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Abstract

This paper examines the consequences of using a static model of recreation trip-taking behavior when the
underlying decision problem is dynamic. In particular, we examine the implications for trip forecasting
and welfare estimation using a panel dataset of Lake Michigan salmon anglers for the 1996 and 1997
fishing seasons. We derive and estimate both a structural dynamic model using Bellman’s equation, and a
reduced-form static model with trip probability expressions closely mimicking those of the dynamic
model. We illustrate an inherent identification problem in the reduced-form model that creates biased
welfare estimates, and we discuss the general implications of this for the interpretation of preference
parameters in static models. We then use both models to simulate trip taking behavior and show that
although their in-sample trip forecasts are similar, their welfare estimates and out-of-sample forecasts are

quite different.



1. Introduction

Two of the more practical applications of recreation demand modeling are forecasting the effects
of site quality changes on both behavior and welfare. This is particularly true for resource managers who
must allocate limited budgets across multiple management activities, including investments in site quality
improvements. In a recent paper that focuses on the role of preference heterogeneity in out-of-sample
prediction, Provencher and Bishop (2003) demonstrate for recreational angling that static random utility
models (RUMs) tend to overstate the impact of inter-seasonal changes in site quality on trip frequency.
This implies the actual number of trips taken during a season is less elastic than the predicted number of
trips and therefore any welfare estimates based on those predictions may be exaggerated.

Although several explanations for this result are possible, perhaps the most reasonable is that
angler behavior is constrained on a seasonal basis in a way not considered by static RUMs. One approach
that addresses this possibility is the Kuhn-Tucker (KT) model which imposes a seasonal budget constraint
on each agent, as in Phaneuf, Kling and Herriges (2000). However, although appealing for its utility-
theoretic basis, KT models do not account for the temporal allocation of trips throughout a season and
therefore overlook useful information that might be gleaned from observing the impact of intra-seasonal
variability on recreation behavior.

An integrated utility-theoretic model linking a seasonal recreation budget with a dynamic
(forward-looking) RUM therefore would seem to be appropriate, but empirical estimation of structural
dynamic models is both complicated and time consuming. As evidence of this, one need look no further
than the existing literature on recreation demand which contains a preponderance of static RUMs (see
Herriges and Kling, 1999, for an overview) despite the fact that the recreation decision clearly involves
the evolution of predictable state variables and the expenditure of limited resources through time, thus
making the decision appropriate for modeling in a dynamic framework.

With this in mind, the purpose of this paper is to examine the consequences of using a much
simpler static model of trip-taking behavior when a more complicated dynamic one is appropriate. In

particular, we examine the implications for trip prediction and welfare estimation using Lake Michigan



salmon angling data for the 1996 and 1997 fishing seasons. Our results suggest that although a static
model can forecast in-sample trip-taking behavior quite well, the out-of-sample forecasts are not as good
and the welfare estimates are significantly different from those produced by a fully dynamic model.
2. Derivation of the Behavioral Model

We model the trip decision as a simple binary process in which the angler decides on each day of
the season whether to fish for salmon, or instead spend the day doing other things. This is a reasonable
representation of the decision faced by our Lake Michigan salmon anglers: on any given day the
variability in catch rates along the Lake Michigan shore is difficult to detect and, because fishing is most
often done far from shore, aesthetic differences among launch sites are few. Thus the vast majority of
anglers in the study took the bulk of his (all anglers are male) trips from one or two favorite launch sites.
Moreover, the vast majority of fishing trips taken by anglers in the sample were salmon trips on Lake
Michigan. For example, of the 1504 total trips taken by sample anglers in 1996, 92 (6.1%) were non-
Lake Michigan (usually inland lake) fishing trips; 56 (3.7%) were non-salmonid trips on Lake Michigan;
and the remaining 1356 (90.2%) were salmonid trips on Lake Michigan. Of these salmonid trips, 1258
(83.6% of all trips, 92.8% of Lake Michigan salmonid trips) were from boat launches along the

Milwaukee-Racine waters of Lake Michigan.

We present the basic model first. Letting X, denote a vector of state variables affecting the trip
utility of angler (n) on day (t), the net utility from a fishing trip on day (t) can be expressed as:
Uy =BX, +E, (1)
where [ is a conformable vector of preference parameters. The vector of state variables X, is
observable in the sense that both the angler and the analyst observe the value of these variables at the start

of day (t). The random state variable S:t is assumed to be iid standard logistic (arising from the

difference between two iid standard Gumbel-distributed random variables € , = {S:ﬁ , Sgt} , the first



representing the unobserved utility from taking a trip, the second representing the unobserved utility from

not taking a trip) and is observed contemporaneously by the angler but never observed by the analyst.

