) of the pooled data

€ C?(©) with finite second derivatives and g(x) # 0 in ©, the neighborhood of point

x 3.

A4 The kernel function K(z) is bounded, real-valued, with the following charac-
teristics: (i) [ K(z)dz = 1, (ii) K(z) is symmetric about 0, (iii) [ 2?K(2)dz < oo, (iv)

12| K(|z]) = 0 as |z| = oo, (v) [ K?(2)dz < 00
A5 hj — 0 and njhj —ooVji=1..0Q.
A6 Ele|*H, [|K(w)|**?, and [ \%PM are finite for some § > 0

A7 h, — 0 and njh, — oo V j = 1...Q; h, being the smoothing parameter for

the pooled estimator.

PROPOSITION I: Let m,, € C*(0) be a non-random function such that m = m,r

and |m,| > n > 0. Then under the assumptions A1-A5, we have

o E[iu(a)] — m(z) = gpah?[my(x)r" (z) + 2my(@)r' 58] + o(h?)

3g(x) = f(z) if the conditional means m1,ma, ....,mg are identical. If the conditional means are
different,g(x) is a mixture density generated by the set of ) individual probability density functions:

9(z) = X2 w; f; ().
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e Var[m(z)] = o?(nhf) " 'R(K) + o(h/n)

Proof: For a non-random start the derivation of the asymptotic properties of our
estimator are very similar to those of the Nadaraya-Watson estimator (see appendix

A herein).

3.2 Estimation with a Nonparametric Start

Now we assume that both the start 1, and the correction factor are nonparamet-

rically estimated using the NW estimator, that is:

X wlgE) Ka(e — o)

p(Ti)

i Ky (w; — x)

(11)

PROPOSITION II: Let 72, be the NW estimate of m, € C*>(©) intended to best
approximate the conditional mean m such that m = my,r and |m,| > n > 0. Then

under the assumptions A1-A5, we have

o Bliv(z)] = m(x) = juah?lmy(2)r" (@) + 2my (2)r' L&) + o(h?)

e Var(m(z)) = o?(nhf)'R(K) + O(h/n+ (Nhy)™)
Proof: See appendix A.

PROPOSITION III: Under the assumptions A1-A7, m(z) has a limiting normal

distribution:

Vh(in(z) —m(z)) = N(B(i(z)),T) (12)

where B((z)) = 3 puah?[my(z)r"(z) + 2my,(z)r’ ’;:((f))] and ¥ = %R(K)

Proof: See appendix B.
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The bias of the new estimator is not a function of the slope and curvature of
the true regression function as it is for the standard Nadaraya-Watson estimator (see
section I), the Locally linear kernel or the Gasser-Miiller estimator. Rather it is
function of the slope and second derivative of the correction factor r(z) = mﬂp(% If
the pooled estimator coincides with the true function, then r(x) will be a line hence
both r' and r" = 0. Statistically, this means that the leading terms of the bias will
vanish. But this is the ideal scenario that is not likely to happen in practice. But if
my(z) and m(x) are not too far apart so that their ratio fluctuates around unity, then
the correction factor should be less variable than the individual conditional mean
hence leading to bias reduction. However, as we will explain in the fourth section,
the pooled start really does not have to be a good approximation of the m(z) for our
estimator to remain competitive to the the ordinary Kernel estimators even when the
curves are dissimilar.

Two reasons motivate us to use a nonparametric start instead of a parametric one
as in Hjort and Glad (1995) and Glad (1998). First, using a nonparametric prior frees
us from issues of functional mispecification especially in the event that the individual
curves belong to different parametric families. Second, the pooled estimator helps
make up for the paucity of data when the measurements for each experimental units
are limited thus reducing estimation error if the underlying curves are similar.

A potential limitation of our estimator is the selection of the optimal number
of curves to be used when estimating a given individual curve so as to achieve bias
reduction. We propose that cross validation be used to select the “optimal” curves
to be included. Such procedure could certainly be computationally intensive and
time consuming when dealing with a big data set and/or numerous individual curves
but should reduce the likelihood of contamination bias. This problem is similar to

the choice of instruments in Instrumental variable estimation when the number of
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instruments is large. Following Donald and Newey (2001) we propose that the cross-
validation procedure be applied to a subset (or subsets) of curves that are sought to

be likely to satisfy the similarity hypothesis*.

