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Abstract

In 1956, Freund introduced the analysis of price risk in a mathematical programming
framework. This paper generalizes the treatment of price risk preferences in a mathematical
programming framework along the lines suggested by Meyer (1987) who demonstrated the
equivalence of expected utility and a wide class of probability distributions that differ only
by location and scale. This paper shows how to formulate a Positive Mathematical
Programming (PMP) specification that allows the estimation of the risk preference
parameters and calibrates the model to the base data within admissible small deviations. The
PMP approach under generalized risk allows also the estimation of output supply elasticities
and the response analysis of decoupled farm subsidies that, recently, has interested policy
makers. The approach is applied to a sample of large farms. Not all farms produce all

commodities.
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1. Introduction
The treatment of price risk in a mathematical programming framework has been confined
either to an exponential utility function with constant absolute risk aversion or to a
minimization of total absolute deviation (MOTAD) of income. The first approach,
originally proposed by Freund (1956), appealed to the expected utility (EU) hypothesis and
assumed that random prices were normally distributed. These assumptions lead to a mean-
variance specification of expected net revenue defined as total expected revenue minus a
risk premium. Such a premium corresponds to half the variance of revenue multiplied by a
constant absolute risk aversion coefficient. This mathematical programming approach has
serious limitations as only an unlikely entrepreneur may possess risk preferences that exhibit
constant absolute risk aversion regardless of firm size, wealth endowment and risky market
environment. The MOTAD approach was proposed by Hazell (1971) who justified its
introduction with the difficult access to a quadratic programming computer software
necessary to solve a mean-variance model. In contrast, according to Hazell (1971, p. 56),
the MOTAD specification “has an important advantage over the mean-variance criterion in
that it leads to a linear programming model in deriving the efficient mean-absolute deviation
farm plans.” The MOTAD model approximates a mean-standard deviation (MS) criterion
but it says nothing about the economic agent’s risk preferences with regard to either
decreasing (constant, increasing) absolute or relative risk aversion.

The mean-standard deviation approach has a long history [Fisher (1906), Hicks
(1933), Tintner (1941), Markowitz (1952), Tobin (1958)]. Meyer (1987) presented a

remarkable reconciliation between the EU and the MS approaches that may be fruitfully



applied in a positive mathematical programming (PMP) analysis of economic behavior
under risk. The main objective of Meyer was to find consistency conditions between the EU
and the MS approaches in such a way that an agent who ranks the available alternatives
according to the value of some function defined over the first two moments of the random
payoff would rank in the same way those alternatives by means of the expected value of
some utility function defined over the same payoffs. It turns out that the location and scale
condition is the crucial link to establish the consistency between the EU and the MS
approaches. We reproduce here Meyer’s argument (1987, p. 423):

“Assume a choice set in which all random variables Y, (with finite means and
variances) differ from one another only by location and scale parameters. Let X be the

random variable obtained from one of the Y, using the normalizing transformation
X=(Y,—u,)o,where , and o, are the mean and standard deviation of Y;. All Y, ,no
matter which was selected to define X , are equal in distribution to u, +0,X . Hence, the

expected utility from Y, for any agent with utility function u( ) can be written as
b
(1) EU(Y)= [ u(u,+0.x)dF(x)=V(1,.0,)

where a and b define the interval containing the support of the normalized random variable
X

“... under the location and scale condition, various popular and interesting
hypotheses concerning absolute and relative risk-aversion measures in the EU setting can be
translated into equivalent properties concerning V(U,,0;) .”

The structure of absolute risk is measured by the slope of the indifference curves in

the (W,0) space that is represented as
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where V, (u1,0) and V, (u,0) are first partial derivatives of the V(u,0) function. Some

properties of this risk measure are:

1. Risk aversion is associated with AR(t,0) >0, risk neutrality with AR(u,0)=0
and risk propensity with AR(1,0)<0.

2.If u(u+ox) displays decreasing (constant, increasing) absolute risk aversion for

JAR(u,0)

all u+ox,then
ou

<(=,>)0 forall u and 6 >0.
3.If u+ox displays increasing (constant, decreasing) relative risk aversion for all

%x:x)omr >0,

U+ox,then

Saha (1997) proposed a two-parameter MS utility function that conforms to Meyer’s
specification
3) V(p,0)=u’ o’
and assumed that 6 >0 . According to this MS utility function, the absolute risk measure

(AR) is specified as
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Hence, risk aversion, risk neutrality and risk propensity are associated with y >(=,<) 0,

respectively.

Decreasing, constant and increasing absolute risk aversion (y >0 ) is defined by

JAR(u,0) _ (1-6)y ">

o p 6" <(=>)0
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and, therefore, by 0 >1, =1, 0 <1, respectively.
Decreasing, constant and increasing relative risk aversion is defined (y >0) by

JAR(u,0)

(6) o

= -60)AR<(=>)0

and, therefore, by 0>y, 6=y, 8 <y ,respectively.

The risk analysis of Meyer (1987) admits all possible combinations of risk behavior.
Saha (1997) listed these combinations for the MS utility function specified in relation (3).
Table 1, for example, admits absolute risk aversion behavior that may be decreasing, when

0>1 and y >0, in association with either increasing relative risk aversion when y >6>0
or decreasing relative risk aversion when 6 >y >0 . The meaning of decreasing absolute

risk aversion relates to an economic agent who experiences a wealth increase and chooses to
augment his investment — measured in absolute terms — in the risky asset. Decreasing
relative risk aversion relates to an economic agent who experiences a wealth increase and
chooses to increase the share of his investment in the risky asset. It is possible, therefore, for
an economic agent to behave according to a decreasing absolute risk aversion framework
and an increasing relative risk aversion scenario if the absolute amount of increase in the
risky asset is not sufficient to increase also the share of that asset. In any given sample of
economic agents’ performances, therefore, the prevailing combination of risk preferences is
an empirical question.