In the analysis, the vector X, includes an intercept and the following variables: the average

(expected) money cost of a trip, cost, , taken as the sum of driving costs, ramp fees, and boat operation

costs and food costs, less the donations made by other anglers on the trip to defray trip costs; a variable

denoting whether the angler is employed full-time during the fishing season, job, ; a variable denoting the
average site-wide catch on day (t), catch, ; the weather variables temp, , denoting the high temperature on

day (t), and wind, , denoting average wind speed on day (t); the time cost variable weekday, , a dummy

variable taking a value of one if the day is Monday through Friday; the time cost interaction term

job, -workday,, taking a value of one on days when a fully employed angler is scheduled to work; a

dummy variable derby, taking a value of one if day (t) falls within the run of a popular annual 9-day

fishing derby based in Racine, called Salmon-O-Rama; and two variables that capture the effect of past

behavior on current trip decisions: elapsed , , recording the number of days elapsed since the last salmon

nt >
trip taken by angler (n), and elapsedjt . Previous models by Provencher and Bishop (1997) and
Provencher, Baerenklau and Bishop (2002) each used only the linear term and derived results consistent
with habit formation. The quadratic specification we use here (also used by Swait et al., 2004) is more

flexible and may provide additional insights into the effect of lagged endogenous variables on trip taking

behavior. Furthermore, we assume the interseasonal elapse of time has a very different effect on utility
than the intraseasonal elapse of time. This is captured by a dummy variable first,, taking a value of zero
if no trip has yet been taken during the season and one otherwise. This variable enters the utility function

directly as a component of x,, and through interactions with elapsed,,and elapsed’, . If no trip has yet

been taken the utility function is reduced by the coefficient on first  and by the omission of the variables

2
nt *

elapsed,, and elapsed



In a static model, the net utility function in (1) denotes the difference between the utility on day
(t) with a trip and without a trip. The income allocated for consumption on day (t) nets out under the
assumption that income not spent fishing is spent in the consumption of other goods. In the absence of

this assumption, the model must accommodate income dynamics. However, the model nonetheless

2
nt *

includes two variables with implications for dynamic decision-making: elapsed, , and elapsed
Arguably a forward-looking angler recognizes that a trip on day (t) affects utility in the future via these

variables. Yet these variables do not provide a compelling case for dynamic analysis. For example, to

argue that the presence of elapsed , in the utility function compels modeling the decision process as

dynamic is to argue, given a positive marginal effect of elapsed on utility, that an angler on day (t) may
choose to postpone a trip because he understands that postponement increases the utility of future trips;
this is akin to postponing opening a gift in the knowledge that the joy of consumption will be greater for
the wait. Though we do not doubt the existence of such effects, given the great difficulty of structural
estimation of dynamic decision processes it strikes us as a relatively weak basis for dynamic modeling.
By contrast, the dynamics introduced by a seasonal budget constraint pertain not to marginal changes in
trip utility, but to the very opportunity to take a trip in the future. It seems eminently defensible to argue
that an angler constrained to, say, eight trips during the season, performs forward calculations especially
when only two or three trips remain.
2.1 The Seasonal Budget Constraint

An important question arises, though, regarding specification of this seasonal budget constraint.
To be consistent with classical theory, the analyst should model the complete allocation of scarce
resources across all activities in all time periods, including salmon fishing during the 1996 and 1997
seasons, in order to ensure the optimization condition that the marginal utility of each resource be equated
across activities. But this approach clearly raises problems of empirical tractability and routinely is

ignored by practitioners. An alternative approach that has gained currency in the behavioral economics



and marketing literatures (Thaler, 1985 and 1990; Heath and Soll, 1996; Read, Lowenstein and Rabin,

1999; Moon and Casey, 1999) is that of “mental accounting.” Thaler (1999) observes,
“A primary reason for studying mental accounting is to enhance our understanding of
the psychology of choice. In general, understanding mental accounting processes helps
us understand choice because mental accounting rules are not neutral. That is,
accounting decisions such as to which category to assign a purchase, whether to
combine an outcome with others in that category, and how often to balance the
“books”, can affect the perceived attractiveness of choices. They do so because mental
accounting violates the economic notion of fungibility. Money in one mental account
is not a perfect substitute for money in another account. Because of violations of
fungability, mental accounting matters” (p.185).

Mental accounting provides an explanation for behavior inconsistent with the life cycle
hypothesis. Thaler (1990) observes that the life cycle hypothesis, in which current consumption is the
outcome of an optimal allocation of consumption over time, does not fare well in real-world tests. For
instance, the young tend to consume too little and the old tend to consume too much. In the context of
recreation models, the life cycle hypothesis essentially argues that the decision to take a recreation trip is
a dynamic problem in which a trip at time (t) subtracts from lifetime expected wealth, and the consumer
determines whether this is a worthwhile tradeoff. Few people would argue that this is a useful or realistic
conception of the trip decision. Yet what is the alternative?

The alternative is a model of mental accounting in which recreation trips fall within one of a
consumer’s several mental accounts, with the account then allocated among a designated set of goods and
services. This is the approach taken implicitly or explicitly by all published utility-consistent recreation
studies that attempt to explain the demand for recreation trips over a specified horizon. Mental accounts
are defined by their time frames, their sizes, and the set of goods that draw on them.

