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The Causal Structure of Land Price Determinants

Abstract

This paper investigates causation contemporaneously and over time to elucidate the persistent
lack of agreement about what "causes" changes in farmland prices. Using recently developed
causal modeling framework of directed acyclic graphs (DAGs) and cointegrated (VAR)
techniques, the assumed causal structures of existing structural and empirical models are
tested directly. The results validate concerns about the nonstationarity of these series. Land
price changes are found to respond to a small subset of the oft-cited causes of price change,

including macroeconomic variables.
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The Causal Structure of Land Price Determinants

Introduction

Contradictions persist in the literature explaining the relative and absolute importance of the
various causes of farmland price changes. In part, such disagreements can be attributed—
without necessarily citing methodological fault—to the idiosyncrasies of ad hoc modeling,
fundamental differences between theoretical and data-driven approaches (i.e., structural
versus empirical modeling), and the temporal or spatial differences in the data studied in
empirical models. Within the last decade, however, two active strains in this research stand
out for their inability to approach an externally (or even internally) recognized consensus.

The first strain sought to better understand the explanatory failures of the present-
value model (Johnson; Lloyd; Tegene and Kuchler; Hallam; Falk and Lee; Lence and Miller),
while the second offered improved structural models (Just and Miranowski; Chavas and
Thomas).! These studies prompted others that use empirical models to question the
robustness of the structural efforts (Lence 2001) and the conclusions of the empirical efforts.
Thus, although the analysis of farmland price changes continues to be a vibrant area of study,
greater clarity would improve the practical value of the results and more consistent structural
and empirical modeling is an important first step toward achieving this clarity. The research
presented in this paper comprehensively tests for causal structure of the determinants of
fluctuations in farmland prices and thereby provides new insight on the appropriateness of
many alternate modeling strategies.

The analysis of causal structure is not an entirely new area of research on land prices.
Several studies have considered causation with respect to price or price changes. Falk and

Lee argue that early structural models failed to predict well because of the inelasticity of



supply made the simultaneous equations approach inappropriate. Not surprisingly, studies in
the last 20 years all assume price is endogenous and few reflect on the possibility of
simultaneous or reverse causation between price and quantity (or other variables).” The
present paper tests for and cannot reject the endogeneity of price.

Several authors have also examined, or at least questioned, the relationships among
independent variables. Specifically, potentially important explanations for the persistent
controversy about the importance of various causal factors include: (1) non-spurious
relationships among the independent variables; (2) correlations with omitted variables; and (3)
the fit of land-price models with nonstationary price data. This paper examines these issues.
In addition, structural models differ in that they start by specifying most of the causal
relationships among variables, while empirical studies often focus on a small set of
explanatory variables. This paper will be the first to examine the joint consequences of these
two sets of assumptions.

This study extends the literature and makes important contributions in several ways.
First, it exploits the inherent causal information contained in the data to test for
contemporaneous causation with the analysis of directed acyclic graphs (DAG), a recent and
powerful modeling technique for analyzing contemporaneous causal structure (Spirtes et al.
2000; and Pearl 1995, 2000). Although some authors have applied this methodology to
economic issues (Swanson and Granger, 1997, Bessler and Akleman, 1998), this study is the
first to apply DAG to the causal structure of the key determinants of farmland prices.

Using data for the U.S. and three representative agricultural states (Iowa, Kansas, and
Georgia)—substantially the same as used by Just and Miranowski—the analysis of DAGs

rejects the contemporaneous causation by all of the commonly cited exogenous causes of



land-price changes except a small subset of financial variables. The results suggest that land
price changes are caused only by two macroeconomic variables: capital gains and real estate
debt. Quantity variables are insignificant and, surprisingly, inflation and returns only
indirectly affect land price changes. Results from the DAG and cointegrated vector
autoregression (VAR) models suggest that the data warrant a simple model where
macroeconomic variables cause land price changes. The collective results of these models
thus simplify contemporaneous causal modeling and suggest that spurious correlations may
indeed be a problem in the formulations of some existing models. The identified
macroeconomic variables explain changes contemporaneously and over time, while many
other determinants of farmland prices (conditioned on other variables) are found to have
insignificant impact on farmland prices. The rest of the paper is organized as follows.
Section 2 provides a brief discussion of the commonly cited determinants of farmland price
changes and describes the data (variables) used in analysis. Then, the third and fourth
sections present the empirical methods and analysis of causation using DAG and cointegrated

VAR models, respectively. The fifth section concludes the paper.

Determinants of Land Prices

Several papers have investigated the causal effects of various variables on the observed
fluctuations in farmland prices. The commonly used “explanatory” variables can be grouped
into these categories: measures of government programs, measures of net return to
agriculture, measures of land quantity, and measures of financial (credit market constraints)
and/or macroeconomic activity. Gardner (2001) used cross-sectional, farm-level data to

investigate the role of government programs in explaining changes in farmland prices and



concluded that government payments have no significant impact on farmland prices in the
past three decades. Phipps (1984) and Melichar (1979) concluded in separate analyses that
relative to measures of net return to agriculture, non-farm variables are not as important in
explaining changes in farmland prices.

In contrast, others (Alston; Burt; Hallam et al.; Just and Miranowski) found that
macroeconomic variables such as inflation, interest rates on debt, and measures of capital
gains are important determinants of changes in land prices. Castle and Hoch identified a “real
capital gains” component, which cause real price changes as land increases or decreases in
value relative to general price levels. Castle and Hoch argued that the capitalization of real
capital gains may explain up to 50 percent of fluctuations in land prices and that the
landowner treats these gains as income, thus reinforcing the image of farmer-landowners
participating simultaneously in land markets (as investor) and commodity markets (as
suppliers). Since land can be regarded as a financial investment asset, Castle and Hoch and
Hallam et al. also identified interest rates (opportunity cost of capital) and the real value of
debt arising from general price level (inflation) as key determinants of changes in land prices.