Table 1. Possible Combinations of Risk Behavior Under a MS Utility

Relative Risk Aversion
Decreasing | Constant Increasing
Absolute | Decreasing | 6>1, 0>y | 0>1,0=y | 6>1,0<y
Risk [ Constant | 6=1,0>y [6=1,0=y | 6=1,0<y
Aversion [ creasing | 6<1, 0>y | 6<1, 0=y | <1, 6<7




The rest of the paper is organized as follows. Sections 2 and 3 discuss a novel PMP
model that integrates a generalized risk analysis with an extension of calibration constraints
involving observed prices of limiting inputs. This extension modifies the traditional PMP
specification of calibration.n constraints involving observed levels of realized outputs. In
particular, the extension avoids the user-determined perturbation parameters introduced by
Howitt (1995a, 1995b) to guarantee that the dual variables of binding structural constraints
will assume positive values. Section 4 defines and estimates a total cost function involving
output quantities and limiting input prices. The derivatives of the cost function are used in
calibrating models that are suitable for policy analysis. Section 5 discusses how to obtain
endogenous (to a farm sample) output supply elasticities. Section 6 matches exogenous (to
the farm sample) supply elasticities (available through econometric estimation, for example)
with the endogenous supply elasticities. Section 7 defines two alternative calibrating
equilibrium models that reproduce calibrating solutions that are identical to those ones
obtained in section 3. Section 8 presents the empirical results of the more elaborate PMP
and risky model applied to a sample of 14 farms when all farms produce all commodities.
Section 9 deals with a more realistic sample of information where not all farms produce all

commodities. Conclusions follow.

2. Generalized Risk in a PMP Framework

A Positive Mathematical Programming approach has been adopted frequently to analyze
agricultural policy scenarios ever since Howitt proposed the methodology in 1995 (1995a,
1995b). Apparently, all the empirical applications of PMP that appeared in the literature to

date dealt with economic scenarios in the absence of risk involving either prices or other



parameters. In this section, we extend the PMP methodology to deal with generalized risk
preferences and risky market output prices. Furthermore, we extend the PMP methodology
to deal with calibration constraints involving observed prices of limiting inputs, say land.
This extension modifies the traditional specification of calibration constraints and the notion
of a calibrating solution, as explained further on.

Suppose N farmers produce J crops using / limiting inputs and a linear technology.

Let us assume that, for each farmer, the (J X 1) vector of crops’ market prices is a random
variable p with mean E(P) and variance-covariance matrix £ . A (J X1) vector ¢ of
accounting unit costs is also known. The (/ X 1) vector b indicates farmer’s availability of
limiting resources. The matrix A of dimensions (I X J,I <J) specifies a linear technology.
The (J X1) vector x symbolizes the unknown output levels. Furthermore, farmer has

knowledge of previously realized levels of outputs that are observed (by the econometrician)

as X, . Random wealth is defined by previously accumulated wealth, w , augmented by the
current random net revenue. Assuming a MS utility function under this scenario, mean
wealth is defined as u=[w+ (E(p)—c)’x] with standard deviation equal to ¢ = (x'Z px)”2 .

Then, a primal PMP-MS model is specified as follows:

(7 max, o, V(U,0)=u’ —o’ =[w+ (E(p)- o/x]’ —(x’Z x)""?
subject to Ax<b dual variable y
x=x_, +h dual variable A

obs

where h is a vector of deviations from the realized and observed output levels. The first set
of constraints forms the structural (technological) relations while the second set constitutes

the calibration constraints. This specification of the calibration constraints differs from the



traditional statement according to which (x<x,, +€&) where € is a user-determined vector
of small positive numbers whose purpose is to allow the dual variables of binding structural
constraints to take on positive values. In Howitt’s words (1995a, p. 151): “The €
perturbation on the calibration constraints decouples the true resource constraints from the
calibration constraints and ensures that the dual values on the allocable resources represent
the marginal values of the resource constraints.” This paper avoids the user-determined
parameter € of the traditional PMP methodology and allows the empirical data to reveal the
components of the vector of deviations h. Such deviations can take on either positive or
negative values. To justify further the specification of the calibration constraints

x =X, +h, we note that the vector of realized output levels, x , , has been “observed”,

obs

that is measured, by persons other than the economic entrepreneur, say by an
econometrician. It is likely, therefore, that the measured x ,, may either overstate or
understate the true levels of realized outputs. The deviation vector h captures these likely
measurement errors.

The dual constraints of problem (7) — derived by Lagrange method — turn out to be

8) Y(XE X) 7P VE x+ Ay +A 20w+ (EP) - x| [E(P)—c].

The complexity of the estimation problem becomes clear by considering the nonlinearity of
relation (8). Parameters 0 and ¥ are unknown as are the output levels, x , the deviations, h,
the dual variables, y, and the Lagrange multipliers, A . Furthermore, it is often the case that

also the market price of some input — say land — is known for the region surrounding the
sample farms or even for a single farm. The PMP methodology, therefore, ought to use also

this information, y , , that will be treated in the form of the observed output levels as

) Y=Y, tu



where u is an (I X1) vector of deviations from the observed input prices.
Let W be a nonsingular diagonal matrix of dimensions (J X J) with positive

diagonal terms equal to observed expected price E(p;)>0 . And let V be a nonsingular

diagonal matrix of dimensions (/X I) with positive diagonal terms b,/y,, . >0 . The
purpose of matrices W and V is twofold. First, to render homogeneous the units of
measurement of all terms in the models defined below. Second, to weigh the deviations h
and u according to the scale of the corresponding expected price and input size,
respectively. Using a least-squares approach for the estimation of deviations h and u, it
turns out that, by the self-duality of least squares (LS), A=Wh and y =Vu, where y is
the vector of Lagrange multipliers associated with constraints (9). To show this result,

consider the following LS problem

(10) minLS=h'Wh/2+u'Vu/2
(11) subject to x=x, +h dual variable A
y=y, tu dual variable .

The corresponding Lagrange function and first order necessary conditions with respect to h

and u are

(12) L=hWh/2+uVu/2+N(x-x, -h)+y(y-y, —w
oL

13 —=Wh-A=0

(13) h

(14) a—L:Vu—\|I:0
Ju

with the result that A = Whand y = Vu as claimed above.