In the KT model, the lifetime dynamic budget is trimmed to an annual budget equal to annual
income, which is then allocated across all consumption for the year. Provided relevant aspects of the trip
decision are unchanging over the course of a year (for instance, there are no intraseasonal changes in site
quality), this model seems quite reasonable and indeed it is to be favored for its simplicity and elegance.

But it does make a particular assumption about the psychology of choice, one economists make willingly

but psychologists caution against, namely mental accounts are quite broad in the set of goods that draws



on them. Suppose, for instance, that hunting trips and food purchases are not perfectly fungible; that due
to either household rules or norms, or perhaps due to the hunter’s psychological bracketing, the hunter
does not calculate, “If I take another hunting trip today, I’ll have to cut back on gourmet foods”. Far
more likely is a narrow calculation suggestive of narrow bracketing, such as, “If I take a trip today, I
won’t be able to go next week”, or a calculation consistent with narrow bracketing over goods, but broad
bracketing over time, such as, “If | take a cruise this year, I won’t be able to go next year”.

The issue of mental accounting is especially apparent in trip occasion models attempting to
examine the intraseasonal allocation of recreation trips. Such models have the potential to address
economic issues which are of great concern to resource managers, but which have received relatively little
attention from resource economists, such as season length, intraseasonal variation in site quality, and bag
limits. In these models, the only way to avoid a model with a dynamic budget constraint is to assume that
the time frame of mental accounts is the time frame of the choice occasion. In the repeated nested logit
model of Morey, Rowe and Watson (1993), the relevant mental account allocates income to the
consumption of all goods, but the duration of the account is the duration of a choice occasion (one week),
and the size of the account is annual income divided by the number of choice occasions. Buchanan et al.
(1998) assume that the relevant account is a daily budget defined by monthly disposable income divided
by thirty. The account applies to all goods except those essential purchases (such as mortgage payments)
already netted from monthly income. Provencher and Bishop (1997) and Provencher, Baerenklau and
Bishop (2002) define the relevant budget as a daily budget that is conditional on a set of state variables
and is random from the perspective of the analyst, though due to the linear form of the utility function,
defining the exact value of the daily budget is not necessary for estimation of the choice model.

Misspecifying the budget constraint for recreation trips generates bad trip forecasts and bad
welfare estimates impacting management decisions. Suppose, for instance, that managers of a fishery are
interested in the economics of increasing catch rates at a number of sites, as would occur from habitat
restoration and/or fish stocking programs. What would be the effect on angler welfare and trip behavior?

In the presence of seasonal recreation budgets effectively constraining the number of trips taken in the



season, the trip occasion models used in Morey, Rowe and Watson (1993) and Provencher, Baerenklau
and Bishop (2002) would overstate angler trip response to the improvement, because these models do not
impose the (true) constraint on the number of trips for the season.

This tendency for static trip occasion models to overstate the trip response of anglers to changes in
catch rates was observed by Provencher and Bishop (2003) in a comparison of the forecasting performance
of various static models of angler heterogeneity. The models compared included a number of finite
mixture (latent class) and random parameters logit models. The application was to salmon fishing on Lake
Michigan, and forecasts were compared for 1996 and 1997. Catch rates in 1997 averaged 31% greater in
1996 than in 1997. Generally the models estimated on the 1996 data overforecasted trips in 1997, and the
models on the 1997 data underforecasted trips in 1996. Although several explanations for this result are
possible, one of the most reasonable — arguably the most reasonable — is that angler behavior during the
season is constrained in a way not considered by the static models. A dynamic budget constraint, in which
trips are allocated from a seasonal trip budget, is a strong and reasonable candidate.

In the next sections we present two estimable models of trip taking behavior. The first model
uses a common random utility specification for each choice occasion, but treats anglers as forward-
looking decision-makers allocating a fixed seasonal trip budget. This budget is presumed to arise from an
optimization problem we present later, analogous to that of KT model, solved by each angler at the start
of the season. Specifically, we assume each angler allocates income between fishing and other
consumption with the understanding that future decisions about when to fish will be made optimally. The
model is utility-theoretic and yet addresses the trip occasion decision without the untenable assumption
that all income allocated to the day in question must be consumed. The second model is a reduced-form
static version of the first (an extension of that examined by Provencher and Bishop, 2003) in which
anglers are treated as myopic, deciding on each day of the season whether to take a trip. As with other
such models found in the literature, it is understood that if a trip is not taken then the budget allocated to

the day is spent on other consumption that day.



Our goal is to evaluate the performance of both models, but we focus on the prediction and welfare
estimation results for the static model assuming the true underlying decision problem is represented by the
dynamic model. In reality, the assumption of a fixed seasonal budget may be too restrictive, and agents
may instead update their mental accounts as they revise their expectations about the remainder of the
season. But the static and dynamic models presented here may be considered as two extremes of a
spectrum: continuous (daily) updating of the seasonal budget and no updating. With this interpretation,
our results represent upper bounds on the discrepancies introduced by the reduced-form static model.