Just and Miranowski synthesized the literature by developing a theoretical framework
that combines most of these variables in a single model of farmland changes. A priori, their
model assumes that price is endogenous and excludes all other potential causal interactions
except the unidirectional causation of the “explanatory” variables on price. Just and
Miranowski concluded that macroeconomic variables are the dominant explanatory factors
responsible for changes in farmland prices; although the assumed structural relationships are
not without basis, it is valuable nonetheless to test these maintained hypotheses. To consider

a contrasting model without any prior causal assumptions, consider Figure 1. Figure 1 would



require data or theory to remove initial casual associations. Since economic theory does not
always give clear and unambiguous direction on causal paths, it is reasonable to explore
causal information contained in observed data with modeling techniques such as the DAG
combined with cointegrated VAR analyses.

This study follows the variable definitions and annual data sources’ from 1963 to 1983
as outlined in Just and Miranowski and extended their data to cover the 1961 to 1995 period
using the same (or similar) variables. These variables go well beyond farm-firm income and
capture the various explanations for land price changes in the literature. Annual data were
obtained for the U.S. and three representative agricultural states (Iowa, Kansas, and Georgia)
for the following thirteen variables: land value per acre (LPRICES), acreage in farms
(ACRE), number of farms (NFARM), real estate debt (DEBT), real estate tax rate (RETAX),
net returns per acre to farming with government payments (RETURNG), net returns per acre
to farming without government payments (RETURN), implicit GNP price deflator
(INFLATION), average interest rate on farm real estate debt (IDEBT), interest rate on savings
or interest rate on muni-bonds (IRATE), proportion of farmland financed by debt (PFDET),
average tax rate (AVTAX), and the proportion of current land value attributable to capital
gains (CAPGAINS). All data series, except interest rates, are in natural logarithms.

V(.) in Equations (1) and (2) contains the contemporaneous correlation (zero order)
matrices for the thirteen variables, for the Unites States and Iowa, respectively. These zero-
order correlation matrices are used as the starting point in the analysis of causal structure
inherent to the data. The order of the variables is given as listed above the matrix. As shown
in equation (1), there is a relatively high unconditional correlation between land prices

(LPRICES) and the other variables in the system. For example, the unconditional correlation



between LPRICES and DEBT is 0.98 while the correlation between LPRICES and
CAPGAINS is 0.73. Furthermore, consider the correlation matrix in equation (2), the lowa
farmland data used in Just and Miranowski. All 12 explanatory variables have correlation
coefficients in excess of 0.33 with price. Yet, they are also correlated with each other; only
16 of the 65 correlations are below 0.30 and, without AVTAX, PFDET, and CAPGAINS, all
correlations exceed 0.30. Hence, there is a real need to consider all possible relationships

among the variables and exclude certain associations in a systematic manner.

LP ACRE NFARM REDET RETAX NETRg NETR INFL IREDET ISAV AVTAX PFDET CGAIN

- N
1.00
0.98 1.00
098 1.00 1.00

098 1.00 1.00 1.00
088 090 090 090 1.00

067 071 071 071 060 1.00

(1) U.S.)=1 055 057 057 057 046 096 1.00

098 100 100 1.00 090 071 057 1.00

095 094 094 094 08 071 060 095 1.00

058 052 052 053 054 046 049 054 066 1.00

044 041 041 041 041 059 063 042 045 043 1.00

090 095 095 095 082 075 059 094 088 044 040 1.00
073 060 060 061 053 032 031 060 061 053 044 044 1.00 |

Furthermore, high collinearity is observed among ACRE, NFARM, and DEBT. Both
ACRE and NFARM are essentially measuring the same economic activity: quantity of land in
agriculture. This initial inspection of the unconditional correlation matrix suggests that
potential determinants of land prices are some measures or proxy for quantity of farmland,
real estate debt, net cash rent, inflation rate, interest rate, and taxation. As DAG investigates
the conditional correlation among these variables, one reasonably expects that some of the

variables’ effect on variability in farmland prices will cancel out each other.



LP ACRE NFARM REDET RETAX NETRg NETR INFL IREDET ISAV AVTAX PFDET CGAIN

(" 1.00 A
0.96 1.00

0.96 1.00 1.00

0.96 1.00 1.00 1.00

0.67 0.65 0.65 0.65 1.00

0.71 0.78 0.78 0.78 0.46 1.00

0.53 0.58 0.58 0.58 0.31 0.90 1.00

0.96 1.00 1.00 1.00 0.65 0.78 0.57 1.00

0.93 0.94 094 095 0.61 0.78 0.62 0.95 1.00

0.57 052 0.52 0.53 0.41 0.52 0.51 0.54 0.66 1.00

033 031 031 0.32 0.48 0.26 022 031 0.29 0.12 1.00

0.56 0.74 0.74 0.74 0.41 0.70 0.50 0.73 0.64 0.26 0.18 1.00

0.40 0.16 0.16 0.17 0.15 -0.02 0.01 0.16 0.21 0.28 0.21 -0.44 1.00

(2) Vdowa) =

Analytical Framework and Methodological Issues

This section provides a brief discussion of the two methodological approaches adopted in this
study for the analysis of the causal structure of the determinants of land prices. The
conceptual framework for DAG is discussed first because it determines the contemporaneous
causal relationship among the variables. Then, an abbreviated synopsis of the cointegrated
VAR modeling techniques is offered, since this technique is more common in the literature

than DAG.

