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Abstract 

This paper considers estimation and inference for the binary response model in the case 
where endogenous variables are included as arguments of the unknown link function.  
Semiparametric estimators are proposed that avoid the parametric assumptions 
underlying the likelihood approach as well as the loss of precision when using 
nonparametric estimation.  Suggestions are made for how the utility maximization 
decision model can be altered to permit attributes to vary across alternatives. 
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1. Introduction 

In this paper, we consider conventional estimators of latent variables models 

typically are based on strong assumptions involving a particular finitely parameterized 

error distribution specification.  Economic theories that motivate these models and 

estimators rarely, if ever, justify such restrictions on the error specification.  This 

uncertainty regarding the specification of the data sampling process implies that, in 

reality, a broad range of statistical models and estimators should not logically be ruled 

out as potential generators of the observed data.  Within the context of this challenging 

model specification scenario, in this paper we consider the case of a multinomial 

response model involving endogenous covariates as arguments in the unknown link 

function.  To recover the unknown response parameters and marginal probabilities, we 

demonstrate a semiparametric estimator that avoids many of the assumptions of the 

likelihood approach and the loss of precision that occurs in fully nonparametric 

estimation. 

 

1.1 Some Background 

 In the context of multinomial response models, assume that on trial i 1  

one of  alternatives is observed to occur among the binary random 

variables{

, 2, , n= … ,

j 1, 2, , J= …

}i1 iJy ,..., y

ijp 's

( )j i ,x β

 having , as their respective probabilities of success.  Assume 

further that the  are related to a set of  covariates through link functions of the 

form G , where the vector n  contains attributes of the decision maker and/or the 

ijp ,

k

i



alternatives, β  is a vector of unknown parameters, and [ ]j    0,1→G  :  may be either 

known or unknown.  The data sampling process is represented as  

) ij ε  +β

ijy |ij

( ))j iy ln G ,x β

  (ij ij ij j iy p   ε G ,= + = x  (1.1) 

where the ε  are unobservable independent noise components and . ( )i j iG , Ε = x x β

 In those rare instances where the parametric functional form of G  and the 

parametric family of probability density functions underlying the decision model are 

known, one can use the traditional maximum likelihood (ML) approach and the 

multinomial log-likelihood function   

(j i ,x β)

  ( ) ( iji j
L = ∑ ∑yβ;  (1.2)  

to obtain estimates of the parameters of the model. Depending on the specific parametric 

family of distributions assumed for the noise term of latent variables that govern the 

decision process (discussed in section 2 ahead), logit, probit, or other formulations arise. 

Whatever the distribution underlying the likelihood specification, if the choice of 

distribution happens to be correct, then the usual properties of ML estimation hold 

including consistency, asymptotic normality and efficiency.  However, if these conditions 

do not hold, then standard ML estimating procedures do not attain their usual attractive 

sampling properties.  For detailed discussions concerning these types of models, see 

Maddala (1983) and McCullough and Nelder (1995). 

 Several estimating procedures for  that do not require a parametric formulation 

for the  exist. For example, Ichimura (1993) demonstrates a least squares estimator 

of , and Klein and Spady (1993) demonstrate a quasi-maximum likelihood estimator 

when  is binary.  These estimates are consistent and asymptotically normal under their 

prescribed regularity conditions.  Unfortunately, they involve nonlinear optimization 

problems whose solutions are difficult to compute.  Using an information theoretic 

formulation, Golan, Judge, and Perloff (1996) demonstrate a semiparametric estimator 

for the traditional multinomial response problem that has asymptotic properties in line 

with parametric counterparts.  In terms of multinomial problems with endogenous 

explanatory variables the formulations of Newey (1986, 1987) and Blundell and Powell 

(1999) are important examples. 

β

jG 's

ijy

β



 Building on these productive efforts, in this paper we seek a semiparametric basis 

for recovering β  in (1.1) when the functional form of the link functions G  is 

unknown and the covariates in the untransformed structural model contain endogenous or 

random components such that  In this context, one objective is to 

demonstrate an estimator that avoids many of the assumptions of the likelihood approach 

and permits us to cope with endogeneity-measurement error problems that often arise in 

practice. 

( )j i ,x β

i ijε . Ε ≠ x 0

 

1.2 The Format 

 In Section 2, we define a particular multinomial response model that reflects the 

endogenous nature of the sampling process, formulate a semiparametric estimation 

procedure in the form of an extremum problem, and provide a solution to the 

semiparametric estimation problem that has the sampling properties of consistency and 

asymptotic normality.  In Section 3 we discuss alternative multinomial response model 

formulations and indicate corresponding semiparametric estimation methods.  Finally, in 

Section 4 the estimation and inference implications of our proposed models are 

summarized. 