2.2 Statement of the Structural Dynamic Model

In the static model given by (1), the optimal decision on day (t) is to take a trip if u_ > 0.

Letting y  take a value of one if angler (n) takes a trip on day (t) and zero otherwise, and assuming iid

standard Gumbel-distributed error terms, the probability of observing angler (n) taking a trip on day (t) is

given by the usual logit expression:

P(ym =1)_ exp(me)

B 1+exp(me). @

The likelihood of angler (n)’s trip sequence for the season follows as:

e =TT P(ya =1)" Py, =0)" . 3)

t

In the dynamic model, the decision problem is complicated by the state equations

Xn,t+l = f (Xm b ynt ) (4)
and

Shotr1 =8n ™ Yaes Q)
where s is the stock of trips (i.e., the budget) remaining for the season. The state equation in (4) is

strictly relevant for three variables in our model. The first is the dummy variable first,  , tracking

nt >
whether angler (n) has yet to take a trip during the season. Indexing the first day of the season by t=0, it

evolves according to:
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t=0, or
0 if L
first,, = t>0 and Zyns =0]. (6)
s=1

1 otherwise

The other two state variables' are elapsed,, and elapsed., :

1 ify, =1

elapsed_.. = 7
P {elapsedmﬂ otherwise @)

- 1 ify, =1
nit+l =

elapsed ®)

(elapsed,, +1)° otherwise

For the sake of simplicity of notation, we use the general form presented in (4). Regarding (5), in this
binary decision problem there is a one-to-one correspondence between the number of trips remaining in

the season and the fishing budget available to angler (n) for fishing on day (t); so we express the budget

constraint in terms of trips. Also, there is no justification for the presence of cost, in the utility function

in (1) because, in contrast to the static model, it is not true that the opportunity cost of a trip on day (t) is

cost, less consumption of other goods on day (t); rather, the opportunity cost is one fewer trip available

to take in the future. Later we show how welfare estimation remains possible with this model even

though we remove cost, from (1).

In the dynamic model the angler’s decision problem is solved recursively. In the last period (T)

angler (n)’s indirect utility may be written as:

max [anT +SLT,82T} if s . >1

VnT (XnT’SnT’SnT) = 0 (9)

b
o otherwise

€

where all right-hand side terms are as defined previously. This specification recognizes that the angler

cannot fish if he has no income in his fishing account, and that any income left in the account at the end

' To reduce the runtime of the dynamic model, we set the maximum allowable value of elapsed , to 30 days.

Relaxing this constraint does not appear to have any significant effect on the estimation results.
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of the season is used in other activities. The properties of Gumbel-distributed random variables give the

result (Ben-Akiva and Lerman):

In(exp(Px,;)+1)+y ifs, =1
VnT (XnT’SnT)EEa I:VnT (XnT’SnT9£nT)i|:{ ( ( T) ) ' . s (10)
Y otherwise

where 7y is Euler’s constant and represents the expected value of each Gumbel-distributed random

variable. Furthermore, the probability of observing a trip is given by:

_oB(Br) e oy
P(y,r =1)=<1+exp(Bx,;) ! : (11

0 otherwise
Stepping backwards, in period (T-1) each angler’s indirect utility may be written as:

Vn,T—l (Xn,T—l H Sn,T—l > sn,T—l )
1
an,T—l + gn,T—l + anT (f (Xn,T—l > 1) > Sn,T—l - 1) s .
max if s, ;, =21 >
— 0 ’
= anT (f(xn,T—l’O)’sn,T—l)+8n,T—l

anT (f (Xn,T—l > 0) >ShT-1 ) + 8?1,?1 otherwise

(12)

where p is the discount factor. Similarly to (10), taking the expectation of v, ;. ; with respect to the

random portion of utility at time (T-1) yields:

A (Xn,T—l >ShT ) =E, |:Vn,T—l (XnT’SnT’snT )]
In {exp [an,T—l +pVir (f (Xn,T-l B 1) sSpro T 1):| +exp |:pV.ﬂ (f (Xn,T-l > 0) >Sn,T-1 ):|} +y if Sp11 2 I (13)

pV. . (f (xﬂ_1 , 0), SuTt ) +v otherwise

And the probability of observing a trip (conditional on s, ) is given by:

P(Yn,T—l = 1)
eXp(an,T—l +pVir (f(xn,T—l’l)isn,Tfl - 1) PV (f(xn,Tfpo)aSn,T,l)) . . (14)
11+ eXp(an,T—l +pVir (f (Xn,T—lal), Sp1-1 1) -pV,; (f (XH’FI,O),SH’T?1 )) e
0 otherwise

Continuing with the recursion gives the indirect utility on any day (t):

12



Sy €n )

nt? “nt

me +8}n + an,lH (f(xm’l)’sm _1)’

v, (x

nt?

