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Abstract 

The substantial booms and busts in agricultural prices marked by extreme events across commodities lead to heated debates 
about the effects of speculative trading on commodity price fluctuations. This study proposes a new approach to 
understanding extreme events and boom–bust processes in agricultural markets. Using weekly futures data for seven 
indexed agricultural commodities during 2006 to 2014, we find that extreme price changes, located in the 10% tails of the 
distribution, cluster across agricultural markets. We then implement a multinomial logit model to investigate which factors 
are associated with the propagation of extreme events. Specifically, we disentangle three transmission conduits. (1) The 
macroeconomic conduit captures the possibility that the synchronized extreme price events are triggered by business-cycle 
driven demand shifts mainly in emerging economies. (2) The financial conduit refers to potential links between extreme 
returns and the increasing flow of money from financial participants into agricultural futures markets. (3) Finally, the 
energy conduit accounts for possible spillover effects due to oil price shocks and the demand for biofuels. Our results 
indicate an important role of managed money positions and ethanol prices while the real demand channel remains mostly 
insignificant. 

Keywords: agricultural prices, futures market, tail events, GARCH analysis, multinomial logit  
JEL Code: C25; C58; E44; Q14 

 

 

1. Introduction 

Following the collapse of stock markets in early 2000s and fueled by tentative evidence that commodity futures 
offer diversification against stock market downturns (Erb and Harvey, 2006), commodity futures have become a 
popular asset class for several financial institutions and the general investment community (Rouwenhorst and 
Tang, 2012). The creation of new investment vehicles, such as exchange-traded index funds, has facilitated the 
rapidly rising participation of financial investors in commodity markets which is reflected by an impressive 
growth in the levels of activity as measured by open interest in commodity futures from $103 billion at the end 
of 2003 to $509 billion in July 2008 (Hong and Yogo, 2010). Concurrently, a broad set of commodities across 
the energy and agricultural sector has experienced synchronized sequences of large price swings, drawing 
renewed attention from policymakers and academics to commodity markets. A central and vigorously debated 
question is whether traditional supply and demand fundamentals or new financial amplification mechanisms 
dominate price formation in financialized commodity derivatives markets (Cheng and Xiong, 2014; Irwin and 
Sanders, 2012).  

The present study aims to broaden the discussion by assessing the occurrences of tail events in agricultural 
commodity markets during the boom–bust period from June 2006 to July 2014. Although fat tails in the 
distribution of commodity returns are a well-known phenomenon (Mandelbrot, 1963), empirical research has 
markedly overlooked the driving factors behind such disruptive price moves. We characterize the propagation of 
tails events across agricultural markets, its economic significance, and its determinants using a multinomial logit 
approach following Koch (2014) and Bae et al. (2003). In particular, our approach allows us to pinpoint the 
relevance of three conduits through which tail events may operate: (1) The “macroeconomic conduit” captures 
the possibility that synchronized extreme price events are triggered by business-cycle driven demand shock 
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mainly from emerging economies (Krugman, 2008; Kilian and Hicks, 2013). (2) The “energy conduit” accounts 
for possible spillover effects due to oil price shocks and the demand for biofuels (e.g. Myers et al., 2014; Algieri, 
2014b). (3) The “financial conduit” refers to the financialization and speculation in commodity markets and 
captures potential links between extreme returns and the increasing flow of speculative money into agricultural 
futures markets (Etienne et al., 2014; Tadesse et al., 2014).  