 

2.  A Multinomial Response Model and a Semiparametric Solution 

 Assume the multinomial response model 

  ( ) ( )* *
1ij 1ij 1ik0,

k j

* *
1ij 1ik

y I y y

1 iff y y , k j

∞
≠

= −

= > ∀ ≠

∏
 (2.1) 

where the latent variable  is assumed to be generated from the linear model *
1ijy

    , (2.2) *
1ij i j ijy  u′= +x β

ix  is now a (  vector of explanatory covariates over )k 1× i 1, 2, , n= …  observations 

relating to decision maker attributes,  is an unobservable noise component, and 

 is a standard indicator function that takes the value one if 

iju

( ) ( )∞ υ0,I (0, )υ∈ ∞  and equals 

zero otherwise.  This particular multinomial formulation is based explicitly on the 



decision maker's attributes represented by , i = 1, ... , n, which clearly do not vary 

across the J alternatives. The decision maker attributes are translated into a utility index 

via alternative-specific β  that indicates how attributes specific to the decision maker 

affect the rankings for each of the J alternatives. In this formulation, the utility index 

associated with alternative j, conditional on a decision-maker’s attributes, is given by 

, for each j, apart from random noise in the random utility framework. The 

formulation suppresses any explicit alternative-specific attributes.  

ix

j 's

i
′x β

1m 1+ =

1iy ′z β

1

[Ε

*
1i z

u

2 jβ

1j= +

=

j

 To characterize in an expository manner a situation that is consistent with the 

covariate endogeneity or measurement error problem, assume that [ ]i 1i 2, y′ ′=x z i

1i

 is a row 

vector of dimension  contains a fixed set of exogenous covariates, and  

is an endogenous random variable where 

k,  z 2iy

2i ijy u 0. Ε ≠   We rewrite (2.2) as the structural 

equation,  

   (2.3) *
1ij 1j 2i 2 j ij y  = + β + u

v

where  are jointly determined random variables.  To close the system, we 

define  

1ij 2iy  and y

  2i 1i 2i 2 i i iy  v = ′ ′ ′= + + +z π z π z π  (2.4) 

where  is a column vector of dimension [i 1i 2i, ′′ ′=z z z ] ( )1 2 1m m m ,  m 1,+ = ≥  and 

]i iv =z 0 .  Rewriting the structural equation (2.2) in reduced form results in 

  j  (2.5) *
j 1i 1j i i 2 j ij 1i 1j i 2 jy  v  u  ′ ′ ′ ′= + + β + = + β +β z π z β z π iν

.where ν =  is a reduced form error term, for *
ij i 2 j ijv  β + j 1, 2, , J= …

ˆ

 Since  is 

unknown, we replace it by a consistent least squares estimator π , obtaining 

π

   *
1ij 1i i 2 j i 2 j ijˆ ˆy  v′ ′ β + β +z β z π  u

 u  1i 1j 2i 2 j i 2 j ijˆ ˆy v′= + β + β +z β  

  i j ije′ +w β  (2.6) 

and 

  [ ) ( )1ij i j ij0,y I  e∞ ′= +w β  (2.7) 



where [ ]i 1i 2i ij i 2 j ij i 2i iˆ ˆ ˆ, y ,  e v  u , v y ,′′ ′= = β + =w z z ˆ− π  and ( )n1
i iji 1

p lim n e−
=

=∑ w 0 . 

 Given the statistical model (2.6)-(2.7), the problem is to demonstrate a 

semiparametric estimator that connects the unknown probabilities,  with the unknown 

link functions, G  for j = 1,…, J,  and that also has good sampling properties. 

ijp ,

(j i ,x β)

 

2.1 Problem Formulation 

 Given the development in (2.1)-(2.7), consider 

  ( )1ij j i ij ij ijy G ,  p  = + ε = + εx β  (2.8) 

which, for expository purposes, we rewrite in ( )nJ 1×  vector form by vertically stacking 

sets of n sample observations, for each of the J responses j 1, 2, , J= … , as 

  1 = +y p ε . (2.9) 

If we let [ ]1 2ˆ,=w z y  be a matrix of dimension ( )( )1n m 1 n k× + = × ,  one way to 

represent information contained in (2.9) is in the form of the empirical moment constraint 

  ( )( )1
J 1n− ′⊗ − − =I w y p 0ε  . (2.10) 

If the asymptotic orthogonality conditions ( )
p

1
Jn− ′⊗ →Ι w ε 0  hold, then   

  ( )( )1
J 1n− ′⊗ − =Ι w y p 0  (2.11) 

can be used as an asymptotically valid estimating function. Estimating functions provide 

one effective path to inference without specifying the underlying probability structure.  