X . if s, 21 > (15)
= an,H—l (f(xnt’o)’snt)+8nt
PV, (£(X%,00),8,, ) + 2, otherwise
with the probability of observing a trip on that day given by:
P(y, =1)
exp(ﬁxnt—i_pvn,wl (f(xm’l)’snt_l)_pvn,Hl (f(xm’o)’sm)) lf S >1 . (16)
=91+ exp(me +0V, 1 (£ (%,51),8,, 1) =pV, 1y (£(X,0).5,, )) at
0 otherwise

Conditional on s_,, the likelihood of angler (n)’s trip behavior is then given by:

n0?

L (15,)= [1[P(v =11)" -P(=015,0) 7 ] a7

t

where P(ym | SnO) is calculated as shown in (11) and (16).

As mentioned previously, we assume each angler selects s, as the solution to an optimization
problem solved at the start of the season, with the understanding that future decisions about when to fish
will be made optimally. In this sense, our approach is analogous to the KT model. Specifically, each

angler chooses s, to maximize the difference between the expected seasonal utility of fishing and the
opportunity cost of taking fishing trips:

sp0 =max{V, (x,,,8)—(n-cost, +n)-s}, (18)

0<s<s
where p is the marginal utility of income; cost, is the trip cost variable described previously; 1 is an

additional component of trip cost that is separate from per-trip cash expenses; and s is an upper bound
on the number of trips. This approach is consistent with other utility-theoretic models of recreation
demand which assume decisions regarding the total number of trips to take during a season are made at
the start of the season. It reflects a type of mental accounting in which annual income is allocated across

different categories of consumption, but here this budget allocation is made while explicitly

13



acknowledging the dynamics of trip allocation throughout the season. The model readily generalizes to

the case where the choice occasion involves multiple sites, heretofore the province of KT models.
Treating the unobserved component of each seasonal budget in (18) as iid standard Gumbel-

distributed random variables, the probability that an angler chooses any particular budget s~ is given by

the familiar multinomial logit expression:

exp(VnO (XHO,S*)—(M'COStn +n).s*)

P(s,,=5")= (19)

Zslexp(Vno (xno,s) —(u'costn + n) : s)
s=0

The likelihood of observing angler (n)’s behavior is then given by:

L = z{usm =) TI[P(v. =115 -P(y, =0]5)" }} 0)
S t
and the sample log likelihood is the sum across all anglers of the logs of (20).
23 Statement of the Reduced-Form Static Model
With the structural dynamic model fully specified, we now address the task of determining a
simpler reduced-form static model that we believe has the potential to closely mimic the results of the

dynamic model but with far less modeling effort. To begin, we first revisit equation (16) for the case of

s,. =1 (because there is no seasonal budget to exhaust in the static model):

exp(BXm + an,m (f(xm’l)’sm _1)_an,t+| (f(Xm,O),Sm ))

P =1)= . 21)
(ym ) 1+eXp(BXm +an,t+1(f(Xnt’1)’Snt_1)_an,t+1(f(xnt’o)’snt))
Defining:
Am = an,t+] (f(xnt’ 1)9Sm - 1) - an,t+] (f(xnt’o)’ Sm ) 2 (22)
we can rewrite (21) as follows:
P(ym _ 1) _ GXP(BXm +Ant) (23)

B 1+exp(me +Am) '
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Notice that equation (23) takes the form of a standard logit model with u_ =fBx, +A  + 8; , Where

A

. can be interpreted as an intercept term that varies across individuals and through time. We

*

nt >

therefore propose to substitute a reduced form for A, denoted by A, which we will specify later. If

AZt can be made arbitrarily close to A, then when s >1 the much simpler static model in (23) will be
empirically indistinguishable from the more complicated dynamic model in (11), (16) and (18) and will
yield identical predictions regarding trip-taking behavior. Only on days when the seasonal budget has
been exhausted will the dynamic model yield superior predictions.

This is a promising result for the predictive ability of the reduced-form model, but unfortunately a

similar result cannot be derived for its welfare estimates. To see why, first consider the differences in

model structures. In the static model, the marginal utility of income (MUI) is given by the 3 coefficient
on the variable cost, in equation (1) and the opportunity cost of a trip is cos?, less consumption of other
goods on the day of the trip. But in the dynamic model, the MUI is given by Ll in equation (18) and the

opportunity cost of a trip is one fewer trip available to take in the future. These differences alone suggest
that the welfare estimates of the static model will differ from those of the dynamic model, but the
problems with welfare calculations using the static model appear to be deeper than this.

To examine this issue further, recall that the first step in welfare estimation is to derive the money

metric version of the per-period indirect utility function (v ). Assuming as we do here that the per-
period direct utility function (u,, ) is linear in income, this requires first dividing u , by the MUI. In the

structural dynamic model, we then use the money metric version of v, to calculate recursively V,, as

shown in the preceding equations. This quantity is, by definition, the expected present value of the
fishing season — a theoretically consistent welfare measure.