A crucial issue concerns parameters 6 and Y . On the one hand, we assume that an
economic entrepreneur wishes to maximize her utility of wealth while minimizing the
disutility of its risk. On the other hand, it is a fact that high levels of current income (a
component of wealth) are associated with high risk of losses. Another fact is that this

entrepreneur has already made her choice of a production plan, x ,_ , in the face of output

obs 3
price risk. It is also likely that she does not know (or that she is not even aware of)
parameters 6 and Y . The challenge, therefore, is to infer — from her decisions — the values
of parameters 6 and ¥ that could explain the behavior of this entrepreneur in a rational
fashion.

We assume that this entrepreneur is risk averse, implying that 6 >0 and y >0 .
Furthermore, for any given level of expected wealth, a high level of utility will be achieved
with the highest admissible level of parameter 6 , where admissibility depends on the
technology, the limiting input constraints, the observed production plan and the observed
input prices. An alternative viewpoint, one that mimics the relationship between high levels
of random wealth and high levels of its standard deviation, would postulate that high levels
of utility (of wealth) are associated with high levels of its risk disutility. Therefore, for any

given level of the standard deviation of wealth, the parameter ¥ should acquire the highest

admissible value, given the technology, the observed production plan and input prices.

3. Phase I PMP Model

For estimation purposes, therefore, the squares of parameters 8 and y will be maximized

together with the minimization of deviations h and u in a least-squares objective function

10



subject to relevant primal and dual constraints and their associated complementary slackness

conditions. This task leads to the following phase I model

(15) minLS=h’Wh/2+u'Vu/2-6°-vy*

subject to

(16) Ax<b+Vu

(17) O[w+(E(P)—c)x][E@)—-c]< Ay +Wh+y(x'E x)7"*E x

(18) x=x, +h

(19) Y=Y, tu

(20) y'(b+Vu—-Ax)=0

(1) X{A’y+Wh+yx'Z x)"* "L x—6[w+(EP)—c)x]*"[EP)—c]} =0

with x>0,y >0,60 >0,y >0, h and u free.
With the specification of the calibration constraints as in relations (18) and (19), the

notion of a PMP calibrating solution differs from the traditional concept according to which

the optimal calibrating solution is equal to the observed output levels, that is, X =x_, , as

obs
the perturbation vector € contains very small (user determined) positive numbers. Critics of
PMP have judged this solution as being tautological. With the methodology proposed in this

paper, a calibrating solution (X,y) will not, in general, be exactly equal to the corresponding

vectors of the observed production plan and input prices (x_,,,y,,,) - The objective of model

obs
(15)-(21), therefore, is to minimize the deviations h and u in the amount allowed by the
technological and risky environments facing farmers. Hence, the specification (15)-(21)

takes on the features of an econometric estimation problem.

11



Constraints (16) represent the structural (technological) relations of input demand
being less-than-or-equal to the effective input supply. Constraints (17) represent the dual
relations with marginal utility of the production plan being less-than-or-equal to its marginal

cost. Here marginal cost has two parts: the marginal cost due to limiting and variable inputs,
A’y +Wh, and the marginal cost of output price risk, y(x’E x)**Z x. Constraints (18)

and (19) are the calibration relations. Constraints (20) and (21) are complementary slackness
conditions. Because constraints (16)-(21) represent primal and dual relations and their
complementary slackness conditions, any feasible solution of relations (16)-(21) constitutes
an admissible economic equilibrium that is consistent with the behavior of decision making
under price risk. The complexity of the model constraints may admit local optima. The
GAMS software used in the empirical analysis includes the solver BARON (Branch And
Reduce Optimization Navigator) for the global solution of nonlinear problems. The user
manual states (2015): “... BARON implements deterministic and global optimization
algorithms of the branch-and-bound type that are guaranteed to provide global optima under
fairly general assumptions. These assumptions include the existence of finite lower and
upper bounds on nonlinear expressions to be solved.” Hence, using the Baron solver, it is

possible to find equilibrium solutions that are close to the global optimum.

4. Phase II PMP Model

Phase II of the PMP methodology deals with the estimation of a cost function that embodies
all the technological and behavioral information revealed in phase I. Typically, a marginal
cost function expresses a portion of the dual constraints in a phase I PMP model. In the

absence of risk, PMP marginal cost is defined as A’y +Wh+c , where A’y stands for the

12



marginal cost due to limiting inputs and Wh+ ¢ for the effective marginal cost due to
variable outputs. In the risky price case, marginal cost is given by the right-hand-side of
relation (17) where all the elements are measured in utility units. We desire to obtain a
dollar expression of marginal cost, as in the familiar relation MC = E(p) . To achieve this
result, the elements of relation (17) will be divided by the term O[w + (E(p)— ¢)'x]%" to

write

(22) MC =z E(p)
c+ é[w +(E(P)—c)x]"P[A’y + Wh]+ %[W +(E@)-o)x]" (2 x)"*VE x> E(p)
In relation (22), all the terms are measured in dollars. The marginal cost due to limiting and

1
variable inputs is given by {c + Py [w+(E()—c)x]" [Ay + Wh]} . The marginal cost due

to risky output prices is given by. {g[\?} +(E(p)-— C)’X](l9)(X’ZPX)W21)Z[,X} .

The cost function selected to synthesize the technological and behavioral relations of

phase I is expressed as a modified Leontief cost function such as
(23) C(x,y) = (Fx)(gy)+(@y)IX0x)/ 2+ (EX)(y"”) Gy ].
A cost function is linear homogeneous and concave in input prices, y . Therefore, matrix G

is negative semidefinite. Furthermore, a cost function is increasing in output levels. Thus,

matrix Q is positive semidefinite. Parameters f and g give flexibility to the cost function.

The marginal cost function associated with cost function (23) is given by

(24) MC, = %—i =f(g'y)+(gy)Ox+f[(y"”)Gy"]

13



The derivative of the cost function with respect to input prices corresponds to Shephard

lemma that produces the demand function for inputs:

aCc ., , ’ 12y
(25) oy (fx)g+g(x'0x)/2+(EX)[A(y "*) Gy ]= Ax
where A(y"?) represents a diagonal matrix with elements y-"* on the main diagonal.