However, in (2.11) there are moment relations and unknown multinomial 

parameters, with .  Consequently, the inverse problem is ill-posed and cannot be 

solved for a unique solution by direct matrix inversion methods. 

kJ nJ

nJ kJ>

 

2.2  An Estimation Criterion – Distance Measures 

 One way to solve the ill-posed inverse problem for the unknown parameters, 

without making a large number of assumptions or introducing additional information, is 

to formulate it as an extremum problem.  In this context, the Cressie-Read statistic 

(Cressie and Read, 1984; Read and Cressie, 1988; Corcoran, 2000)  



  ( ) ( )
J

j
j

j 1 j

p1I , , p 1
1 q

γ

=

  
 γ = −  γ γ +    

∑p q  (2.12) 

where we focus on discrete probability distributions with J nonzero probability elements, 

represents an estimating criterion that is particularly useful since the unknowns of the 

problem are contained within the unit simplex.  The result is a multinomial allocation that 

assigns probability  to the possible outcomes of .  In the limit as γ  ranges from -2 

to 1, a family of estimation and inference procedures emerges.  Three main variants of 

 have received explicit attention in the literature (see Mittelhammer, Judge and 

Miller, 2000).  Assuming that the q  represent the reference distribution of the CR 

statistic and that this reference distribution is specified to be the uniform distribution, i.e., 

, then 

ijp 1ijy

(I , , γp q

1
jq J ,−=

)

j

j 's

∀ ( ), γ

J

j 1=∑

I ,p q

−

1)

 converges to an estimation criterion equivalent to the 

negative of Owen’s (1988, 1991, 2000) empirical likelihood (EL) metric , 

when .  The second prominent case corresponds to letting γ →  and leads the 

estimation criterion , which is the negative of the empirical exponential 

likelihood (EEL) or Kullback-Leibler (1959) distance. As Csiszar (1998) has noted, the 

Kullback-Leibler (KL) distance is not a true distance metric, but in many respects, it is an 

analogue to the squared Euclidean distance measure.  Finally  results in an 

estimation objective that is proportional to the log Euclidian likelihood function, 

.  We can then define a generalized extremum, global optimization with 

respect to γ, formulation for our problem, with the estimation objective being to 

maximize the negative of a Cressie-Read statistic that has been extended to represent n 

multinomial distributions, each with J alternatives, as

J1
jj 1

J ln(−
=∑

0

p )

                                                

1,  

2
jJ p −

γ →

J1
j 1

J (−
=∑

−

jp ln(p j)

1γ =

2

1 

 
1 Letting p denote the  vector of multinomial probabilities associated with sample observation i, and 

letting q  denoted the associated reference distribution, the extended Cressie-Read statistic is of the form  
i

i

1J ¥

( ) ( ) [ ] [ ]
[ ]1 1

1, , 1
1

n J
i

i
i j i

j
I j

j
p

p q p
q

γ

γ
γ γ = =

  
 = −  +    

∑∑ . 



 ( )
( )

( ) ( )( ) [ ]{ }
ij

1
J J, i and jp 0,1

l I , ,  | n ,max −

∀∈
′ ′= − γ ⊗ − = ⊗p p q I w n n=y p 0 1 I p 1  (2.13) 

for a given choice of and a uniform reference distribution q  representing the 

usual case of uninformative priors, where 1  denotes a 

γ -1
nJJ= 1

( )1×  vector of 1’s.  The integer 

values of γ that are noted above they become special cases. 

 

2.3  Problem Formulation and Solution 

 Focusing on the case where 0 , the KL estimation problem is defined by  γ →

  ( ) ( )max H  ln′= −
p

p p p  (2.14) 

subject to the assumed information-moment constraint 

  ( ) ( )J 1 J′ ′⊗ = ⊗I w y I w p  (2.15) 

and the n  normalization (adding up) conditions 

  [ ]J n =′ ⊗1 I p 1n

…

 (2.16)   

Note that maximization of (2.14) subject to the assumed moment constraints (2.15) and 

the adding up-normalization conditions (2.16) is equivalent to minimization of the KL 

cross-entropy distance measure relative to a uniform reference distribution for each 

vector of probabilities ( )  and subject to the same moment 

constraints.  For the case of binary data, Downs (2003) discusses an alternative class of 

maximum entropy distributions that represent other features of the observed data. 

i1 i2 iJp , p , p ,  for i 1, 2, , n=…

 Moving in the direction of a solution, the first-order conditions for the Lagrangian 

form of the optimization problem (2.14)-(2.16) form a basis for recovering the unknown 

p  and the β  through the Lagrange multipliers.  In particular, the Lagrangian for the 