In the reduced-form static model, our per-period direct utility function includes an extra term:

A, . While it is tempting to simply treat A  as a variable intercept term and follow the same procedure

15



for calculating welfare (i.e., divide u_, by the MUI and calculate the discounted expected seasonal

value), this is not a theoretically consistent approach when the underlying decision problem is dynamic.
To understand why, note that A_ is the reduced form of an expression involving fiture utility; in other
words, it represents a function of utility derived from decisions made after period (t). Therefore in a static

model this term should not be included in the calculation of utility derived from the decision made at time

(t). Including this term will produce biased (and theoretically inconsistent) welfare calculations.

A possible alternative approach would be to omit A  from the per-period welfare calculation

and proceed as before; but this, too, is problematic because the static estimation method necessarily

sweeps the mean value for A into the constant term of X , and expresses the results for A as

deviations from this (unknown) mean. In other words, we have an identification problem: the static

model cannot simultaneously recover unbiased estimates of A  (as it is defined by the dynamic model)

and of the constant term in X . It is the additional structure imposed on the problem by the dynamic

model that permits simultaneous identification; but unfortunately this identification cannot be achieved
without deriving and estimating the more complicated dynamic model or, perhaps, by imposing additional

structure on the functional form of A (but we do not examine this possibility here). Of course, when

the underlying decision problem is static then p=A =0 and welfare estimation can proceed as usual.

These observation raise an important issue regarding the interpretation of variable intercept terms in
static RUMs. Frequently, analysis of panel data employs a static model with some sort of variable intercept
specification such as “fixed-effects” or “random-effects” in order to address unobserved heterogeneity in
the sample population (Hsiao, 1986). When the underlying decision problem is static, these coefficients are
appropriately interpreted as preference parameters that contribute to per-period utility and should be
included in welfare calculations. But when the underlying decision problem is dynamic, our preceding
discussion shows that this interpretation is theoretically inconsistent — behavioral prediction may be quite

good, but welfare estimates will be biased; unfortunately, the literature has not previously recognized this.
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To demonstrate these claims empirically, we estimate both the structural dynamic model and the
reduced form static model presented above using Lake Michigan salmon angling data for the 1996 and 1997

fishing seasons. We then examine the trip forecasts and welfare estimates derived from each model. The

exact functional specification we choose for A in the static model is motivated by our results for the

dynamic model which we present in the following section.
3. Estimation and Results
Our dataset is composed of 97 anglers surveyed over the two-year period from 1996 to 1997.
Anglers were queried about their fishing activity by telephone approximately every two weeks from May
through September. Although the season for salmon fishing on Lake Michigan typically begins around
April 1 and continues until December 31, anglers rarely fish before May 1 or past October 1. For the
1996 season angler activity was charted from May 1 to September 15, and for the 1997 season from May
15 to October 1. These dates give the effective seasons used in the empirical analysis. A mail survey was
conducted at the end of each season to collect additional demographic information from the study anglers.
We first use the data to estimate the dynamic model described in Section 2 for each season. The
likelihood function for the dynamic model (equation 20) is maximized by applying FORTRAN
optimization subroutines in the commercial package GQOPT to original code that calculates the

likelihood. The coefficient estimates and standard errors are shown in Table 1 and are consistent with our

intuition about salmon angling. Note that the variable elapsed , produces strictly negative marginal

utility within the relevant range, despite a positive coefficient on the quadratic term. With these estimates

in hand, we now specify an appropriate reduced-form static model. To do this, we first use equation (22)

to derive values of A for each angler in the sample.
Figure 1 shows calculated values of A for three sample anglers during the 1996 season. For
each angler, A initially is negative and increasing at the beginning of the season, then it becomes

positive after each angler takes his first trip. At this point, A follows a variety of paths depending on
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Table 1: Coefficient Estimates and Standard Errors for the Dynamic Model

Per-Period 1996 Season 1997 Season

Utility Coef.ﬁcient Standard Coef'ﬁcient Standard

Estimate Error Estimate Error
constant -1.2642 0.4858 -0.2459 0.3542
catch, 0.2192 0.0921 0.1431 0.0470
temp, 0.0149 0.0038 0.0136 0.0033
wind, -0.0471 0.0105 -0.1405 0.0141
weekday, -1.5228 0.0902 -1.2093 0.0744
derby, 0.6737 0.0833 0.5665 0.0843
job, 0.0022 0.0645 0.0272 0.0527
job, -workday -0.2188 0.1002 -0.4888 0.0831
first 0.0354 0.1124 0.0271 0.1002
first . -elapsed -0.2383 0.0142 -0.2990 0.0148
first -elapsedi 4.9290e-4 | 4.7436e-5 | 6.6609e-4 | 4.9011e-5
Other Coefficient | Standard | Coefficient | Standard