We use weekly futures data for the seven commodities with active liquid futures contracts included in the S&P 
GSCI Agriculture Index, namely cocoa, coffee, corn, cotton, soybeans, sugar, and wheat. Given that commodity 
index investments have experienced a significant growth over time, these commodities are particularly well 
suited to the analysis at hand because financial factors should have a larger influence on indexed commodities 
(Tang and Xiong, 2012). We first filter each original return series with AR-GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) models including a set of exogenous variables. This pre-filtering 
removes the serial clustering of extreme events that is due to serial correlation and/or periods of heightened 
volatility. In addition, the inclusion of common predictors of commodity returns in the procedure (e.g. exchange 
rate, yield spread) reduces the possibility that we attribute the clustering of extreme price changes to commonly 
known risk factors. We then employ the residuals from these regressions to identify extreme returns for each 
agricultural market. We define extreme returns as located in the 10% tails of the distribution, whereby we treat 
negative extreme returns (“bottom-tail events”) separately from positive extreme returns (“top-tail events”). 
Finally, we create a categorical dependent variable that indicates the number of agricultural markets that 
simultaneously experience top-tail and bottom-tail events and estimate a multinomial logit model to evaluate the 
likelihood of observing each tail event category and their drivers. The potential drivers are grouped into three 
conduits and include, among others, the Baltic dry freight index (macroeconomic conduit), ethanol futures price 
(energy conduit), and net position changes of two types of financial traders, managed money traders and 
commodity index traders, provided by the US Commodity Futures Trading Commission (financial conduit). 

Our main findings are as follows: First, with reference to the macroeconomic channel, demand factors remain 
mostly insignificant which indicates that traditional market fundamentals have little role in explaining extreme 
price changes despite their undisputed general impact on prices. Second, we find strong evidence that managed 
money positions help explaining the transmission of joint extreme price changes. In fact, this financial conduit 
variable has the strongest impact on tail events in either direction and, in particular, for synchronous tail events. 
For example, the strongest increase of the net long position results in a probability of extreme price rises in two 
or three (four or more) markets equal to about 26% (35%). In contrast, index traders have only little impact on 
tail events. In addition, there is some evidence of shock spillover effects from the stock market to agricultural 
markets. Finally, regarding the energy conduit, oil price returns do not trigger any tail events in agricultural 
market, while ethanol returns are highly significant for synchronous tail events of multiple agricultural 
commodities. The dominant role of ethanol prices compared to oil prices suggests that the agricultural markets 
are increasingly linked to energy markets through the demand side (biofuel use) rather than the production cost 
side. 

The remainder of the study is organized as follows. Section 2 reviews the literature on the topic. Section 3 
describes the data used. Section 4 first presents the GARCH and multinomial logit regression methodology, and 
then discusses the results. Section 5 concludes.  
 

2. Literature review 

Since the 2007-2008 price spikes, much research has focused on traditional and new drivers of agricultural 
commodity prices. While classical supply and demand fundamentals, like harvest failure, stock-to-use ratios and 
demand growth, remain important determinants of prices, energy and financial market linkages have become 
more important (Tadesse et al., 2014; Abbott 2009; Trostle, 2010). There are two different concerns that need to 
be distinguished: One is the “excessive speculation” hypothesis which claims that excessive speculation in 
commodity markets could push up futures and spot prices above levels justified by market fundamentals (i.e. 
they fuelled a “bubble”); the second is the “financialization hypothesis” stating that, driven by financial inflow 
and new investment vehicles, commodity markets are experiencing increasing price co-movements with 
financial markets, so that shocks from financial markets could transmit to commodity markets and destabilize 
them.  
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On the speculation hypothesis, theoretical models are able to assess whether specific trading strategies can 
destabilize prices or fuel a bubble. These models are often agent-based models where some traders have bounded 
rationality or behave according to stylized trading rules (e.g. Westerhoff, 2005). Nevertheless, it is also possible 
to show that speculation can destabilize prices in a setting of fully rationally traders without the existence of any 
market frictions (Hart and Kreps, 1986). As the models are very stylized or rely on assumptions that are difficult 
to observe on available data, their empirical validation is difficult to accomplish. Rather, empirical analysis on 
speculation attempts to find (statistically significant) correlations between the activities of specific trader groups 
and prices. This reduced-form approach is often confronted with a severe identification problem which makes it 
difficult to conclude about causal effects. Granger causality tests are widely used, but they show only weak or 
mixed evidence on the impact of trading activities on returns (Robles et al., 2009; Brunetti et al., 2011, Aulerlich 
et al., 2013). Granger causality tests are, however, problematic as the considered time-lag (typically one week) is 
too long to infer about causal effects in liquid markets where transactions have an immediate impact on prices 
(Gilbert and Pfuderer, 2014). Additionally, Granger causality tests are likely to suffer from omitted variable bias 
on market fundamentals and non-rejection of non-causality can occur despite the presence of causal effects 
(Grosche, 2014). Other works have integrated market fundamentals with speculation and trading activities. 
Tadesse et al. (2014), Algieri (2014a) and Gilbert (2010) find a significant and positive impact of speculation 
(non-commercial traders’ market activities) or index funds investment on prices and returns, but not on volatility 
(Tadesse et al., 2014). Henderson et al. (2014) also find a positive and significant impact of commodity market 
inflows in a dataset of transactions where trading based on the arrival of new information can be ruled out. In 
contrast to these previous studies, we investigate the link between speculative trading and commodity price 
behavior exclusively during periods of extreme fluctuations. This focus on extreme events is motivated by the 
observation that fat tails in the distribution of commodity returns are a well-known phenomenon that is hitherto 
not fully understood. 

