

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Leading Partners in Science Limiting warming to 2 degrees: Opportunities and challenges for agriculture and New Zealand

Andy Reisinger

New Zealand Agricultural GHG Research Centre (NZAGRC)

Contributed paper prepared for presentation at the 59th AARES Annual Conference, Rotorua, New Zealand, February 10-13, 2015

Copyright 2015 by Authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Limiting warming to 2 degrees: Opportunities and challenges for agriculture and New Zealand

Andy Reisinger

New Zealand Agricultural GHG Research Centre (NZAGRC)

_eading Partners in Science

Overview

- Cumulative emissions and the 2°C limit
- Interaction of agriculture and CO₂ mitigation
- Expanding agriculture's mitigation potential
- Conclusions

Warming is proportional to cumulative CO₂ emissions

Warming is proportional to cumulative CO₂ emissions

what about non-CO₂ emissions, particularly agriculture?

Source: IPC0

Limiting warming to 2°C requires zero CO₂ by 2100 ... but a different level of ambition for agriculture?

CO₂ emissions

Agriculture mitigation: assumptions

- global mitigation at effective carbon price
- low elasticity of food demand
- no special considerations for food security
- steeply rising marginal abatement costs
- relatively short lifetime of CH₄

non-CO₂ from agriculture

Abatement of non-CO₂ gases keeps the 2°C window feasible (even if only just)

Source: MAGICC simulations using RCP database at IIASA; van Vuuren et al, 2011

Abatement of non-CO₂ gases keeps the 2°C window for its instance in the contract of the cont

8 Without effective agriculture mitigation, we'd have to remove CO₂ from the atmosphere well before 2050 to remain within the 2°C limit radiative forcing 2

Source: MAGICC simulations using RCP database at IIASA; van Vuuren et al, 2011

1900

1950

2000

2050

2100

Interactions between agriculture and CO₂ mitigation

All pathways shown result in radiative forcing of 450ppm CO₂-eq in 2100

Global agricultural marginal abatement costs from Beach et al. (2008); model results from Reisinger et al, 2012

Interactions between agriculture and CO₂ mitigation

Global agricultural marginal abatement costs from Beach et al. (2008); model results from Reisinger et al, 2012

Interactions between agriculture and CO₂ mitigation

... but this doesn't change the long-term picture:

CO₂ mitigation to zero by 2100 is non-negotiable

, 2012

NEW ZEALAND
AGRICULTURAL GREENHOUSE GAS
Research Centre

CION ÷

How can we get there?

Sources: van Vuuren et al. 204

What are agriculture's wedges, and can we make them bigger?

Agriculture's wedges

- Efficiency gains
- Demand management
- New/improved technologies

Emissions intensity and milk yield per cow

Reducing emissions intensities holds major promise

Significant decline in emissions intensities for livestock products 1960s – 2000s:

beef: -27%

milk: -38%

pork: -45%

Demand management

- Supply and demand mgmt
- 30-40% global food waste

(UK: 18% unavoidable, 18% potentially avoidable, 64% avoidable)

- ✓ reduced rate of land clearing
- ✓ reduced on-farm emissions
- ✓ health co-benefits
- ✓ strong opposing socio-economic drivers
- ✓ difficult to quantify, let alone enact

Source: IPCC, 2014

relate them to the emissions space compatible with the 2 °C temperature target. Our estimates

Diets

New technologies

- New technologies:
 - ✓ breeding low-emitting animals $(proof-of-concept \rightarrow market adoption)$
 - ✓ vaccine/inhibitor against methanogens $(\rightarrow proof of concept)$
 - ✓ low-emissions feeds $(proof-of-concept\ (N, CH_{\perp}) \rightarrow systems\ testing)$
 - ✓ soil carbon enhancement/avoiding loss (measurement, models, persistence)

Focusing global attention remains a challenge

Focusing global attention remains a challenge

Focusing global attention remains a challenge

Global Research Alliance

Launched in December 2009

Brings countries together on a voluntary basis to find ways to grow more food without growing greenhouse gas emissions:

- Reduce the emissions intensity of agricultural production systems and increase their potential for soil carbon sequestration, while enhancing food security
- Improve understanding, measurement and estimation of agricultural emissions
- **Improve farmers' access** to agricultural mitigation technologies and best practices

Global Research Alliance

Member countries January 2015; source: www.globalresearchalliance.org; plotted using chartsbin.com

www.nzagrc.org.nz www.globalresearchalliance.org

Thank you