Directed Acyclic Graphs (DAG) Theory

Structural models, such as Just and Miranowski’s, often rely on prior economic theory
as the source of their identifying restrictions for edge removal and assigning the direction of
causal flow among the variables in the system. However, in some cases, this practice may
itself be arbitrary, as theory may not always yield a clear identifying structure. The DAG

bridges the gap between theory and practice by allowing theory to suggest which variables to
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initially include in the system. Then, the data-based DAG algorithm uses the inherent data-
generating process to help assign causal flow on observational (non-controlled) data.

The most commonly used definition of causality is that proposed by Granger, which
exploits the asymmetry that a cause precedes its associated effect (and not vice versa).
Granger formally defined cause as follows: Y, is said to cause X+ if [P(Xnt1 € A| En)] #
[P(X4i1 € Al E, — Yy)], for some A, where X, and Y, are time ordered sets of variables
defined for time =- o, ..., 0, 1..., n, and =, is the set of non-redundant information available
in time n. Alternatively, X Granger-causes Y, if a series Y is better predicted by its complete
past information set than by that universe less the series X. More recently, Spirtes et al.
(2000), and Pearl (1995, 2000) describe DAGs—a non-time sequence asymmetry in causal
relations as an alternative and more comprehensive approach for investigating causal
relationships. This new approach can be used as an alternative (or complement to) Granger’s
time sequence asymmetry in causal systems.

A DAG is a picture representing the causal flow among a set of variables such that
there are no directed cycles, i.e., it is not possible to start at a vertex and follow a directed path
back to the same vertex. The vertices (nodes) of these graphs represent variables on which
data has been obtained, and line segments connecting vertices (directed edges or arrows) are
generated by calculations of conditional statistical dependence or independence among pairs
of variables (ceteris paribus).

For the sake of illustration, we assume three economic variables, X, P, and Q. In the
first scenario, we assume a causal relation such that X causes P and Q, depicted as: P <X -
Q. The existence of a common cause in X implies that the unconditional correlation between

P and Q is non-zero, but the conditional correlation between P and Q, given prior knowledge
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of the common cause X, is zero. This suggests that common causes screen off associations
between their joint effects. In contrast, in the case of a second scenario where both X and Q
cause P, depicted as X=> P € Q, then the unconditional correlation between X and Q is zero.
However, the conditional association between X and Q, given the common effect P is not
zero. This implies that common effects do not screen off association between their joint
causes.

Following Bessler and Yang (2003), DAGs can be used to represent conditional

independence as implied by the recursive product decomposition:

(3) PI'(VI, Vys V3 ...Vn) :HPr(vi |pai)

i=1
where Pr is the probability of vertices v,, v,, v;, ...V, and pa, the realization of some subset

of the variables that precede (come before in a causal sense) v, in order (v,, v,, v;, ...V,).

The concept of directional separation (d-separation) was first introduced by Pearl (1995) as a
graphical representation of conditional independence. Pearl (1995) showed that the
conditional independence relations given by Equation (3) could be represented by d-
separation. Pearl’s (2000) work on d-separation is significant because it shows the link
between the causal graphs and the underlying probability distribution of the data generating
process.

In order to apply the concept of d-separation to observational data, Spirtes et al. (2000)
developed an algorithm (PC algorithm) for building directed acyclic graphs. The PC
algorithm is collection of commands that determines the causal direction among variables by
using a stepwise testing approach to remove edges between variables. Edges among a set of

N variables (e.g., residuals from a VAR), are removed sequentially based on zero correlation
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or partial correlation. PC algorithm and its more refined extensions are available as the
software TETRAD II (see Scheines, et al. (1994)).

As in Awokuse and Bessler (2003), the Fisher’s z statistic can be used to test
estimated sample correlations and conditional correlations against zero. Fisher’s z is

expressed as:

4) z(p(i, j| k),n) = B Jn—1k|-3 } m{w}

1= p(,j k]
and n is the number of observations used to estimate the correlations, p( 1,j|k) is the population
correlation between series i and j conditional on series k (removing the influence of series k
on each i and j), and [k| is the number of variables in k (that we condition on). Ifi, j and k are
normally distributed and r( i,j/k) is the sample conditional correlation of i and j given k, then

the distribution of z(p(i,jlk)n) - z(r(i,j|k)n) is standard normal.

Cointegrated Vector Autoregression (VAR) Modeling

Since the cointegration and error correction methodology is fairly commonplace and well-
documented elsewhere (Banerjee, et al.; Engle and Granger; Johansen; Johansen and
Juselius), only a brief overview is provided. The concept of cointegration is intuitively
appealing because it is supported by the notion of long-run equilibrium in economic theory.
While variables in a system may fluctuate in the short run, they are expected to return to their
steady state in the long run. Juselius’ maximum likelihood (ML) procedure is a very popular
alternative to the Engle-Granger method. The main attraction of this procedure is that it tests
for the possibility of multiple cointegrating relationships among the variables. Johansen and

Juselius modeled time series as reduced rank regression in which they computed the ML
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estimates in the multivariate cointegration model with Gaussian errors. The model is based

on the error correction representation given by

p-1
(5) AX, = pu+ ZF,AXH +TIX, +¢,

=)
where X; is an (nx1) column vector of p variables, & is an (nx1) vector of constant terms, I"
and IT represent coefficient matrices, A is a difference operator, k denotes the lag length, and
& ~ N(0.X). The coefficient matrix IT is known as the impact matrix, and it contains
information about the long-run relationships.