With knowledge of the solution components resulting from the phase I model (15)-

(21, x,y ,fl,ﬁ,é,f/ , a phase II model’s goal is to estimate the parameters of the cost function,
f.g.0,G . This task is accomplished by means of the following specification

(26) minAux=d'd/2+r’r/2

subject to

(27) £(g'y)+(gNOx+ (¥ )Gy 1=

c+ %[W +(E(@)-c)YX]"P[A’y + Wh]+ %[w +(E@)-o/XI"P&E %)L k+d > E(p)

(28) FR)g+g(X'0X)/2+(FR)[AGF " YGY"* 1= AX +r
(29) Q=LDL’
(30) Q0 ' =1

with £X>0,g’y>0,D>0, f and g free, d >0,r > 0. The nonnegative vector variables
d = 0,r =0 perform the role of pseudo slack variables necessary to provide the GAMS
solver with an objective function to optimize. The optimal value of d =0,r >0 is identically
equal to zero for all the pseudo slack variables.

Relation (27) represents MC = E(p) . Relation (28) is Shephard lemma. Relation
(29) 1s the Cholesky factorization of the Q matrix with D as a diagonal matrix with

positive elements on the main diagonal and L is a unit lower triangular matrix. Relation

14



(30) defines the inverse of the 0 matrix. This constraint assumes relevancy for computing
the supply elasticities of the various outputs. Relations fx >0 and g’y >0 guarantee that
the cost function is increasing in output and decreasing in input prices. Any feasible
solution of model (27)-(30) is an admissible cost function for representing the economic

agent’s decisions under price risk.

5. PMP with Generalized Risk and Output-Supply Elasticities
It may be of interest to estimate price supply elasticities for the various commodity outputs
involved in a PMP-MS approach. The supply function for outputs is derivable from relation

(24) by equating it to the expected market output prices, E(P) , and inverting the marginal
cost function:
€29 x=-Q"'f -0 'fl(y"")Gy" 1/ (gy)+[1/(g'V)IQ E(P)

that leads to the supply elasticity matrix

(32) == A[E(f))]a—)iA[(X" )= ALE(P)IQAL(x )]/ (g'y)
JE(p)

where matrices A[E(p)] and A[x '] are diagonal with elements E(p ;) and x~' onthe

main diagonals, respectively. Relation (32) includes all the own- and cross-price

elasticities for all the output commodities admitted in the model.

6. Endogenous and Disaggregated Output-Supply Elasticities

PMP has been applied frequently to analyze farmers’ behavior to changes in agricultural
policies. A typical empirical setting is to map out several areas in a region (or state) and to
assemble a representative farm for each area (or to treat each area as a large farm). When

supply elasticities are exogenously available (say the own-price elasticities of crops) at the

15



regional (or state) level (via econometric estimation or other means), a connection of all area
models can be specified by establishing a weighted sum of all the areas endogenous own-
price elasticities and the given regional elasticities. The weights are the share of each area’s
expected revenue over the total expected revenue of the region.

Let us suppose that exogenous own-price elasticities of supply are available at the

regional level for all the J crops,say 1;,j=1,...,J . Then, the relation among these

exogenous own-price elasticities and the corresponding areas’ endogenous elasticities can

be established as a weighted sum such as

N
(33) =2 w,M,

n=1

where the weights are the areas’ expected revenue shares in the region (state)

E(p Dx..
(34) = PV
Z[ZIE(p,j)xtj
(35) n, = E(5,)00x 1 (&y,)

where Q7 is the jth element on the main diagonal in the inverse of the O, matrix.
The phase II model that executes the estimation of the cost function parameters and
the disaggregated (endogenous) output supply elasticities for a region (state) that is divided

into N areas takes on the following specification:

N N
(36) minAux =Y d’d, /2+ ) r’r, /2
n=1 n=1
subject to
(37) f(gy.)+@y,)0%,+£(F,7°)Gy, 1=

16



n-n

1 R A R N
c, + é—[% +(E@,)-¢, )X, 1"[Ay, +Wh ]

n

n“=p=n

+%[Wﬂ +EB,) -, )%, 7&K x,)PPVE %, +d, 2 Ep,)

n

(38) (£%,)g, +g,X.0%,)/2+EX)AF, )Gy, 1=AX, +r,
(39) Q,=LD,L,
(40) 0,0, =1

41 E, =AE(p,)IO, IA[(xn_1 )]/(gly,) endogenous own- and cross-price elasticities

E(p,)X, _
(43) |y expected revenue weights
> E(B3,
(43) n, =Ep,)0'x, (8.3, own-price elasticities
N
(44) n = ZW,,]»T),U disaggregation of exogenous elasticities
n=1

with D, >0,g, and f, freeand f'x, >0, g'y,>0,d, 20,r, 20.

n-n

7. Calibrating Equilibrium Models

With the parameter estimates of the cost function derived from either phase II model (26)-
(30) or model (36)-(44), f'n g, ,Qn ,(A}n , it is possible to set up a calibrating equilibrium model
to be used for policy analysis. Such a model takes on the following economic equilibrium
specification

(45) minCSC=y'z,+x'z,=0

subject to

17



(46) Ex)g+8(x'0x)/ 2+ E®[AGy )Gy 1+2, =b+ Vi

(47) f(@y)+@y)0x+El(y"?YGy" 1= E(p)+1,

with x 20,y 20,2z, >0,z, >0 . The objective function represents the complementary

slackness conditions (CSC) of constraints (46) and (47) with an optimal value of zero. The

variables z, and z, are surplus variables of the primal and the dual constraints, respectively.