KL-maximum entropy optimization problem is  

j 's

  ( ) ( ) ( )( ) [ ]J 1 n J nL ; ln′ ′ ′ ′ ′ = − + ⊗ − + − ⊗    p y p p I w y p τ 1 1 I pλ . (2.17) 

The solution to this optimization problem is  

  
( )

( )
( )

( )
( )

( )
i j i j i j

ij J
i i i kk 2

ˆ ˆ ˆexp exp exp
p̂

ˆ ˆ ˆ1 exp
=

′ ′ ′−
= = =

′Ω − Ω + ∑

w w β w β

β w β

λ

λ
 (2.18) 



where λ  refers to the  vector of elements associated with alternative j
ˆ (k 1× ) j, j j

ˆ ˆ≡ −β λ  

weights the impact of the explanatory variables on the ’s, and the  term is a 

normalization factor.  We also assume that the standard identification condition  is 

imposed. 

ijp ( )i
ˆΩ β

1
ˆ =β 0

 The unknown 'sβ  that link the  to the  are the negative of the  

Lagrange multiplier parameters that are chosen so that the optimum solution  satisfies 

the constraints (2.15).  Given the Lagrangian (2.17) and the corresponding first-order 

conditions, the Hessian matrix with respect to the choice probabilities is a negative 

definite diagonal matrix characterized by the elements  

j ijp 's i 'sw kJ

ijp̂

  ( )

( )
2

i
2
ij iji j

L
p pexp

Ω∂ 1
= − =

∂ ′w

β

β
−  (2.19) 

and 

  ( ) (
2

ij k

L 0 when i, j k,
p p
∂

= ≠
∂ ∂

)

−

. (2.20) 

The negative definite Hessian matrix ensures a unique global solution for the ’s 

provided the constraint set includes an interior feasible point.  To reduce the 

computational burden of the estimation problem, we note that the minimum KL approach 

can be reformulated as an unconstrained problem.  By substitution of the solution 

outcomes (2.18) back into the Lagrangian (2.17), we can rewrite the constrained KL 

optimization problem in an unconstrained or concentrated form 

ijp

  ( ) ( )
J

1ij i j i
i j 2 i

M y ln
=

′= + Ω  ∑∑ ∑wλ λ λ   . (2.21) 

By the saddle-point property of the minimum KL problem, ( )M λ  is strictly convex in λ, 

and the optimal values of the Lagrange multipliers may be computed by minimizing 

 with respect to λ (or maximizing ( )M λ ( )M− λ  with respect to λ).  We also use ( )M λ  

to derive the asymptotic properties of the minimum KL estimator. 

 

 



2.3.1 The Traditional Multinomial Logit Estimator 

The maximum likelihood (ML) multinomial logit estimator is a special case of the 

minimum KL solution stated in (2.18) if the model (2.3) does not include the endogeneity 

component (i.e., 2 j 0=β  for all j).  In this case, the minimum KL solution to the restricted 

version of the problem in (2.14)-(2.16) is 

  
( )

( )
( )

( )
1i 1j 1i 1j

ij J
i 1 1i 1kk 2

ˆ ˆexp exp
p̂

ˆ ˆ1 exp
=

′ ′−
= =

′Ω − + ∑

z z

z

λ β

λ β
 (2.22) 

where β  for each j and 1j 1j
ˆ ≡ −λ̂ 11 = 0

0

β  is imposed.  Both the general choice probability 

formulation in (2.18) and the traditional multinomial logit model in (2.22) are consistent 

with utility maximization (see Train, 2003, p. 41).  To show the correspondence of the 

two approaches explicitly, we consider the special case of (2.21) associated with (2.22) 

(i.e., under the restriction 2 j =β ).  The optimal Lagrange multipliers are selected by 

maximizing   ( )1λM−

  ( ) ( )
J

1 1ij 1i 1j i
i j 2 i

M y ln
=

′− = − − Ω − 1  ∑∑ ∑zλ λ λ   . (2.23) 

with respect to λ.  This concentrated objective function is equivalent to the multinomial 

logit log-likelihood function 

  
( )( )

( )
( )
( )

1i 1j

1ij J
i j

1i 1kk 2

J

1ij 1i 1j i 1
i j 2 i

exp
ln L ; y ln

1 exp

y ln

=

=

′ 
 =  ′+  
′= − Ω  

∑∑
∑

∑∑ ∑

z
y

z

z

1

β
β

β

β β

 (2.24) 

where β .  Although the conceptual bases for the traditional ML multinomial logit 

and the minimum KL formulations are different, the ML and minimum KL parameter 

estimates are identical. 