4 Simulations

The simulations were undertaken to the end of evaluating the finite sample perfor-
mance of our estimator under both alternative data environments outlined in section
I. The first set of simulations compares our estimator, the nonparametric estimator
with a pooled start (NEPS) with the Locally linear Kernel (LLK) estimator and the
Racine and Li (R&L) estimator (to accommodate the data environment when at least
one the predictor variables is discrete and takes values from the set {1,2...Q}). The
R~valued continuous predictor variable is assumed to be uniformly distributed on the
[0,1] interval. The second set of simulations compares the NEPS to the LLK and the
Altman and Casella (A&C) estimator (to accommodate the data environment where
the researcher is faced with a system of regression equations). As required by the
Altman and Casella estimator, an equi-spaced design is used with x; = i/n .

In each of the above cases, two scenarios are investigated in the simulations. In
the first scenario, which we call the “case of identical curves”, four individual curves
were generated and constrained to have the same conditional mean equal to m(z) =
sin(bmx). The choice of the functional form of m(z) does not bear any statistical
reason. Individual-specific errors added to differentiate the data across experimental

units. This is the ideal case obviously; the goal is to see how much “better” the

“The cross-validation procedure consists of alternating the pooled start from the
set formed by the Q curves, for total of 29 possible pooled guides: (uniform
start,{1}, {2}...{@Q},{1,2},{,1,3}..{1,2,...Q}). Then choose the one pooled guide whose loss func-
tion is the lowest. Cross-validation becomes increasingly cumbersome when the number of experi-
mental units, Q is large. To mitigate the problem of choosing a start when Q is large, the researcher
can set select a subset of k < Q curves and apply the cross-validation procedure.
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estimators making use of extraneous information would be in a situation where all the
individual curves were identical. Recall that the incorporation of external information
is based upon the assumption that the () curves are similar to some extent.

In the second scenario, which we refer to as the “case of dissimilar curves”, also
four curves were generated, however, with dissimilar conditional means (see graph).5

The four curves are:

mi(z) = sin(16mz) + € (13)
mo(z) = sin(drr) + € (14)
my(z) = 3p(—64(z—.25)%) + 7e(—256(z—.75)%) + e (15)
my(r) = 107 + ¢ (16)

This is another polar case that should provide some insights about how the advanced
estimators perform compared to the standard methods which are unaffected by the
dissimilarity of the conditional means.

The choice of these two scenarios is motivated by empirical analysis. It is not very
likely that in empirical applications, the individual conditional means in set will

be identical or totally unrelated; the truth lies somewhere between these two polar
cases. Throughout the simulations a Gaussian Kernel is used and the bandwidth is

the one that minimizes the integrated squared error:

ISE[i(z)] = / [i(z) — m(z)]Pde (17)

The performance of each curve is assessed via its mean integrated squared error

(MISE). Tables 1 and 2 (see appendix C) report the average MISE of the four curves

5 These curves were used by C. Hurvitch and J. Simonoff in their article “Smoothing Parameter
Selection in Nonparametric Regression Using an Improved Akaike Information Criterion” (1998).
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along with the average mean integrated squared bias (MIB?) for 500 replications

Figure 1: Graphic depiction of the four conditional means

mil ) 2 {x) ------ m3{x] — — — - mdx)

10 4

respectively for the random and fixed designs.

The results in table 1 show that the new estimator (NEPS) significantly outper-
formed the Locally linear kernel, which was expected since all four conditional means
are identical and that the Locally linear kernel does not make use of extraneous in-
formation. Interestingly, our estimator also beat the Racine and Li estimator for
all samples size in the case of similar curves. The performance of our estimator is
attributable to a lower bias than its competitors as reported in table 1. As said
earlier, the Racine and Li estimator trades off variance for bias; so while it has a
lower variance, its finite sample bias remains relatively high compared to that of our
estimator.