The solution of model (45)-(47) calibrates precisely the solution obtained from the phase I

model (15)-(21), that is, X,; =X and ¥,; =¥, . Note that the matrix of fixed technical

coefficients A does not appear in either constraint (46) or (47). The calibrating model, then,
can be used to trace the production and revenue response to changes in the expected output
prices, subsidies and the supply of limiting inputs in a more flexible technical framework.
An alternative calibrating equilibrium model is suitable for dealing with a crucial
aspect of a risky policy scenario. Wealth is the anchoring measure of risk preferences of an
economic agent. As illustrated above, wealth is composed of accumulated income (or
exogenous income) and net revenue derived from the current production cycle as in
[w+ (E(p)—c)'x] where w measures the amount of exogenous income. Agricultural
policies in many countries deal with subsidies to farmers for cultivating crops. These
subsidies may or may not be coupled to the level of crop production. Subsidies that are
decoupled from the crop production decisions of farmers constitute exogenous income and
end up in the w term of wealth that becomes an important target of policy makers. The w
term, then, must appear in the calibrating model to allow the representation of decoupled
subsidies as in the following specification

(48) minCSC=y'z,+x'z,=0

18



subject to

(49) Ex)g+2(x'0x)/2+(EX)[AGY )Gy 1+2, =b+ Vi

(50)
ct é [+ (E(B)— ey x]"[A’y + Wh]+ %[w HE@® -/ x" K0TS x= E(p) e,

with x>0,y >20,z,>0,z, >0 . Also the solution of model (48)-(50) calibrates precisely the

solution obtained from the phase I model (15)-(21), that is, X, =X and ¥, =Yg -

8. Empirical Implementation of PMP-MS with Supply Elasticities
The PMP-MS approach described in previous sections was applied to a sample of N = 14
representative farms. There are four crops: sugar beet, soft wheat, corn and barley. There is
only one limiting input: land. In this sample, all farms produce all crops. A more realistic
sample where some farms produce only some crops will be presented in section 9. Phase 1
model (36)-(44) was initially solved using the Conopt3 solver of GAMS. Then, an extensive
analysis of a global optimum was performed using the BARON solver and randomly
selected (by BARON) initial points. The BARON solver consumed hours of cpu time but,
in the end, it found a best solution that is identical to the solution found by the Conopt3
solver.

Table 2 shows the variance-covariance matrix of the market output prices.

Table 2. Variance-Covariance Matrix of Market Output Prices

Sugar Beet | Soft Wheat | Corn Barley
Sugar Beet | 0.0024719 | -0.0164391 | -0.0117184 | -0.0121996
Soft Wheat | -0.0164391 | 0.2386034 | 0.1821288 | 0.2049011
Corn -0.0117184 | 0.1821288 | 0.1530464 | 0.1610119
Barley -0.0121996 | 0.2049011 | 0.1610119 | 0.1830829
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Tables 3 and 4 present the observed output levels and input prices (X, ,y

obs

also exhibit the percent deviation of the solution (X,y) of model (15)-(21) from the

corresponding targets.

Table 3. Observed Output Levels, x , , and Percent Deviation (dev) of the LS Calibrated

Solution, X

Soft Sugar Soft

Sugar Beet | Wheat Corn Barley Beet Wheat Corn Barley
Farm X, X, X, X, % dev % dev % dev % dev
1 1133.4240 305.4032 | 341.3693 | 18.2398 0.0300 -0.0289 0.0224 -0.1037
2 3103.7830 861.7445 | 478.4465 | 59.8025 00113 -0.0029 -0.0056 0.0159
3 1547.9780 450.7937 | 881.9748 7.6887 0.0242 -0.0075 -0.0049 05114
4 3488.3540 821.3934 | 1493.332 | 51.1247 0.0106 -0.0077 0.0004 0.0909
5 959.1102 468.2848 | 478.9261 | 28.2406 0.0284 -0.0275 00117 0.0880
6 942.2039 801.1288 | 1283.591 | 152.581 0.0349 -0.0078 0.0011 0.0168
7 1600.7310 695.8293 | 899.4739 | 66.9718 0.0251 -0.0052 0.0023 -0.0077
8 3507.5490 1212.8550 | 1237.584 | 98.0497 0.0100 0.0015 0.0021 -0.0611
9 1050.5370 332.3773 | 498.0150 | 63.6696 0.0386 0.0025 -0.0014 -0.0519
10 3473.6780 952.5199 | 774.7402 | 84.0070 00114 -0.0059 0.0018 0.0256
11 1245.7220 765.1689 | 501.9673 | 59.5366 0.0305 -0.0075 0.0052 0.0143
12 3276.1450 1100.1680 | 742.9419 | 177974 0.0081 -0.0083 0.0026 0.0204
13 877.0970 380.9171 | 564.6091 | 76.2122 0.0319 -0.0325 0.0092 0.0340
14 1430.9460 768.6901 | 1309.392 | 67.7906 0.0229 -0.0084 0.0012 0.0363

Table 4. Deviations of ¥ from y,,, : vector

Observed

Absolute Land Percent

Deviation Prices Deviation
Farm u Yo %
1 -0.0002373 442 -0.0054
2 -0.0000025 4.38 -0.0001
3 0.0001239 6.98 0.0018
4 0.0000524 5.73 0.0009
5 -0.0001557 4.40 -0.0035
6 0.0000049 1.86 0.0003
7 0.0000682 3.65 0.0019
8 0.0000039 3.36 0.0001
9 0.0000708 2.75 0.0026
10 0.0000440 4.28 0.0010
11 0.0000277 328 0.0008
12 -0.0000253 1.93 -0.0013
13 -0.0000716 232 -0.0031
14 0.0000062 4.03 0.0002
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All the deviations h in Table 3 are below 1 percent. Hence, the calibrating solution
X is satisfactorily close to the observed output levels X, . Similarly, the deviations U in
Table 4 are well below 1 percent.

Table 5 presents the estimates of the parameters 6 and ¥ of the MS utility function.

Table 5. Estimates of 6 and y

Parameter | Parameter
Farm 2] Y
1 1.1843 | 1.4338
2 1.1474 | 1.3804
3 1.1916 | 1.3817
4 1.1844 | 1.4010
5 1.1502 | 1.3463
6 1.1455 | 1.3546
7 1.1608 | 1.3834
8 1.1773 | 14012
9 1.1710 | 1.4369
10 1.1627 | 1.3869
11 1.1702 | 1.3854
12 1.1344 | 1.3393
13 1.1457 | 1.3503
14 1.1504 | 1.3572

The sample is composed of relatively homogeneous farms. Hence, the limited range
of variations of the MS utility parameters is not a surprise. All farmers exhibit decreasing

absolute risk aversion, 8 > 1, and increasing relative risk aversion, 8 <7y . This combination

of risk behavior is admissible by the MS utility.
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The estimated parameters of the cost function are reported in Tables 6 and 7. For

reasons of space, only three Q matrices are reported.