1j 1j≡ −λ

 The equivalence of the ML and minimum KL estimators also implies that they 

share identical finite and large sample properties.  If the logistic model specification is 

correct, we know that the ML and minimum KL estimators are n -consistent such that 



p
0

1
ˆ →β β1  under the standard regularity conditions for ML estimators.  The estimators are 

also asymptotically normal so that ( ) (
d

0
1 1 0

ˆn N −− → 0 )1,β β ∆  where 0∆  is the limiting 

information matrix, ( )
0
1

2
11

1 1

ln L ;
n−

 ∂
 

′∂ ∂  

y

β

β
β β0 n

lim E
→∞

≡ −∆ . 

(n ×

( )i )n 1×

( ) ( )

( ) ( ) ( ) ( )ii 1
j ME

i 1
1i 1j

I
exp

Ω
=

′∑p 1
z

β

β
=

( )j j
j 1ME

j 1 1m

n

im
i 1

1 1

I I

I ,
=

∂ ∂   
=   ′∂ ∂   

=

=

∑

∑

p p
p β β

β β

β β

)th,m ( )2J 1

imp p

− K ×

11 =β

( ) ( )K J 1 K J 1− × −

Following the discussion in Golan, Judge, and Perloff, the sample information 

matrix used to estimate the asymptotic covariance matrix of 1β̂  may be derived from the 

information about the underlying conditional choice probabilities.  First, we rearrange the 

Hessian matrix composed of (2.19) and (2.20) to form J2 blocks of elements.  The ( )  

block denotes the second partial derivatives of the Lagrangian with respect to elements of 

the  vectors p

thj, k

1 j and pk (i.e., the n probabilities across observations for the jth and kth 

alternatives, respectively).  The jth diagonal block of the Hessian matrix can be 

represented by defining 1  to be a (  null vector except for a one in row i and by 

summing over the n sample observations to obtain 

)

  ( )
n n

i 1 ij

1i
p= =

′ ′∑1 . (2.25) i i1 1

Then, we transform from pi to β1j space (see Lehmann and Casella, 1998, p. 115) to 

derive 

  

( )

( ) ( )

( )

1m ME

i 1i 1i

m ML

,

p i i ′ ′ −
1 1 z z  (2.26) 



where (2.26) is the (  block of  blocks of dimension ( )K

0

 referring to all 

parameter vectors other than the fixed (for identification purposes) .  The matrix 

composed of blocks (2.26) is (  in dimension and is identical to the 

sample information matrix for the ML multinomial logit estimator.  The estimated 

)



asymptotic covariance matrix for 1β̂ , ( ) 1
1

ˆ ˆˆ n −=cov β ∆ , is the inverse of this sample 

information matrix evaluated at 1β̂ . 

( )( )
p

1 1⊗ −J 1
′I z y p 0β

)1
0

1 ∆0
−

1

n

lnlim E n−

→∞0


≡ 


Ξ

i2ŷ

ijε

 Given that we view the multinomial choice model from the semiparametric 

perspective, it is important to note that the large sample properties may also hold if the 

logistic model specification is incorrect.  The key regularity condition (in addition to 

those required for the ML logit model) is the existence of some vector of model 

parameters β  such that 0
1 ( )1n−  as .  Under these 

conditions, the estimators are also consistent such that 

n → ∞

p
0

1 1→β̂ β  and asymptotically normal 

as ( )1 1β β ( 0 0, −∆ Ξ
d

0ˆn N− → 0  where Ξ  is the limiting covariance matrix of the 

normalized necessary conditions, 
0 0
1 11 1

ln LL ∂ ∂


′∂ ∂ β β
β β

1
0

.  If the model is 

correctly specified, the limiting covariance matrix reduces to −∆  under the information 

matrix equality, Ξ ∆ . 0 0= −

0 →

 

2.3.2. Sampling Properties under Endogeneity 

 The asymptotic properties of the minimum KL estimator in (2.18) do not carry 

over under the unrestricted version of the model (2.3) due to the endogeneity of y2i.  The 

key problem is that the asymptotic orthogonality condition ( )
p

1
jn 0− ′⊗ ε→Ι w

ije

 underlying 

(2.11) does not hold.  Although is uncorrelated with the errors in the latent 

regression model (2.6),  may be correlated with 
i2ŷ  such that ( )J ′⊗ ε  I wE 0≠  

because the errors in the observed regression model (2.8) are nonlinear functions of the 

latent noise components.  This point was illustrated with a Monte Carlo simulation 

example presented by Dagenais (1999)2.   

                                                 
2 We note that while his conceptual point remains valid, there is an error in the numerical simulation results 
reported by Degenais. In particular, he utilized a standard normal distribution when in fact a normal 
distribution, with variance , should have been used in generating the outcomes of the latent 
variable in his structural equation. The corrected correlation between instruments and the disturbance term 

2 4νσ =



 We performed a limited set of Monte Carlo experiments based on the data 

sampling process characterized by (2.3)-(2.4) in which the key comparisons were the 

impact of the sample size (n) and the trade-off between the noise components,  and v .  