Coefficients Estimate Error Estimate Error
budget, 0.1343 0.3716 0.1938 0.1900
cost, -budget, 0.0131 0.0036 0.0118 0.0028

each angler’s remaining trip budget and trip taking behavior. When an angler has trips remaining in his

budget, A, tends to be positive and increasing during long periods when no trips are taken; it then

decreases sharply and becomes negative immediately after a trip is taken. Primarily this is due to the

effect of elapsed , . To see this, note that A represents the difference in the expected value of the

remainder of the season if a trip is taken at time (t) and the expected value if a trip is not taken. When an

angler has not taken a trip for a long time, elapsed , is large and (because the marginal effect of
elapsed , is negative) A  is positive — the expected value of the remainder of the season is larger if a
trip is taken because elapsed , will be reset from a large value to zero. When a trip has been taken

recently, however, the more intuitive case emerges: A is negative because the expected value of the

nt

remainder of the season tends to be smaller if a trip is taken due to the budget constraint and because the
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Figure 1: Values of A, for Three Anglers in 1996
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effect of resetting elapsed , to zero is not as great when its current value is smaller. When an angler has

only one trip remaining in his budget (e.g., Angler 1 after day 73 and Angler 2 after day 110), A , is

strictly non-positive because the value of the remainder of the season if a trip is taken will be zero (e.g.,

Angler 2 after day 115) whereas the value will remain positive if no trip is taken.

Figure 1 suggests that it will be difficult to find a reduced form that will closely approximate A
in the static model. It is clear that on any day, A , takes different values for different anglers; and for

any angler, A takes different values on different days. To attempt to control for some of this

heterogeneity, we specify two individual-specific constants for each angler: one before the first trip is

taken and one afterwards. The remainder of the unexplained variability in A, for each angler is then

captured by the error term. This type of individual-specific constant is commonly used by practitioners

working with panel data (Hsiao, 1986) and provides a useful baseline from which to compare other more

complicated specifications. We adopt it here and redefine A , for each angler as:
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where first  is defined in equation (6). Furthermore, because our model includes a lagged endogenous
variable (elapsed ) as a regressor, we employ a “random effects” specification for A; . In other words,
we assume each AIO1 is drawn independently from a common distribution with mean and variance to be

estimated, and similarly for AL . If our model did not include this lagged endogenous variable, we also

could examine a “fixed effects” specification using Chamberlain’s (1980) conditional likelihood
approach; but inclusion of this variable unfortunately renders this method invalid (Grether and Maddala,
1982; Card and Sullivan, 1988) and we are not aware of any other feasible estimation approach for a
dataset as large as ours.

Again assuming iid standard Gumbel-distributed error terms, the probability of observing a trip
by angler (n) on day (t) is now given by:

exp(me +AY+A! -ﬁrstm)
1+ exp(me +A)+A! -ﬁrstm) '

P(ym = 1)

(25)

And the likelihood of observing angler (n)’s trip sequence for the season is:
leiatic = J‘H|:P(ym — I)Ym . P(ym — O)I—Ym j| . dF(A) , (26)
At

where F(A) is the joint distribution of the individual-specific effects and is assumed to be

BVN(O, 0, Gf) , 612 N ) 2 The likelihood function in (26) is maximized using the CO optimization

routine in the GAUSS programming language and employs Gaussian Quadrature to evaluate the integral.

The coefficient estimates and standard errors are shown in Table 2.

? Note that means of this bivariate normal distribution are set equal to zero because X, already contains a constant

term and the dummy variable first . Therefore, our approach effectively randomizes these two coefficients.
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Table 2: Coefficient Estimates and Standard Errors for the Static Model

Per-Period 1996 Season 1997 Season
Utility Coef.ﬁcient Standard Coef'ﬁcient Standard
Estimate Error Estimate Error

constant -3.6444 0.3495 -3.5711 0.3728
catch, 0.4904 0.1170 0.3017 0.0757
temp, 0.0246 0.0041 0.0264 0.0043
wind, -0.0681 0.0127 -0.1420 0.0142
weekday, -1.3653 0.0990 -1.0800 0.0914
derby, 0.9938 0.0981 0.9066 0.1072
cost, -0.0182 0.0074 -0.0118 0.0101
job, -0.0200 0.1068 0.0466 0.1594
job, -workday, -0.4996 0.1219 -0.7694 0.1259
first 1.3174 0.1498 1.4769 0.1543
first . -elapsed -0.1136 0.0155 -0.1183 0.0159
first, ~elapsed§t 0.0021 0.0005 0.0025 0.0005

Other Coefficient | Standard | Coefficient | Standard

Coefficients Estimate Error Estimate Error

6(2) 0.0354 0.0399 0.1035 0.0704
(512 0.2551 0.1405 0.2332 0.0627
Oy 0.0046 0.0249 0.0905 0.0472

Generally the estimates are similar to those for the dynamic model, but there are some notable
differences. Anglers in the static model generally appear to be more affected by the daily fishing
conditions (i.e., the catch rate, temperature, wind speed), workdays and the fishing derby; and less
affected by past trip-taking behavior. Our main focus here, though, is to compare the predictive ability
and welfare estimates of this static model with those of the dynamic model. The following section
presents these comparisons.