Equation (5) resembles a VAR model in first differences, except for the inclusion of
the lagged level of X, ;, an error correction term, which will contain information about the
long run among variables in the vector X,. This way of specifying the system contains
information on both the short- and long-run adjustment to changes in X, through the estimates
of I' and IT respectively. The error correction model (ECM) equation above allows for three
model specifications: (a) If IT is of full rank, then X, is stationary in levels and a VAR in
levels is an appropriate model; (b) If IT has zero rank, then it contains no long run
information, and the appropriate model is a VAR in first differences (implies variables are not
cointegrated); and (c) If the rank of IT is a positive number, » and is less than p (where p is

the number of variables in the system), there exists matrices ¢ and £, with dimensions (p x
r), such that IT=af". In this representation 3 contains the coefficients of the r distinct long
run cointegrating vectors that render f'X, stationary, even though X is itself non-stationary,

and a contains the short run speed of adjustment coefficients for the equations in the system.
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Johansen’s methodology requires the estimation of the VAR Equation (5) and the
residuals are then used to compute a likelihood ratio (LR) test statistic that can be used in the
determination of the cointegrating vectors of X;. The trace test considers the hypothesis that

the rank of IT is less than or equal to r cointegrating vectors, and it is expressed as:

(6) Trace=-T Z In(1- 4,)

i=r+l
The distribution for this test is not given by the usual chi-squared distributions. The
asymptotic critical values for the trace likelihood ratio tests are calculated via numerical

simulations (see Johansen and Juselius; Osterwald-Lenum).

Empirical Analysis and Results

Unit Roots

An important question pertinent to time series data is whether the data series is stationary in
levels or stationary after first differencing. If the data series are stationary after first
differencing, then cointegration or error correction (ECM) models are needed to analyze the
empirical relationships among the variables. Two univariate unit root tests were examined for
each of the thirteen series. First, the augmented Dickey-Fuller (ADF) t-tests for the null of
non-stationarity (unit roots). Due to the well-known low power of ADF tests, the KPSS test
(proposed by Kwiatkowski et al.) was also used to test for the null of stationarity. The
combination of ADF and KPSS makes it possible to test for both the null of unit roots and that
of stationarity. This approach is very robust in determining the presence of unit roots. Two
time trend specifications of both tests were explored: (1) with constant only (without) linear

time and (2) with linear time trend. Results for the ADF and KPSS tests are given in Table 1.
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Overall, from the combination of the results from both the ADF and KPSS tests, the time
series are found to be integrated at most of order one. This implies the possibility of

cointegrating relationships among the variables.

Directed acyclic graphs (DAG) Results’

Given the presence of unit roots in the undifferenced data, the TETRAD program, a
DAG algorithm, was applied to the thirteen variables to remove edges between variables and
directing causal flow of information between variables. The PC algorithm removes edges
from the complete undirected graph by first checking for unconditional (zero order
conditioning) and conditional correlations (first and second order conditioning) between pairs
of variables. Edges connecting variables having zero correlation are removed. Remaining
edges are then checked for first order partial correlation (correlation between two variables
conditional on a third variable) equal to zero. Similarly, edges connecting variables having
zero first order conditional correlation are removed. Edges that survive this check of first
order conditional correlations are then checked against zero second order conditional
correlation, etc.

As suggested by Spirtes et al, various levels of significance are considered in an
attempt to achieve an unambiguous causal structure of the variables in contemporaneous time.
Figures 2 and 3 present graphs based on unconditional correlation matrices in equations (1)
and (2) at the following nominal levels of significance: .10 and .20. As the TETRAD II
search algorithm involves multiple hypotheses testing for edge removal, the final significance
level is generally larger than that reported as nominal. Presenting results for alternative levels

of significance allows one to assess quantitatively the robustness of the results with respect to
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significance levels. Regarding the significance levels and PC algorithm, Spirtes, Glymour
and Scheines (2000, p. 116) suggest that “in order for the method to converge to correct
decisions with probability 1, the significance level used in making decisions should decrease
as the sample size increases, and the use of higher significance levels (e.g. .2 at sample sizes
less than 100, and .1 at sample sizes between 100 and 300) may improve performance at small
sample sizes.”

Since the sample size is limited to 35 observations (1961-1995), this paper presents
the 20 percent significance level as the cut off for the removal of edges.” This implies that in
order for the algorithm to not remove edges, the correlation and conditional correlation
between two variables must be significantly different from zero at the 20 percent significance
level. Figures 2 and 3 show that at the 10 percent significance levels the directed edges are
represented by the arrows with dotted lines while for the 20 percent level, the edges are
represented by solid lines. The resulting graphs are identical in most cases. Some of the
edges were undirected (ACRE and NFARM, and AVTAX and RETURN). Since there is an
undirected edge connecting these variables, there exists a relationship between them, but one
cannot say which variable is causal.

Since the DAG results for both Iowa and the U.S. are very similar at both levels of
significance, only the results for U.S. data in Figure 1 are discussed in detail. Relative to the
potential 12 edges into LPRICES in the undirected DAG in Figure 1, inspection of the graphs
in Figures 2 and 3 reveals that only two edges into LPRICES remain: edges originating from
CAPGAINS and DEBT. This implies that only two of these variables are direct and
contemporaneous causes of changes in LPRICES. In addition to the two direct edges into

LPRICES, there are also possibilities of indirect causes via the direct path from CAPGAINS
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and DEBT. The notable difference between DAG results for U.S. data (Figure 2) and that for
Iowa (Figure 3) is the causal edge between INFLATION and IDEBT. The causal path
observed from IDEBT to INFLATION for the U.S data is reversed for the case of lowa. This
may be due to the very small sample size or a reflection of the fundamental differences
between in lowa and U.S. aggregate data.