We consider the following specific implementation of (2.3) and (2.4), 

iu i

   (2.27) *
1 11 12i 2 2+2 + i i iy y b= z z  iu+

iv  , (2.28) 2 11 12 21 222i i i i iy = - + - +z z z z

where ( )*
1 1 0i iy I y= > . The exogenous (instrumental) variables  and z  are generated 

as pseudo-random Uniform(0,2) outcomes and held fixed in repeated Monte Carlo trials.  

We also choose 

1iz 2i

{ }2b Œ 0,1

b

 to consider the behavior of estimators in models for which 

there is endogeneity (i.e., ) and no endogeneity (i.e., ). 2 1= 2b 0=

 Although the scale parameter for u  is not identified for estimation purposes, we 

alter the value of this parameter within the experimental design to control the relative 

noise composition of .  We draw pseudo-random outcomes from the bivariate normal 

distribution 

i

*
1iy

  
2

2

0
~ ,

0
i u u

i u v v

u
N

v
s rs s

rs s s
v

È ˘Ê ˆÊ ˆ Ê ˆ
Í ˙Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯Í ˙Î ˚

  . (2.29) 

To vary the relative importance of the noise components, we set  and , and 

the correlation is 

2 1vs = 2 1us =

{ }0.75, 0.5, 0.25,0,0.25,0.5,0.75r Œ - - - .  We also set the number of 

observations as { }100,250,500,1000Œn  to represent relatively small to large sample 

sizes.  Under these model variations, the experimental design included a total of 28 

sampling combinations. The simulations results are presented in Tables 1 and 2 for both 

the KL and Logit estimators based on one thousand simulated sample repetitions and 

with and without endogeneity, respectively. 

 The results suggest that in the exogenous regressors case, the KL method is very 

competitive in MSE with the Logit estimator across all sampling conditions, and as 

correlation and sample sizes increase, the relative superiority of the KL estimator is very 
                                                                                                                                                 
of the censoring equation in this case is -.095, based on one million repetitions, as opposed to the reported 
value of -.46 by Degenais. However, in any case, the correlation is nonzero, illustrating his conceptual 
point. 



substantial.  Empirical evidence of the consistency of the KL estimator is evident in 

Table 1, whereas the inconsistency of the Logit estimator is also evident particularly for 

highly correlated situations with large sample sizes. In the endogenous regressors case, 

the Logit estimator is more often the MSE superior estimator, although the KL estimator 

maintains superiority when the sample size is small and the correlation is positive and 

large. Empirical evidence of inconsistency is apparent in both estimators especially in 

cases of higher correlation.  

 

2.3.3 Alternative Estimation Objective Functions 

 Finally we note that in (2.13) as  approaches -1, maximization of the limit of 

 for  is equivalent to maximization of the empirical likelihood (EL) 

criterion, namely 

γ

( )I , ,− γp q 1
nJJ−=q 1

( ) ( )1
nJH J ln− ′p 1 p .=  Replacing the objective ( )I , ,− γp q  in (2.13) with 

 leads to a constrained optimization problem that can be solved by the method of 

Lagrange multipliers to yield, for each , the following optimal probabilities, 

( )H p

i, j

  
1

ij i j i
ˆˆ ˆp

−
 ′= + τ  
w β  (2.27) 

where  is the Lagrange multiplier associated with the i probability additivity 

constraint on 

iτ̂ th

,p  and  weights the impact of the explanatory variables on the unknown 

probabilities, where again β   As before, the probabilities are implicitly defined 

through the Lagrange multipliers 

β̂

1
ˆ .= 0

τ̂  and do not have a closed form solution, which 

prevents direct evaluation of the functional form to ascertain the estimator’s finite sample 

properties.  For finite sample and limiting sampling properties of this and the KL 

formulation, see Mittelhammer, Judge, and Schoenberg (2003).  An alternative 

semiparametric model of the choice probabilities could also be derived under the log 

Euclidean Likelihood objective function. 

 

3.  Alternative Multinomial Choice Models 

 The multinomial formulation that was presented in section 2 is based exclusively 

on decision maker's attributes represented by , i = 1, ... , n, which clearly do not vary ix



across the J alternatives. We now consider alternative multinomial response models, and 

suggest how semiparametric estimates of these models might be defined based on the KL 

information theoretic framework. 