With respect to the financialization hypothesis, there have been several attempts to theoretically model spillovers 
between financial markets and commodity markets due to investments across asset classes. Basak and Pavlova 
(2013) use a dynamic endowment-economy model with two heterogeneous agents in which institutional 
investors (in contrast to traditional investors) are benchmarked to a commodity index. They show that 
benchmarking creates a spillover mechanism with increases in correlations amongst commodity futures as well 
as in stock-commodity correlations. In a similar vein, Liu et al. (2011) predict that correlations between 
commodity prices increase if the different commodities are subject to correlated financial demand through cross-
holdings in investor portfolios. This is in line with the intuition according to which the inflow of speculative 
investors has linked commodity futures markets that have been segmented before. Several findings from 
empirical studies are consistent with these theoretical motivations. Tang and Xiong (2012) show that price 
correlation between indexed commodities have increased in recent years to significantly positive levels (from 
levels close to zero). In addition, Silvennoinen and Thorp (2013) point out that correlations between 
commodities and stocks have turned significantly positive – from negative levels of the past. Büyüksahin and 
Robe (2014) further document that the increase in commodity-stock correlations can be explained by trading 
positions of hedge funds. Grosche and Heckelei (2014) find stronger volatility spillovers across asset classes 
during and after the subprime crisis; this increasingly reduces the benefit of agricultural commodities for 
diversifying investment portfolios. Other studies, motivated by the financial distress of financial institutions 
during the 2008-09 crisis, emphasize a risk reallocation in commodity markets between financial traders and 
hedgers. Cheng et al. (2014) find that financial institutions became consumers rather than providers of liquidity 
during the crisis. Marshall et al. (2013) show strong liquidity commonality in commodity markets with 
speculators withdrawing liquidity in different commodities at the same time following market declines. This 
liquidity crunch can amplify shocks and cause commonality in the price fluctuations across different markets. A 
limitation of existing studies in this strand of literature is their focus on correlations, which give equal weight to 
small and large price changes. Instead, we focus on the evaluation of cross-market linkages in an extreme price 
environment drawing on multinomial logistic regression. 
 

3. Data description 

With the objective to assess the occurrences of extreme price events and understand the impact of trading 
activities and other factors on extreme episodes, we have collected weekly data for the seven commodities 
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entering the S&P GSCI Agriculture Index. Our analysis is carried out on weekly basis, given that traders’ 
positions are not available at a higher frequency. In detail, we have considered futures closing prices released 
each Tuesday for each agricultural commodity. The futures contracts for corn, soybeans and wheat are traded at 
the Chicago Mercantile Exchange Group (CME), the futures contracts for cocoa, coffee, cotton, and sugar are 
traded at the Intercontinental Exchange (ICE). We have used the first generic futures contracts series (which 
considers at each date the price of the contract with closes maturity) for the selected commodities ranging from 
20 June 2006 to 22 July 2014. Future prices have been collected from Bloomberg and their behavior is sketched 
in Figure 1. 