Relative to results from previous studies emphasizing the role of other variables as
determinants of land prices—inflation (in Feldstein; Falk and Lee; Just and Miranowski), net
returns to farming (in Phipps; Falk and Lee; Lence and Miller), and interest rates (Alston and
Burt)—of particular interest are the results that there are no edges remain between LPRICES
and INFLATION, IRATE, and RETURN. Using the 20 percent level of significance the edge
between LPRICES and INFLATION is not removed at zero order conditioning, as the
correlation (0.962) has a p-value of 0.00. Although the edge connecting LPRICES and
INFLATION survives an unconditional test (any test with a p-value greater than 0.2), this
edge is removed at first order conditioning as the corr(LPRICES, INFLATION | DEBT) = -
0.17, which has a p-value of 0.34 that is well above what is generally considered acceptable.
Similarly, the edges connecting LPRICES and IRATE and the edges LPRICES and
RETURN, though significant at zero order conditioning, these two edges were also removed
at first order conditioning as the corr(LPRICES, IRATE | INFLATION) = 0.21 (p-value =
0.22), and corr(LPRICES, RETURN | DEBT) = -0.13 (p-value = 0.48), respectively. Similar
results from the unconditional correlation test are true for the other variables. These outcomes
explain why no direct edges exist between LPRICES and all other variables (except

CAPGAIN and DEBT) in the system.



18

Overall, at the 20 percent level of significance, the DAG results shows that land prices
in the current time period respond directly to contemporaneous changes in the proportion of
capital gains applied to taxable income and real estate debt. Land prices also change,
indirectly, in response to same-period changes in a quantity measure—number of farms. A
causal path from IRATE to LPRICES was marginally rejected at a 22 percent significance
level. The conditional correlations of the other variables were not statistically significant.

These results are a marked departure from many of the structural models, which
assumed a richer relationship among the theory-derived explanations of land price changes.
Indeed, the DAG analysis suggests that land price models may be comparatively
parsimonious. These results, however, do not suggest what variables explain the composition
of land prices. Since these explanatory variables do not experience substantive, yearly
changes, one would not expect that they explain historical changes in land prices.

Based on the DAG results, a smaller set of variables can be tested for causation over
time. This is fortunate given the limited data available. Using these variables and prior
knowledge from other studies’ findings on the importance of inflation rate, subsequent
analysis was performed on the following six variables: LPRICES, NFARM, INFLATION,

IRATE, DEBT, and CAPGAINS.

Cointegrated VAR Test Results
Causal information given by DAG results can be used, first, to determine which of the
thirteen variables to exclude from the system. Second, the DAG results are also used to

assign causal flow for identifying the covariance matrix in a VAR model (Bessler and

Akelman). As Table 1 shows, the six variables (LPRICES, NFARM, INFLATION, IRATE,
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DEBT, and CAPGAINS) suggested by DAG are non-stationary in levels, but stationary in
first differences. So, the cointegration relationship among the six variables is investigated.
Following Johansen, tests are performed for both the number of cointegrating vectors
and the placement of the constant in the error correction model. Table 2 reports tests on the
number of cointegrating vectors for both the constant in the cointegrating vector (*) and the
constant outside of the cointegrating vector over 1961 to 1995. For the U.S. dataset, test
results from both specifications indicate that there are six cointegrating vectors (full rank). As
specified in earlier section, this implies that the appropriate model variant of equation (5) is
the VAR in levels. For the lowa dataset, test results from both specifications suggest the
presence of three cointegrating vectors (reduced rank). Also, this implies that the appropriate
model variant of equation (5) is the VAR in levels or an error correction model (ECM). As
shown in Sims, et al., if the time series are cointegrated, inference based on levels VAR is
equivalent to that based on an error correction model (ECM). Throughout the remainder of

this paper, the basic model of analysis is VAR in levels.

VAR-based Innovation Accounting

The six-variable levels VAR(k) variant of equation (5), comprised of LPRICES,
NFARM, INFLATION, IRATE, DEBT, and CAPGAINS, examines the dynamic causal
relationship between land prices and the other five variables. The first step is to determine the
appropriate lag structure of the VAR using tests such as the Schwartz’s (1978) BIC, and
Hannan-Quinn (1979) HQ information criteria. Two alternative order selection criteria are
applied to an unrestricted levels VAR model in order to determine the appropriate lag length.

Both the Schwartz’s (1978) BIC and the Hannan-Quinn (1979) HQ information criteria used
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to determine the order of the VAR suggest that the optimal lag length of two (which has white
noise residuals). Subsequent analyses proceed with the use of VAR with lag length k=2.

The rest of this section analyzes the dynamic effects of the structural innovations on
each of the variables in the six-variable VAR model for both Iowa and U.S. data. The DAG
results in Figures 2 and 3 are used to specify the causal path for the ordering of the Sims-
Bernanke decomposition of contemporaneous innovations. Table 3 contains the forecast error
variance decompositions (FEVD) associated with the VAR model for U.S. data under the
ordering of innovations as suggested by the DAG given in Figure 2. FEVD is the
contribution of each source of innovations to the variance of the n-period ahead forecast error
for each endogenous variable for horizons 1 to 7 years.

The first panel contains error decompositions for LPRICES. For U.S. data, the most
significant determinant of the variation in LPRICES is the proportion of current land value
attributable to capital gains (CAPGAINS). Within the first year, CAPGAINS explains 86.81
percent of the variability in LPRICES while in the long run (7 years later),” CAPGAINS still
account for 27.88 percent of the variability in LPRICES. The other key determinant of
variation in LPRICES in the U.S. data is interest rate on savings or interest rate on muni-
bonds (IRATE). IRATE explains about 42.38 percent of the variability in LPRICES in the
long run. The only other variable with notable contributions in the long run is real estate debt
(DEBT), which account for up to 10.86 percent of the changes in LPRICES for the U.S. data.
The relative impact of the other variables is considerably lower.