 

3.1  Alternative-Specific Attributes 

 The utility maximization-decision model underlying the multinomial choice 

problem can be altered in a number of ways. One prominent model variation is the case 

where alternative-specific attributes are accounted for explicitly, allowing for estimates 

of the impacts on decision making of marginal changes in the levels of attributes 

contained in the J alternatives. Suppressing decision maker-specific attributes, in this 

formulation there is a common (across alternatives) parameter vector β  representing 

marginal utilities of attributes associated with each of the alternatives. The overall utility 

of each alternative is derived by accumulating the utility of the bundle of attributes 

associated with the alternative as j
′x β , for j = 1, …, J, and then the alternative with the 

highest realization of the accumulated utility, also accounting for random noise in the 

random utility formulation, is the alternative chosen.  

 The preceding model variant can be accommodated within the KL-problem 

context with minor changes to the formulation of section 2. First of all, we alter the 

representation in (2.8) to the following: 

  ( )1ij j ij ij ij ijy G ,  p  = + ε = + εz β  (3.1) 

where  now refers to a vector of observed attribute levels corresponding to alternative j 

and observation i. Note the formulation in (3.1) is consistent with utility maximization, as 

noted and motivated in Train (2003, p. 41). For expository purposes, we rewrite the 

information in (3.1) in (  vector form by vertically stacking sets of n sample 

observations, for each of the J responses 

ijz

)nJ 1×

j 1, 2, , J= … , as 

  1 = +y p ε . (3.2) 

Then we can utilize the information contained in (3.2) in the form of the empirical 

moment constraint 

  ( ) ( )1
1nJ − ′ − − =z y p 0ε  . (3.3) 



If the asymptotic orthogonality conditions ( )  hold, then   
p1nJ − ′ →z ε 0

  ( ) ( )1
1nJ − ′ − =z y p 0  (3.4) 

can be used as an asymptotically valid estimating function. In this form, there are  

moment relations and nJ unknown multinomial probability parameters, with nJ .  

Consequently, the inverse problem is ill-posed as before and cannot be solved for a 

unique solution by direct matrix inversion methods. 

k

k>

 The KL estimation problem can now be defined as 

  ( ) ( )max H  ln′= −
p

p p p  (3.5) 

subject to the information-moment constraint 

  1′ ′=z y z p  (3.6) 

and the n normalization (adding up) conditions 

  [ ]J n =′ ⊗1 I p 1n

…

. (3.7)   

Note that maximization of (3.5) subject to the moment constraints (3.6) and the adding 

up-normalization conditions (3.7) is equivalent to minimization of the KL cross-entropy 

distance measure relative to a uniform reference distribution for each vector of choice 

probabilities  and subject to the same moment 

constraints.   

( )i1 i2 iJp , p , p ,  for i 1, 2, , n=…

 The first-order conditions for the Lagrangian form of the optimization problem 

(3.5)-(3.7) form a basis for recovering the unknown p  and  through the Lagrange 

multipliers.  In particular, the Lagrangian for the maximum entropy optimization problem 

is now 

β

  ( ) ( ) [ ]1 n JL ln′ ′ ′ ′ ′ n = − + − + − ⊗    p p z y p τ 1 1 I pλ . (3.8) 

The solution to this optimization problem is  

  
( )
( )

( )
( )

( )
( )

ij ij ij

ij J
i i ikk 1

ˆ ˆexp exp exp
p̂

ˆ ˆ ˆexp
=

′ ′ ′−
= = =

ˆ

′Ω − Ω ∑

z z β z β

β z β

λ

λ
 (3.9) 



where λ  refers to the  vector of Lagrange multiplier elements and β  

measures the impact of the explanatory variables on the ’s, with 

ˆ (k 1× ) ˆ ˆ≡ −λ

ijp ( )i β̂Ω  being a 

normalization factor.  The unknown β  that links the  to the  is the negative of the 

Lagrange multiplier vector that is chosen so that the optimum solution  satisfies the 

constraints (3.6). The formulation in (3.9) is identical to the standard result for the 

maximum-utility motivated multinomial (conditional) logit model in the case of 

alternative-specific attributes (McFadden, 1974; also see Train, 2003, chapter 3).  

ijp ijz

ijp̂

 Following a derivation analogous to the approach underlying (2.25)-(2.26), the 

information matrix of the current formulation can be derived where 

  ( ) ( )

( ) ( ) ( ) ( ) ( )
n n

i
j me

i 1 i 1 ijij

1I i i
pexp= =

Ω
i i′ ′= =

′
∑ ∑p 1 1

z

β

β
1 1  (3.10) 

and 

 ( ) ( ) ( )( ) ( )
J n J

j j
j ij ij i ijME MLME

j 1 i 1 j 1

I = I p I

                  
= = =

∂ ∂    ′= − − =   ′∂ ∂   
∑ ∑∑

p p
p β z z z z β

β β i  (3.11) 

where 
J

i ij
j 1

p
=

= ∑z ijw . The inverse of the latter matrix represents the ( )K K×  information 

matrix for the estimator β , and the result in (3.11) demonstrates that the information 

matrix of the KL-maximum entropy approach and of the multinomial logit approach are 

again identical.  Following our discussion in Section 2, the asymptotic properties of the 

minimum KL estimator may be derived analogous to the ML estimator properties. 