Interestingly, our estimator outperformed the LLK while the Racine and Li esti-
mator remained competitive in the case of dissimilar curves. The strong performance
of our estimator although not anticipated given the dissimilarity of the conditional
means is not surprising. This is because the standard Kernel estimator is a special

case of our estimator with m,(z) being equal to a constant over the entire support
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of x. Clearly a flat prior is quite conservative for most curves and therefore can be
improved upon, hence m,(x) need not be a good approximation of m(x). The perfor-
mance of the Racine and Li estimator lies in its ability to revert back to the ordinary
NW estimator by having ):j — 0 when the curves are dissimilar.

Similar conclusions are drawn from the results in table 2. Our estimator out-
performs its competitors, the Locally Linear Kernel and the Altman and Casella’s
nonparametric Empirical Bayes estimator, when the conditional means are identical.
As in the random design case, our estimator remained competitive to the LLk even
when the similarity hypothesis is clearly wrong. The performance of the A&C is in
general disappointing even in the case of identical curves. This could be explained in

part by the small number of experimental units (@ = 4) considered in our simulations.

5 Conclusion

In this paper, we have proposed a simple nonparametric regression method which
admits two important empirical frameworks: multiple curve estimation and “cell” es-
timation. The method has been designed so as to achieve bias reduction by utilizing
extraneous information from the set of available curves when estimating a a given
conditional mean. Consistent with the expression of the asymptotic bias, the simula-
tions conducted show that the new estimator significantly outperformed the ordinary
Kernel estimator (LLK ) when the conditional means were similar thanks to a lower
bias. Perhaps more interesting is that our estimator did not lose much if at all to
the ordinary Kernel estimator (which does not incorporate extraneous information)
when the similarity hypothesis was untenable. The new estimator also performed
admirably against the Racine and Li and the Altman and Casella estimators.

A potential shortcoming of the proposed estimator is the choice of the pooled start;

that is the “optimal” extraneous information that could lead to bias reduction. When
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the number of experimental units is large, such enterprise may not be trivial. On the

other hand, cross-validation techniques could be used to select the pooled start when

the number of of experimental units is limited. In the former case, the difficulty in

choosing the pooled start can be mitigated by applying the cross-validation procedure

to a subset of curves which are sought to be the best “candidates”.
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A Proof of Proposition IT

We have m(a:) = » 1 Kn(w; )[—L][m”(w)] A Taylor series expansion of
2;"((5)) at — ( ) y1e1ds
5 ~ 1 - Ti— 1 Yi mp(»T) mp(@") —mp(x)
_ my(x) 1y (xi) — my(Ts)
) myfz)
The expressions + Y7 Kp(z;— )f—(;% and 1 " | Ky (zi—a )_(z'w_):n”;((m)) mp(%la?)p(zi)
are of order o,(h2) hence
1 myle) 1 m(a) i) - my(e)
O = g ey T & R T )
1¢ m(sz') mp(@) (1itp(xi) — mp(@i)y, o
nz_leh Vi) male) T mgmy )T
)=o) = DS Ko =)o)+ = o)+ s D K= e~ o)
Ly x—mmp(x)rx-mx m,(z o, (h?
nf(x) Z;th( 1 )mp(xz) ( z)( p( Z) p( i )+ p(hp)
An Bn 2
- f(x)+f( e
where € L5y An = m”n(z) » o Kn(x; — z)(r(x;) + € —r(z)) and
By, = Kh zi = 2)r (@) (1 (x) = my (x)) = & Ty Kl — @) s () (1 () =

E(An) = *IZKh zi = x){r(z:) —r(z)}]

= my(z /Kh 1 — x){r(z1) — r(z)} f(z1)dzy
= my(x) /K(w){r(x + hw) — r(z)} f(x + hw)dw after a change of variable.

= %[mp(x)f (@)r"(x) + 2my (2) ' (2)r'(2)] 12 (K) + o(h?) (18)

Denote B} and B2 respectively the first and second terms of B,.

1 1

E(B)) = F ZK 21— )1 (25) Eay i1p () — mp ()]

3 |

= h2[m/ m! wg’(x) 1 z; —x)r(z
- p[ p( )+2 p( )g(l‘)]E(nzzleh( ) ( Z))

- r(w)f(x)Bias[mp(x)H ().
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Similarly,

E(BY) = E(%ém(wi—x)r(wi)

— l 2 B (I (1 m' (1 q'(x) l - 7 — 2Vr(z m,,(a:)
= BB+ 2m (@) SIS Ko = a)r(e) 2 )
2y mp(x) 2 r(:cz) " ! f’(-Tz)
BB = T [ 16— 2) 2 S m () + 2 ) ) )l

= St [ K(@)r(@) + o())(M(z) + o(1)) (f(z) + o(1))dv
where the definition of M (z) should be apparent. Hence
E(B2) = r(x)f(z)Bias[m,(x)] + o(h?)