For completeness, Table 3 also includes results for the remaining panels, which
contain error decompositions for NFARM, INFLATION, IRATE, DEBT, and CAPGAINS,

respectively. For example, in panel 2 the error decomposition for the returns to farming
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deflator (RETURN) shows that in the short run, RETURN explains most of its on variation.
This suggests that return to farming is exogenous in the very short run. The only other key
determinant of returns to farming in this system is real estate debt (DEBT). In the last panel of
Table 3, the error decomposition for CAPGAINS shows that it is clearly exogenous,
explaining 100 percent of its own variation in the first year and up to 36 percent explained by
own innovations in the long run.

Table 4 contains the FEVD associated with the VAR model for lowa data under the
ordering of innovations as generated by the DAG result given in Figure 3. Between 10.41 and
24.10 percent of the variations in LPRICES is explained by own innovations. This implies
that land price expectation is an important determinant of LPRICES. The results also reveal
that CAPGAINS is an important determinant of the variation in LPRICES. In the first year,
CAPGAINS explains 70.35 percent of the variability in LPRICES while in the long run (7
years later), CAPGAINS still account for about 29 percent of the variability in LPRICES. In
the long run, the most significant determinant of LPRICES in Iowa is the interest rate on
savings or interest rate on muni-bonds (IRATE). The innovation to IRATE explains about
37.54 percent of the variability in LPRICES in year 7. The third variable with significant
contributions to variations in LPRICES is returns to farming (RETURN), which account for
up to 14.63 percent of the changes in LPRICES for the lowa data. The effect of implicit GNP
price deflator (INFLATION) is relatively minimal at 2.62 percent at the 7-year horizon.

The overall conclusions from the variance decomposition results indicate that the
following variables are key determinants of changes in farmland prices: land price
expectations, the returns to farming, opportunity cost of capital, and capital gains tax

variables. This finding is consistent with results from earlier studies by various researchers
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(Alston; Burt; Castle and Hoch; Just and Miranowski). The results also suggest that some
commonly employed explanatory variables may not have substantively important effects on

changes in land prices, over time.

Concluding Remarks

Although the causal effects of various variables on the observed fluctuations in
farmland prices have been studied before, the results conflict and a lack of consensus persists
about what “causes” changes in farmland prices. In order to unravel the causal relation
between farmland prices and other variables, past analyses have either relied on static theory-
based models or on other empirical models with ad hoc lagged relations. This paper extends
previous investigations in this area by employing a combination of cointegrated VAR and
directed acyclic graphs (DAG), a recently developed causal modeling technique. This study
is the first to apply DAGs to help sort out the causal structure of the key determinants of
farmland prices. DAG offers a powerful tool for analyzing the contemporaneous causal
structure of farmland prices and its determinants.

This paper used the same annual dataset (extended to cover the 1961 to 1995 period)
and the same (or similar) thirteen variables definitions as outlined in Just and Miranowski.
Annual data were obtained for the U.S. and three representative agricultural states (Iowa,
Kansas, and Georgia), which allowed for the consideration of the main categories of variables
often cited as determinants of farmland prices: measures of government programs, measures
of net return to agriculture, measures of land quantity, and measures of financial (credit
market constraints) and/or macroeconomic activity. DAGs investigated the contemporaneous

causal relations among these variables while the cointegrated VAR model (variance
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decompositions) was used to sort out the lagged causal relationships. Both approaches yield
similar results that confirm the importance of measures of net returns to farming, credit
market constraints and/or macroeconomic activity as significant determinants of fluctuations
in farmland prices.

The results validate concerns about the nonstationarity of these series, which Lence
(2001) argued was a shortcoming that undercut the analytical bite of the Just and Miranowski
analysis. When causation is studied directly, one finds a much simpler modeling task. Land
price changes appear to be sensitive to macroeconomic variables and the net return to
farming. This implies that future structural and empirical models can focus more directly on a
small set of variables without sacrificing analytical completeness.

The analyses also suggest what appears to be a new implication: some of the variables
that affect land price changes might be beyond the scope of agricultural policy. Undoubtedly,
this only holds given a continuation of the relatively stable institutional environment, which
contributes a substantively important, stable value to agricultural land. Nevertheless, the
policy importance of this result should not be underappreciated. If the welfare of farm firms
derives from their role as commodity producers and investors in land, then agricultural policy
seems mostly incognizant of the role of farmer as investor. Policy interventions that improve
socially desirable outcomes vis-a-vis farm firms, but distort agricultural markets, may not be
the cost effective. When farm-firm welfare derives in substantial measure from land price
changes, which in turn are driven by the macroeconomy, it is important for policy makers to
consider policies that mitigate downside risk in land markets. Given the sensitivity of DAG
techniques to small sample data size, such as in this study, we recognize that the empirical

results from this study must be tempered with caveats about the limitations of the
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methodology and the limited degrees of freedom available with use of annual time series land
data. Future research efforts may address some of the methodological issues and investigate
whether farmland relevant policies may have similar substantive effects on farm-firm welfare,

but at lower social cost.
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Endnotes
"' A third major area of research activity centers on the effect of growth pressure. Since this
paper focuses on agricultural land in lowa, these studies are not reviewed.
? Phipps’ theoretical model considers and cannot reject the endogeneity of price.
3 For this kind of analysis, longer duration and higher frequency data series (monthly or
quarterly) is usually more desirable for capturing the variability in the series over time.
However, data on farmland values at state and national levels are only available annually. So,
we note the potential limitations due to data availability for achieving conclusive statistical
results.
* Although the empirical tests and analyses in this study were performed for three states
(Iowa, Kansas, Georgia) and the U.S. aggregate data, to save space, only the empirical results
for Iowa and the U.S. are reported. The results for the datasets from Kansas and Georgia,
which are available from the authors, are very similar to those for lowa.
> As shown in Figures 2 and 3, even with only 35 observations, most of the edges that remain
in the system are very similar at both the 10 and 20 percent significance level. This shows to
some degree, the robustness of the edge removal process in the DAG PC algorithm.
® The “long run” is arbitrarily set at 7 years, since this is reasonably enough time for the effect

of perturbations from various sources to have worked their way through the system.
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Figure 1. Complete undirected graph on all thirteen variables.
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10% significance level —  20% significance level