Table 6. Intercepts f, g and G Matrix of the Marginal Cost and Input Demand Functions

f
Farm Sugar | Soft . . . A
Beet Wheat | Corn Barley g G Y g’ y

1| 00364 | 00124 | -00436 | -0.2548 0.00235 69714 25.5186 0.01038

2 | 00422 | 00148 | -0.0824 | -0.2223 0.00151 -5.4745 91.1059 0.00663

3 100277 | 00411 | -00614 | -0.0195 0.00140 -6.7432 7.0695 0.00977

4100175 | 00164 | -0.0262 | -0.0286 0.00084 | -11.2156 33.9950 0.00483

5100322 | 00008 | -0.0302 | -0.0707 0.00693 95411 14.8326 0.03049

6 | 00135 | 0.1666 | 02589 | -0.3812 0.01469 -5.1733 4203299 0.02733

7 | 00378 | 00075 | 00559 | 0.1214 0.00427 -4.9656 124.1857 0.01558

8 | 00195 | 02246 | -0.1346 | 0.1202 0.00173 -6.8739 185.9156 0.00580

9 | 13944 | 0.1488 | 03717 | -0.0350 0.00538 03180 | 1697.7630 0.01480

10 | 00323 | -0.0084 | -0.0321 | -0.0535 0.00151 -6.8887 74.8985 0.00648

11 | 00883 | 0.0001 | -0.0706 | -0.1876 0.00726 -8.1445 63.5781 0.02383

12 | 00011 | 00519 | -0.1482 | 1.2355 0.00049 | -14.0441 170.5294 0.00095

13 | 00624 | -0.1049 | 0.1739 | -0.1844 001177 -6.3013 98.8884 0.02730

14 | 00364 | 00124 | -0.0436 | -0.2548 0.00382 -7.4292 85.1550 0.01540
Table 7. Matrices Q and D for Three Farms

Matrix Q Matrix D

Farm 1 Sugar Beet | Soft Wheat | Corn Barley Sugar Beet | Soft Wheat | Corn Barley
S. Beet 0.16237 0.03079 -0.17470 0.69499 0.16237
S.Wheat 0.03079 1.63198 -0.62077 -4.30646 1.62615
Corn -0.17470 -0.62077 145275 -2.15787 1.05243
Barley 0.69499 -4.30646 -2.15787 38.44066 1472116
Farm 2
S. Beet 0.16890 -0.29596 -0.09062 001211 0.16890
S.Wheat -0.29596 170334 -0.24643 -0.16048 1.18476
Corn -0.09062 -0.24643 157655 -3.18253 138933
Barley 001211 -0.16048 -3.18253 20.80496 13.16816
Farm 3
S. Beet 1.94306 0.73345 -3.59200 0.12596 1.94306
S.Wheat 0.73345 177257 -1.70656 -0.55029 149572
Corn -3.59200 -1.70656 7.06136 0.10905 0.33884
Barley 0.12596 -0.55029 0.10905 8.76959 8.40237

All 14 farms achieved a nonsingular Q matrix. This feature is instrumental in

defining the matrix of endogenous supply elasticities. Table 8 presents the endogenous

own- and cross-price supply elasticities for three farms.
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Table 8. Endogenous Own- and Cross-Supply Elasticities for Three Farms

Sugar | Soft
Farm 1 Beet | Wheat | Corn | Barley

S. Beet 025] -003| 007 | -027

S. Wheat | -0.05 1.15 | 0.65 2.89

Corn 0.10 0.70 | 0.88 2.12
Barley -0.02 0.16 | 0.11 0.72
Farm 2

S. Beet 0.24 0.17 | 0.20 0.28

S.Wheat | 0.23 043 | 032 045

Corn 0.16 0.18 | 0.87 1.09
Barley 0.03 0.03 | 0.13 0.44
Farm 3

S. Beet 0.25 0.08 | 023 | -0.76

S.Wheat | 0.14 042 | 0.17 091

Corn 0.66 029 | 066 | -1.77

Barley -0.02 0.01 | -0.02 3.15

We stipulated that regional, exogenous own-price supply elasticities were available
in the magnitude of 0.5 for sugar beet, 0.4 for soft wheat, 0.6 for corn and 0.3 for barley.
The endogenous own-price elasticities of all farms were aggregated to be consistent with the
regional exogenous elasticities according to relation (44). Table 9 presents the farms’ own-

price supply elasticities and the revenue weights used in the aggregation relation.

Table 9. Disaggregation/Aggregation of the Regional, Exogenous Supply Elasticities.

Exogenous Own-Supply Elasticities Revenue Weights
Sugar Soft Sugar | Soft

Farms | Beet:0.5 Wheat:0.4 Corn: 0.6 | Barley: 0.3 Beet Wheat | Corn | Barley
1 0.25 1.15 0.88 0.72 0.0406 | 0.0291 | 0.0295 | 0.0165
2 0.24 043 0.87 0.44 0.1334 | 0.0937 | 0.0489 | 0.0633
3 0.25 0.42 0.66 3.15 0.0527 | 0.0446 | 0.0698 | 0.0082
4 0.15 041 0.64 1.14 0.0999 | 0.0893 | 0.1383 | 0.0548
5 0.13 0.37 0.40 0.77 0.0327 | 0.0413 | 0.0386 | 0.0262
6 0.09 0.24 0.30 0.12 0.0372 | 0.0828 | 0.1151 | 0.1595
7 0.14 043 0.34 0.34 0.0502 | 0.0689 | 0.0769 | 0.0604
8 0.14 0.27 0.49 0.28 0.1288 | 0.1294 | 0.1022 | 0.0910
9 0.13 0.23 0.39 0.15 0.0377 | 0.0336 | 0.0426 | 0.0565
10 0.17 045 0.52 0.34 0.1026 | 0.0930 | 0.0649 | 0.0828
11 0.10 0.38 048 0.37 0.0424 | 0.0737 | 0.0417 | 0.0538
12 2.33 0.57 2.08 0.06 0.1554 | 0.1079 | 0.0685 | 0.1862
13 0.10 0.35 0.30 0.13 0.0299 | 0.0335 | 0.0455 | 0.0692
14 0.10 0.28 0.38 0.22 0.0564 | 0.0795 | 0.1174 | 0.0716
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9. When not All Farms Produce All Crops
Empirical reality compels a further consideration of the above methodology in order to deal
with farm samples where not all farms produce all commodities. It turns out that very little
must be changed for obtaining a calibrating solution in the presence of missing commodities,
their prices and the corresponding technical coefficients. Using the GAMS software, it is
sufficient to condition the various constraints of phase I, phase II and phase III models by
the nonzero observations of the output levels.