ˆ

 

3.2 Other Model Variants 

 There are research contexts in which one might want to investigate the impacts of 

changing attribute levels of alternatives, changing attributes levels of individual decision 

makers, or both. The two formulations in the preceding sections can be extended or 

combined to accommodate the case where the impacts of both types of attributes are 

being investigated. The KL-problem framework can accommodate this final model 

variant by including variables that refer to both types of attributes, and the algebra of the 



optimization problem again leads to the multinomial logit result.  In fact, the model 

formulation can be altered from the very beginning by reinterpreting the  vectors as 

incorporated variables that refer to both types of attributes, with the decision maker-

specific observations blocked appropriately to interact with parameters unique to the j

ix

th 

alternative, with an initial block reserved for attribute specific characteristics that interact 

with common parameters across alternatives. That is, redefine the x  vectors to be 

, where 

i

i i ij... ... ′ ′ ′= x r 0 0 d 0 0  i′r is a row vector of decision maker-specific attributes 

for the ith observation, d  is a vector of alternative-specific attributes that are intended to 

be interacted with the parameters associated with the j

ij′

[ 1 2, ,′ ′ ′δ ,β β

th alternative, and 0  is a row vector 

of zeros in placed where blocks of variables interact with parameters that refer to 

parameters associated with alternatives other than the jth. Then defining the parameter 

vector to be β = , it is apparent that a model containing alternative-

specific and decision-maker attributes is represented by 

]J..., ′′β

′ix β .  

 

4.  Summary and Implications 

 Endogeneity is an important and common problem in a range of linear and 

nonlinear econometric models.  Recognizing this, we have focused on semiparametric 

multinomial choice models and how one may handle the estimation and inference 

problem under endogeneity.  The proposed estimators are semiparametric in the sense 

that the joint distribution of the data is unspecified apart from a finite number of moment 

conditions and the conditional mean assumption on the error process.  A solution basis is 

demonstrated that permits the recovery of the unknown response coefficients and the 

corresponding marginal probabilities and asymptotic sampling characteristics of the 

estimators are developed.  The next steps are i) to develop a consistent non-linear 

moment based semi parametric estimator under endogeneity, ii) to develop the statistical 

implications of estimators when there is uncertainty regarding the existence and extent of 

endogeneity, and iii) to demonstrate how to choose our optimum estimator from the 

Cressie-Read family.   
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Table 1. MSE Results With No Endogeneity,  2 0b =
Logit Estimator MSE 

Correlation n=100 n=250 n=500 n=1000 
-0.75 0.438 0.293 0.213 0.191 
-0.5 0.403 0.21 0.13 0.108 

-0.25 0.379 0.16 0.079 0.052 
0 0.431 0.158 0.07 0.034 

0.25 0.469 0.212 0.106 0.07 
0.5 0.594 0.338 0.223 0.191 

0.75 0.837 0.616 0.467 0.466 
 

KL Estimator MSE 
Correlation n=100 n=250 n=500 n=1000 

-0.75 0.415 0.162 0.071 0.036 
-0.5 0.419 0.159 0.068 0.036 

-0.25 0.406 0.159 0.068 0.035 
0 0.435 0.162 0.072 0.035 

0.25 0.412 0.167 0.069 0.036 
0.5 0.406 0.16 0.069 0.035 

0.75 0.418 0.16 0.069 0.034 
 

Table 2. MSE Results With Endogeneity,  2 1b =
Logit Estimator MSE 

Correlation n=100 n=250 n=500 n=1000 
-0.75 0.45 0.274 0.185 0.183 
-0.5 0.448 0.214 0.134 0.114 

-0.25 0.478 0.187 0.093 0.061 
0 0.522 0.193 0.085 0.044 

0.25 0.686 0.279 0.14 0.092 
0.5 0.971 0.498 0.297 0.254 

0.75 1.547 0.93 0.642 0.605 
 

KL Estimator MSE 
Correlation n=100 n=250 n=500 n=1000 

-0.75 3.003 1.74 1.457 1.31 
-0.5 0.907 0.389 0.235 0.18 

-0.25 0.445 0.176 0.079 0.045 
0 0.391 0.236 0.173 0.151 

0.25 0.478 0.372 0.334 0.322 
0.5 0.606 0.538 0.514 0.506 

0.75 0.721 0.707 0.688 0.688 
 

 