Figure 2. Directed acyclic graph on all thirteen variables for Unites States, 1961-1995.
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Figure 3. Directed acyclic graph on all thirteen variables for Iowa, 1961-1995.
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Table 1. Tests for Unit Roots and Stationarity, 1961 - 1995.

United States Towa State

ADF ADF KPSS KPSS ADF ADF KPSS KPSS
Variables constant trend constant trend constant trend constant trend

LPRICES -2.061  -2.010 0.814b 0364> -2332 -2.242 0.360 0.328 b
ACRE -1.226  -2.095 1.8215 0300° 0.365 -2.230 1.788 b 0.092
NFARM -3.494 2 -0.782 1.727b  0387b -3.5362 -1.405 1.814 % 0.359b
DEBT -2.085  -2.287 1.575b  0.404b -2439 -2.743 1.526 > 0.397 b
TAX 0311  -3.6542 1.821b 0.202b -0.071 -2.859 1.792 b 0.116
RETURNG -1.790  -3.144 1.632b  0.095 -2481 -4.1802 1.429° 0.089
RETURN -1.965  -3.6562 1.587b 0.143 40642 -54462 1.049b 0.137
INFLATION -1.917  -1.708 1.825b 0.240° -1917 -1.708 1.825> 0.240b
IREDEBT -1.544  -1.548 1.5215 0283b -1.544  -1.548 1.521% 0.283 b
IRATE -1.600  -1.137 0.946b 0293b -1.600 -1.137 0.946 > 0.293 b
AVTAX -2.071  -1.982 0.632b 0330° -1.409 -1.987 0.633 > 0.176 b
PFDEBT -2.294 2154 0.289 0.279 b -34782 -3.454 0.309 0.095
CAPGAINS -2390  -2.624 0.623b 0304° -2.501 -2.741 0.539 b 0.215°

Note: The columns under the heading “ADF constant” refer to the Augmented Dickey-Fuller test with a drift
while “ADF trend” contains a linear trend.

* Reject the null hypothesis of unit roots for the ADF tests at the 5% significance level.

® Reject the null hypothesis of stationarity for the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests at

the 5% significance level.

Critical values at the 5% level of significance for the ADF (with constant only) and ADF (with linear trend) are:
-2.89 and -3.50 respectively.

Critical values at the 5% level of significance for the KPSS (with constant only) and KPSS (with linear trend) are:
0.463 and 0.146 respectively.



Table 2. Johansen Cointegration Test Results, 1961 - 1995.

Critical values United States Iowa State
Trace Trace* Trace Trace*
T C(5%) C(5%)* Statistics Statistics Statistics Statistics

=0 94.15 102.14 158.27 2 175.95 a 136.38 a 174.10 a

<l 68.52 76.07 106.42 2 11991 a 82.74 a 109.40 a
r<2 47.21 53.12 67.57 2 78.38 a 42.76 a 68.73 a
r<3 29.68 3491 41812 44.13 a 26.63 34.21
r<4 15.41 19.96 22552 24.70 a 12.99 20.42
<5 3.76 9.24 9.302 11.31 a 5.50 7.30

Note: r denotes the number of cointegrating vectors for cointegration test with constant within
and outside the cointegrating vectors. Johansen’s cointegration test follow a sequential

process for determination of the cointegration rank. We stop at the first r where we fail to reject
the null hypothesis of r numbers of cointegrating vectors. The critical values for the trace tests
are taken from Osterwald-Lenum).

* denotes test statistics for test results with constant within the cointegrating vectors.

* Reject the null hypothesis of cointegration rank r at the 5% significance level.
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Table 3. Decomposition of Error Variance using United States Data.