To exemplify, suppose that the farm sample displays the following Table 10 of
observed crop levels.

Table 10. Observed Output Levels, X, with non produced commodities

Soft
Sugar Beet | Wheat Corn Barley

Farm X X X X

1 1133.4240 0 | 341.3693 | 18.2398
2 3103.7830 861.7445 0 | 59.8025
3 0 450.7937 | 881.9748 0
4 3488.3540 821.3934 | 1493.332 | 51.1247
5 959.1102 468.2848 0 | 28.2406
6 942.2039 801.1288 | 1283.591 | 152.581
7 1600.7310 0 | 8994739 | 669718
8 0 1212.8550 | 1237.584 | 98.0497
9 1050.5370 332.3773 0 | 63.6696
10 3473.6780 952.5199 | 774.7402 0
11 0 765.1689 | 501.9673 | 59.5366
12 3276.1450 1100.1680 0| 177974
13 877.0970 380.9171 | 564.6091 | 76.2122
14 1430.9460 0 | 1309.392 0

Other missing information deals with prices and unit accounting costs associated
with the zero-levels of crops. Furthermore, the technical coefficients of farms not producing

the observed crops also equal to zero. Hence, we can state that, for ¢ =1,...,7 , the number of
farms, and j=1,...,J , the number of crops, if X, = 0, also p,; = 0, c; = 0 and A,,:j =0.

Furthermore, suppose that only one input, land, is involved in this farm sample. Then, the
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land price is observed for all farms. The procedure to deal with this type of sample data
consists in conditioning the relevant constraints on the positive values of the output levels.
In GAMS, this procedure requires a conditional statement using the $ sign option.

The BARON solver of the GAMS software found a best solution that is identical to
the solution found by the Conopt3 solver in less than 15 minutes of computing time. Tables
11 and 12 present the primal and dual solutions and the percent deviations from the target

levels. Except for one cell, all deviations are below the one percent.

Table 11. Estimated LS Solution, X, and Percent Deviation (dev) from the Observed Levels,
X,,, With Zero Levels for Some Crops and Some Farms

Soft Sugar Soft

Sugar Beet | Wheat Corn Barley Beet Wheat Corn Barley
Farm X X X X % dev % dev % dev % dev
1 1134.621 0 341.562 17.927 0.1056 0 0.0565 -1.7147
2 3104.862 861.636 0 59.784 0.0348 -0.0126 0 -0.0310
3 0 451.144 881.524 0 0 0.0777 -0.0511 0
4 3489.369 821.156 | 1493423 51.243 0.0291 -0.0289 0.0061 0.2323
5 960.002 467.880 0 28.452 0.0929 -0.0864 0 0.7473
6 943.163 800.932 | 1283.650 | 152.650 0.1018 -0.0246 0.0046 0.0451
7 1601.983 0 899.502 66.857 0.0782 0 0.0031 -0.1710
8 0 1213.013 | 1237.867 97.567 0 0.0130 0.0229 -0.4925
9 1051.793 332.400 0 63.535 0.1196 0.0069 0 -0.2107
10 3474851 952.360 774.838 0 0.0338 -0.0168 0.0127 0
11 0 764.721 502.282 59.699 0.0000 0 0.0627 0.2731
12 3276.956 1099.887 0| 178.124 0.0248 -0.0255 0 0.0838
13 877.867 380.518 564.786 76.283 0.0877 -0.1048 0.0314 0.0924
14 1432.042 0 | 1309.303 0 0.0766 0 -0.0068 0
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Table 12. Deviations of y from y

obs

Observed

Absolute | Land Percent

Deviation | Prices Deviation
Farm 37 Yois %
1 441852 442 -0.0334
2 4.37996 4.38 -0.0008
3 6.98055 6.98 0.0079
4 5.73005 5.73 0.0009
5 4.39923 4.40 -0.0175
6 1.86001 1.86 0.0003
7 3.65025 3.65 0.0069
8 3.35966 3.36 -0.0103
9 2.75022 2.75 0.0081
10 4.28005 4.28 0.0013
11 327977 328 -0.0071
12 1.92991 1.93 -0.0049
13 231972 232 -0.0120
14 4.03018 4.03 0.0044

Table 13 presents the estimates of the parameters € and ¥ of the MS utility function.

Table 13. Estimates of 6 and y

Parameter | Parameter
Farm 2] Y
1 1.0992 | 1.3653
2 1.0464 | 1.2245
3 1.3575 | 1.5864
4 1.0820 | 1.2364
5 1.0608 | 1.1706
6 1.0310 | 1.1896
7 1.0651 | 1.2684
8 1.1711 1.3813
9 1.0643 | 1.3022
10 1.0575 | 12174
11 1.1608 | 1.3608
12 1.0294 | 1.1842
13 1.0223 | 1.1553
14 1.0567 | 1.2496

Again, all farmers exhibit decreasing absolute risk aversion, 6 > 1, and increasing

relative risk aversion, 8 <y . This combination of risk behavior is admissible by the MS

utility.
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The estimated parameters of the cost function are reported in Tables 14 and 15. For

reasons of space, only three Q matrices are reported.