Since plimf(z) = f(z), it follows that E(r(z) — m(z)) ~ f(z) ' E(A, + B,) by
Slutsky’s theorem. This completes the first part of the proof.

Var[A,] = o?(nh)"'R(K)f(x) + O(h/n). The computation of the variance of B,
and the covariance of A,, and B, is also straightforward but significantly longer thus
not provided in details. Both Var[B,] and Cov(A,, B,) are found to be the order

O[(Nhy)']. Again Var(m(z)) ~ f(z) ?*[Var(A,) + Var(B,) + 2Cov(A,, B,)] by
Slutsky’s theorem, which completes the second part of the proof.

B Proof of Proposition III

Write (m(z) — m(a:))f(af) =Cp+ D, + Op(h?;)
where Cn = mpT(w) ?:1 Kh(il'i - 33)(7’(371) - 7'(1')) + %2?21 Kh(xz' - x)r($1)(mp(x) -

my(x)) — £ Y0y Ki(wi — 2) 22 () (ry (2;) — my (7)) and

D, = mpT(w) ? ;€ Ky (z;—x). From proposition IT, we know that E(C,,) = %z[mp (x)f(z)r" (z)+
2my(x) f'(z)7' (z)]pa(K) + o(h?). Straightforward calculations show that Var(C,) =

o(h*) + O(mhﬁmh;L ...... +thp). By assumption A7, njh, — co V j = 1....Q hence the

last term of the variance of C,, can be ignored for asymptotic results. Combining the
expectation and variance of C),, it follows that

Co = E(Cy) +0p(h?)
= %[mp(ﬂﬁ)f(ﬂﬁ)r"(ﬂﬁ) + 2my (2) f'(2)r' ()| p2(K) + 0p(h?)
= f(z)B(m(x)) + 0p(h%);

Similarly, E(D,) = 0 and Var(D,) = (nh) *{o*R(K)f(z) + o(1)}. D, is a tri-
angular array of i.i.d random variables thus, under assumption A6, we can apply
Liapounov’s central limit theorem to obtain: v'nh(D,) — N(0, f*(z)X).
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Since plimf(z) = f(z), it also follows that

Vrh((z) — m(z) — B(a(z))) = m% +oy(1) = m% +0,(1) = N(0,5)
(19)
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C Simulations results

Table 1: Average error of the four curves: random design.

Case of similar curves

n LLK R&Li NEPS

MISE MIB? MISE MIB? MISE MIB?

25 21.7348 10.4943 6.5461 4.1736  5.1653  0.6823
20 10.644  5.6111 3.8884 2.6365 2.6987  0.3431
100  5.7383  3.5223 23816  1.7222 1.4638 0.1710

Case of dissimilar curves

n LLK R&Li NEPS

MISE MIB? MISE MIB? MISE MIB?

25 254681 16.8525 27.7545 20.8580 24.7851 15.5193
50  18.5100 14.3130 20.3510 16.2460 18.1560 12.7090
100 14.8060 12.3190 15.5110 12.9280 14.5970 11.0740
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Table 2: Average error of the four curves: fixed design.

Case of similar curves

n LLK A&C NEPS

MISE MIB? MISE MIB? MISE MIB?

25 16.8787 11.9162 9.4340 0.01441 5.0308 0.5366
50  5.6786  1.5812  7.8547 0.0152  2.7299  0.3296
100  3.1335 0.6486  7.4178 0.0149 1.5254  0.1980

Case of dissimilar curves

n LLK A&C NEPS

MISE MIB? MISE MIB? MISE MIB?

25 20.9578 16.8456 43.3380 23.9114 20.7351 13.3161
50  12.4690 8.9958 18.3277 9.1848 11.9579 7.3078
100 4.4908  2.0037 11.1970 3.1989 5.1113  1.7449
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