Steps Std Error LPRICES RETURN INFLATION IRATE DEBT CAPGAINS

(LPRICES)
1 0.029  10.503 0.016 0.000  0.608 2.060  86.814
2 0.049  8.918 0.154 2.650 16.646 10.859  60.772
3 0.073  6.073 1.702 4.852 32283 9367 45723
4 0.096  3.971 3.547 6.082 39.779 7.914  38.707
5 0113  2.894 4.436 7195 43293 7.921  34.261
6 0125  3.611 4.809 8.161 43.978 8555  30.886
7 0134  6.710 4.900 8.713 42381 9416  27.880
(RETURN)
1 0.218  0.000 100.000 0.000  0.000 0.000 0.000
2 0.264 0431  68.569 0.556  5.587 19.882 4.975
3 0.283  1.444  60.791 1266  6.646 20.544 9.309
4 0288 2175  59.317 1231 7234 19.919  10.125
5 0.295 2675  56.646 1255  8.324 19.765  11.336
6 0.301  2.844  54.466 1242  8.185 20572  12.691
7 0.302  2.817  53.939 1253  8.107 20.929  12.956
(INFLATION)
1 0.006  0.000 1715  81.789  1.135 15.361 0.000
2 0.013  0.352 5.811 57.952  13.522 17.623 4.740
3 0.023  0.537 8.859 35957 31.887 18.193 4.568
4 0.034  0.465 9.806 25381 43.565 17.053 3.728
5 0.046 0286  10.319  21.031 48.750 16.542 3.072
6 0.055  0.315  10.667 19.304  49.961 17.267 2.486
7 0.062  0.984  10.754 18.498  48.780 18.992 1.992
(IRATE)
1 0.566  0.000 0.000 0.000 100.000  0.000 0.000
2 0.753  0.169 3.282 0.113  82.182 10.987 3.268
3 0.787  0.604 3.008 0.425 75.363 17.604 2.996
4 0919  4.123 4.651 0.711  69.437 15.558 5.519
5 1.096  7.046 5.189 1113 66.687 12.378 7.587
6 1206  7.872 5.292 1.642 65.748 10.862 8.585
7 1249  7.581 5.602 2133  64.919 10.524 9.242
(DEBT)
1 0.022  0.000 9.418 0.000  6.234 84.349 0.000
2 0.045  0.123 5.128 2470 26.762 62.145 3.372
3 0.070  0.323 4.920 5.020 36.876 42.700  10.162
4 0.096  0.253 5.465 6.805 41.050 32.458  13.969
5 0.121  0.193 5.834 8.109 43.427 27.688  14.747
6 0.144  0.656 6.131 9.043 44.577 25413  14.182
7 0.163  2.026 6.330 9.649 44.459 24489  13.047
(CAPGAINS)
1 0.028  0.000 0.000 0.000  0.000 0.000 100.000
2 0.043  0.402 0.013 2371 6585 6.186  84.444
3 0.061  0.899 0.458 5175 19.956 7.583  65.930
4 0.079  1.573 1.658 6.680 29.341 6.837  53.912
5 0.092  3.192 2.475 7.617 34234 6.608 45875
6 0.101  6.681 2.765 8.212 35411 6719  40.211
7 0.107 _ 12.437 2.742 8.293  33.680 6.824 _ 36.024

Decompositions at each step ahead are based on Bernanke factorization of contemporaneous
innovations using orderings suggested by directed graphs in Figure 2. The decompositions in each
row sum to one hundred.
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Steps  Std Error LPRICES RETURN INFLATION IRATE DEBT CAPGAINS
(LPRICES)
1 0.062 24102  0.070 0.000 1.864 3.615 70.349
2 0.105  26.086  0.841 0.812 7257  6.396 58.607
3 0.153  21.697  8.028 1482 16.755  6.250 45.788
4 0.202  16.757  12.205 2.013 26749  5.835 36.442
5 0.240  13.338  13.480 2256 33587  5.767 31.572
6 0.264  11.189  14.450 2.392 36.641  5.806 29.522
7 0.276 10409  14.625 2622 37536  5.837 28.972
(RETURN)
1 0.368 0.000  100.000 0.000  0.000  0.000 0.000
2 0.424 0.158  85.840 3.319 8787  0.221 1.675
3 0.434 0.154  83.404 3702  9.347  0.732 2.661
4 0.454 0.173  83.547 4004 8796  0.751 2.729
5 0.458 0.325  83.364 4.024 8761  0.744 2.782
6 0.465 0.367  83.088 3.921 9161  0.752 2.711
7 0.467 0.364  82.657 3.907 9429  0.786 2.856
(INFLATION)
1 0.006 0.000  0.008 98.866  0.105  1.022 0.000
2 0.012 0.009  5.150 72207 12469 1511 8.654
3 0.021 0.032  10.464 43592 32.030  3.780 10.102
4 0.033 0.049  11.475 28.563 45.160  5.601 9.152
5 0.044 0.031  12.411 21.347 50579  6.744 8.888
6 0.054 0.066  12.921 18.163 51.946  7.495 9.411
7 0.063 0.364  12.580 16.969 51.625  8.049 10.413
(IRATE)
1 0.549 0.000  0.000 0.000 100.000  0.000 0.000
2 0.705 0.509  11.757 2137 85519  0.002 0.075
3 0.715 0.599 12515 2485 83.075  1.206 0.120
4 0.830 3.371  13.784 1.850 76.311  4.085 0.599
5 0.997 7.133  13.664 1.287 70423 5835 1.659
6 1.118 9473  14.246 1.033 64.897 6.654 3.697
7 1.193 9.920 15.214 1.017 60.256  6.996 6.597
(DEBT)
1 0.022 0.000  0.688 0.000  9.227 90.086 0.000
2 0.044 3.174  0.688 1.645 28379 55473 10.641
3 0.075 5935  5.431 2.369 32437 32.578 21.251
4 0.111 6.268  8.398 3.187 34.560 22.161 25.425
5 0.147 5440  9.830 3.835 37.086 17.205 26.603
6 0.181 4265  11.030 4268 39.315 14.560 26.562
7 0.209 3.250  11.657 4673 41122 13.092 26.207
(CAPGAINS)
1 0.081 0.000  0.000 0.000 0.000  0.000  100.000
2 0.122 0.138  0.497 1467 0422  1.730 95.747
3 0.155 0.366  1.018 3314 5992  2.757 86.553
4 0.190 0430  4.891 4166 17.112  3.052 70.348
5 0.220 0.330  7.216 4387 26.985  3.100 57.983
6 0.236 0515  8.307 4397 31651  3.054 52.077
7 0.242 1.957  8.500 4454 32200  2.950 49.938

Decompositions at each step ahead are based on Bernanke factorization of contemporaneous

innovations using orderings suggested by directed graphs in Figure 3. The decompositions in each

row sum to one hundred.
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