Table 14. Intercepts f, g and G Matrix of the Marginal Cost and Input Demand Functions

f
Farm Sugar Soft R ) ) R
Beet Wheat | Corn Barley g G % g’ y

1 | 0.00061 0| 001153 | -0.00684 0.00277 -32.849 4509 0.01224

2 | -000321 | 0.02451 0| 000474 0.00246 -34.265 11427 0.01079

3 0 | 0.00330 | -0.00095 0 0.00094 -34.475 0.647 0.00653

4 | 0.02039 | -0.01058 | -0.00838 | -0.02655 0.00060 -7.848 48.583 0.00342

5 | -0.00042 | 0.00517 0 | -0.00474 0.00181 -39.007 1.879 0.00796

6 | 000396 | 006207 | 000579 | 0.06711 0.01011 -34.077 63.651 0.01881

7 | 0.01396 0 | -001048 | 0.00479 0.00150 -30.598 13.254 0.00546

8 0 | 002050 | -0.00726 | 0.00076 0.00721 -60.936 15.953 0.02421

9 | 000045 | 0.01563 0| 004656 0.01866 -31.051 8.621 0.05131

10 | -0.00046 | 0.02169 | -0.00607 0 0.00091 35512 14341 0.00390

11 0| 003886 | -001947 | -0.00459 0.01219 -21.589 19.664 0.03998

12 | 000162 | 0.01237 0| 002565 0.00208 -72.909 23.497 0.00402

13 | 001012 | 0.02340 | 0.00460 | -0.00015 0.01054 -30.544 20373 0.02444

14 | -0.00004 0| 000136 0 0.00011 | -269391 1.725 0.00045
Table 14. Matrices Q and D for Three Farms

Matrix Q Matrix D

Farm 1 Sugar Beet | Soft Wheat | Corn Barley Sugar Beet | Soft Wheat | Corn Barley
S. Beet 0.0820 -0.0423 -0.1543 -0.0219 0.0820
S Wheat -0.0423 1.0998 0.4039 -4.3839 1.0780
Corn -0.1543 0.4039 15045 -1.8866 1.1165
Barley -0.0219 -4.3839 -1.8866 419220 23.6662
Farm 2
S. Beet 0.1146 -0.4099 0.2076 -0.0464 0.1146
S Wheat -0.4099 2.1313 -1.1157 0.0512 0.6650
Corn 0.2076 -1.1157 1.1823 -0.1771 0.5969
Barley -0.0464 0.0512 0.1771 63717 6.2915
Farm 3
S. Beet 0.8919 -0.1384 0.0735 -0.4673 0.8919
S Wheat -0.1384 1.9747 -0.4868 0.0297 1.9533
Corn 0.0735 -0.4868 0.5378 -0.0324 0.4160
Barley 0.8919 -0.1384 0.0735 -0.4673 0.7450

Regional, exogenous own-price supply elasticities were available in the magnitude

of 0.5 for sugar beet, 0.4 for soft wheat, 0.6 for corn and 0.3 for barley. The endogenous
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own-price elasticities of all farms were aggregated to be consistent with the regional
exogenous elasticities according to relation (44). Table 15 presents the farms” own-price
supply elasticities and the revenue weights used in the aggregation relation.

Table 15. Disaggregation/Aggregation of the Regional, Exogenous Supply Elasticities with
zero observations of some output levels

Exogenous Own-Supply Elasticities Revenue Weights
Sugar Soft Sugar | Soft

Farms | Beet:0.5 Wheat:0.4 Corn: 0.6 | Barley: 0.3 Beet Wheat | Corn | Barley
1 0.449 0 0.447 0.385 0.0524 0 | 00368 | 0.0193
2 0.404 0.537 0 0.571 0.1719 | 0.1139 0 | 0.0748
3 0 0.494 0.790 0 0 | 00543 | 0.0871 0
4 0.161 0.556 0.553 0.952 0.1288 | 0.1086 | 0.1726 | 0.0641
5 0.261 0.566 0 0.761 0.0421 | 0.0502 0 | 0.0307
6 0.061 0.216 0.339 0.103 0.0479 | 0.1007 | 0.1437 | 0.1909
7 0.157 0 1.075 0.518 0.0647 0 | 0.0960 | 0.0721
8 0 0.337 0.330 0.228 0 | 0.1571 | 0.1275 | 0.1104
9 0.234 0441 0 0.129 0.0485 | 0.0407 0 | 0.0685
10 0.360 0.333 0.436 0 0.1323 | 0.1130 | 0.0810 0
11 0 0410 0.278 0.216 0 | 0.0895 | 0.0520 | 0.0644
12 0.356 0.358 0 0.170 0.2003 | 0.1311 0 | 02227
13 0.097 0.226 0.351 0.276 0.0385 | 0.0408 | 0.0567 | 0.0822
14 3.141 0 1.061 0 0.0727 | 0.0000 | 0.1465 0

10. Conclusion

This paper accomplished several objectives. First, it extended the treatment of risk in a
mathematical programming framework to include, in principle, any combination of risk
preferences represented by absolute risk aversion and relative risk aversion. Second, it
modified the traditional PMP approach to deal with calibration constraints regarding
observed output levels and observed input prices by eliminating the user-determined vector
of perturbation parameters. The combination of these two approaches provides suitable
models for agricultural policy analysis that take into consideration farmers’ risk preferences
associated with the randomness of output prices. Third, this paper integrated the use of

exogenous supply elasticities observed for, say, an entire region with the endogenous
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elasticities derived from the supply functions of the sample farms. This objective is achieved
by specifying a complete and flexible total cost function that fulfills all the theoretical
requirements. Fourth, the calibrating model resulting from the PMP-MS framework
described here allows the analysis of policy scenarios dealing with farm subsidies that are
decoupled from the current crop production. Consider the parameter w in the measure of
wealth that may represent exogenous income subsidy. With a Freund approach to risk based
upon a constant absolute risk aversion utility function, the wealth parameter disappears from
the model. On the contrary, one version of the calibrating equilibrium model presented in
this paper allows the analysis of decoupled farm subsidies that are more frequently the target
of policy makers. This general model has been tested on different farm samples with

satisfactory results including a data sample where not all farms produce all the commodities.
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