4. Prediction and Welfare Estimation

A total of 1216 trips were observed during the 1996 season and 1261 during the 1997 season. To

obtain trip forecasts and welfare estimates, we conduct 1000 simulations for each model and each season

and then compute the means of the simulations. Table 3 summarizes the trip forecasts on a seasonal basis
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and Figures 2 through 5 present them on a daily basis. Figures 2 and 3 show the cumulative prediction
error for the 1996 season using the 1996 and 1997 model estimates, respectively; Figures 4 and 5 show
analogous results for the 1997 season. Downward movements in these cumulative errors represent under-
prediction and upward movements represent over-prediction. Perfect prediction throughout the season
would be represented by a horizontal line at zero.

Table 3: Number of Trips Observed and Predicted, Entire Season

Observed | Static Prediction | Dynamic Prediction

On a seasonal basis, both models forecast well in-sample (lines 1 and 4 in Table 3). On average,
the static model over-predicts by 8 trips in 1996 and under-predicts by 50 trips in 1997. The dynamic
model performs even better with an average aggregate prediction error of less than one trip in both
seasons. The superior predictive ability of the dynamic model is also evident in the out-of-sample results
(lines 2 and 3 in Table 3). Whereas the static model under-predicts by 115 trips in 1996 and over-predicts
by 176 trips in 1997, the dynamic model under-predicts by only 55 trips in 1996 and over-predicts by
only 52 trips in 1997. These results are consistent with those reported by Provencher and Bishop (2003)
and suggest behavior may be constrained in a way the static model cannot address.

Examining the forecasting results on a daily basis provides additional insight into the predictive
ability of each model. Figures 2 through 5 show the daily cumulative forecasting errors and demonstrate
that these errors can be significantly larger during the season than at the end. Typically (Figures 2, 3 and
5), both models tend to under-predict early in the season and then compensate by over-predicting late in
the season. This tendency is more pronounced in the static model, which can produce forecasts that are as

good as or even better than the dynamic model early in the season, but which eventually produces larger
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Figure 2: Cumulative Prediction Error for 1996 Season
using 1996 Coefficient Estimates
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Figure 3: Cumulative Prediction Error for 1996 Season
using 1997 Coefficient Estimates
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Figure 4: Cumulative Prediction Error for 1997 Season
using 1996 Coefficient Estimates
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Figure 5: Cumulative Prediction Error for 1997 Season
using 1997 Coefficient Estimates
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prediction errors later in the season. These observations have two implications. First, they suggest a
static model may be adequate early in the season when budgets remain relatively large; but eventually a
dynamic model will produce better forecasts as budget constraints begin to loom. Second, the recurring
pattern of under-prediction followed by over-prediction suggests that preference parameters may not
remain constant throughout the season. In other words, good fishing conditions early in the season may
be more valuable to anglers than the same conditions late in the season (e.g., anglers may be more
responsive to good catch rates and/or nice weather in the spring than they are to the same conditions in
late summer). This has obvious repercussions for welfare estimation, but we choose to leave an
investigation of time-varying utility parameters for future work.

Table 4 presents each model’s average (per-person) seasonal welfare estimates. As we argued
previously, the welfare estimates for the static model are theoretically inconsistent under the assumption
that the true behavioral model is dynamic, but we report these results to illustrate the potential error
associated with using this reduced-form approach.” As the table shows, the static model significantly
underestimates the value of the fishing season in each year: by 82% in 1996 (line 1) and by 72% in 1997
(line 4). The static model also tends to overestimate inter-seasonal changes in welfare. For example,
using the 1996 estimates (lines 1 and 3), the static model would predict a change in seasonal value of
$167 per person whereas the dynamic model would predict a change of only $74. Using the 1997

Table 4: Average Seasonal Welfare Estimates, Per-Angler

Static Estimate | Dynamic Estimate

3 Alternatively, the static and dynamic estimates demonstrate the range of possible seasonal values depending on
the degree of dynamic behavior exhibited by the anglers.
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estimates (lines 2 and 4), the static model predicts a change of $133 per person whereas the dynamic
model predicts a change of only $67.
5. Conclusions

The dynamic nature of behavior, whether in recreation or otherwise, tends to be overlooked by
most empirical studies in order to simplify the behavioral model and reduce the computational complexity
of the estimation. We have demonstrated here that when the underlying structural model is truly
dynamic, a reduced-form static model may fit the data fairly well but it cannot provide unbiased welfare
estimates due to problems of identification. And furthermore, our empirical application suggests this bias
can be significant. Additional research focusing on this identification problem would be useful to the
extent it might produce an estimation approach capable of providing reliable welfare estimates without

estimating a fully dynamic model of behavior.
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