Data on trading positions is provided by the US Commodity Futures Trading Commission (CFTC) in its 
Historical Commitments of Traders reports on futures contracts traded. Every Friday, the CFTC publishes the 
Disaggregated Commitments of Traders report that provides aggregate positions on the prior Tuesday of traders 
identified through the CFTC’s and the exchanges’ reporting systems. The report provides a breakdown of 
positions held by different types of traders. “Commercial traders” (known as “hedgers”) are distinguished into (i) 
processors and merchants, and (ii) swap dealers. “Non-commercial traders” (commonly referred to as 
speculators) are categorized as (iii) managed money (MM) traders and (iv) other non-commercial traders. Since 
2007, the CFTC also publishes the Supplemental Commodity Index Traders report that contains the positions of 
commodity index traders (CIT) for seven considered grain and soft commodities. 

The other financial and macroeconomic variables included in the analysis are: a) light sweet crude oil futures, 
also known as West Texas Intermediate oil (WTI) futures; b) ethanol futures; c) the Standard & Poor’s 500 
index (S&P 500); d) the dollar effective exchange rate index; e) the Baltic dry freight index; f) the CBOE 
volatility index (VIX ); g) the MSCI emerging markets index, h) the US generic govt. 10 year yield; i) the US 
three month T-bill (short rate); j) the Treasury–Eurodollar (TED) spread, k) the spread of Moody’s AAA 
corporate bond over the T-bill (yield spread), l) the spread of Moody’s BAA corporate bond over the 10-year 
constant maturity Treasury yield (credit spread). They are also considered for every Tuesday to be consistent 
with the CFTC data. A detailed data description is reported in Table 1.  

Table 1 Data  

Commodity futures prices      Bloomberg Ticker 

Generic 1st Cocoa futures contract (ICE formerly NYBOT)    CC1 Comdty 
Generic 1st Coffee futures contract (ICE formerly NYBOT)    KC1 Comdty  

Generic 1st Corn No. 2 Yellow futures, US$ (CME GROUP)   C 1 Comdty 
Generic 1st Cotton futures contract (ICE formerly NYBOT)    CT1 Comdty 
Generic 1st Soybean No. 2 Yellow futures, US$ (CME GROUP)  S 1 Comdty 
Generic 1st Sugar No. 11 futures, US$  (ICE formerly NYBOT)  SB1 Comdty 
Generic 1st Wheat futures, US$ (CME GROUP)    W 1 Comdty 
 

Macro and financial variables      Bloomberg Ticker 

Generic 1st WTI Crude Oil futures, US$ (CME GROUP/NYMEX)  CL1 Comdty 
Generic 1st Ethanol futures, US$ (CME GROUP)    DL1 Comdty 
Standard & Poor's 500 (CME GROUP)     SPX Index 
Dollar Index – Spot1 (NYBOT)      DXY Curncy 
Baltic Dry Freight        BDIY Index 
CBOE Volatility Index        VIX Index  
MSCI Emerging Markets Index      MXEF Index 
US generic 10-year Treasury yield       USGG10YR Index 
US three month T-Bill       USGG3M Index 
TED Spread        BASPTDSP Index 
Moody’s AAA Corporate Bond yield     MOODCAAA Index 
Moody’s BAA Corporate Bond yield     MOODCBAA Index  

                                                      
1 US effective exchange rate index tracks the performance of a basket of leading global currencies versus US dollar.  



5 
 

 

 

Figure 1 Commodity futures prices 
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4. Empirical Analysis 

In this section we first filter each raw return series to control for the exposure of agricultural futures to common 
risk factors and to avoid serial correlation in agricultural returns. By adopting a GARCH approach, the volatility 
becomes conditional on past volatility and returns. This allows us to better capture the serial clustering of 
extreme events and volatilities which characterizes most price series. We then turn to the identification of 
extreme returns located in the 10% tails of the distribution. As GARCH-filtered returns are used to calculate the 
tails of the distribution, the GARCH approach basically ensures that only “new” extreme events (out of periods 
with relatively low volatility) will be considered. Finally, we use a multinomial logit model to evaluate the joint 
occurrences of large absolute value returns and the drivers of each state. 

4.1 Filtering procedure: the GARCH approach 

We begin with an analysis of the statistical properties of our agricultural price data in Table 2, to motivate the 
use of a filtering procedure. First, results of the Augmented–Dickey–Fuller (ADF) tests (Panel A) suggest taking 
first differences to obtain stationary time series at conventional significance levels in all cases. Consequently, 
weekly prices are transformed into continuously compounded weekly returns (Figure 2) by taking natural 
logarithms, differencing and multiplying by 100. Second, the descriptive statistics reveal skewed, fat-tailed 
returns as well as significant serial correlation and ARCH effects in returns (Panel B). More precisely, the 
Ljung-Box autocorrelation tests reject the null of no serial correlation for four of the seven commodities (at the 
10% significance level). The ARCH LM tests based on Engle (1982) suggest that five return series exhibit signs 
of volatility clustering (at the 10% significance level).  

Table 2 Summary statistics of raw weekly agricultural futures returns 

Cocoa Coffee Corn Cotton Soy Sugar Wheat 

Panel A: Stationarity 

Level 

ADF statistic -2.02 -1.70 -2.28 -1.82 -2.31 -1.84 -2.77 

p-value 0.28 0.43 0.18 0.37 0.17 0.37 0.07 

1st log-difference        

ADF statistic -11.38 -5.17 -5.16 -20.19 -21.27 -10.59 -20.73 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Panel B: Descriptive Return Statistics 

Mean 0.18 0.13 0.09 0.07 0.17 0.03 0.07 

Std. Dev. 4.24 4.30 5.08 5.19 3.93 5.28 4.96 

10% quantile -4.75 -5.06 -5.82 -5.14 -4.49 -5.76 -6.07 

90% quantile 4.99 5.46 5.61 5.78 4.70 6.50 6.26 

Min -16.72 -13.30 -25.55 -39.99 -20.05 -22.99 -17.63 

Max 14.31 17.66 23.25 16.15 12.03 17.13 14.65 

Skewness -0.02 0.29 -0.19 -1.37 -0.48 -0.32 0.07 

Kurtosis 4.06 3.96 5.84 12.63 4.81 4.56 3.48 

Ljung-Box statistic 14.45** 17.20*** 9.62* 3.26 2.64 9.45* 4.45 

ARCH LM statistic 19.74** 14.12 14.20 18.53** 16.56* 27.19*** 15.90* 

Note: * p < 0.10, ** p < 0.05, *** p < 0.01 

The indication of autocorrelation and volatility clustering for several return series motivate our approach of 
filtering the original return series with AR-GARCH processes and using the residuals in the analysis. This pre-
filtering should remove the serial clustering of extreme events that is due to serial correlation and/or periods of 
heightened volatility. In a period of strongly changing returns one expects that the variance of the following 
returns will also be high. A strong price change becomes, therefore, less surprising compared to the same price 
change in calm periods. Using GARCH models, to obtain a time-series for which extreme observations are not
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Figure 2 Commodity futures price returns 
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serially clustered, should thus be suitable to identify the tail in the return distribution. Similar approaches 
have been proposed in the risk management literature in applications of extreme value theory (e.g. McNeil et 
al., 2005). In addition, we adopt the filtering procedure to reduce the possibility that we attribute the 
clustering of extreme price changes to commonly known risk factors (e.g. Dungey et al., 2005). To control 
for this exposure to common risk factors, we include in our AR-GARCH models a set of exogenous 
variables known to predict commodity returns.2  

More specifically, for each raw return series, we estimate an AR(1)-GARCH(1,1) model containing five 
common risk factors motivated by asset pricing theories. First, to control for broad market exposure, we use 
the S&P 500 equity index to proxy the market portfolio (Dusak, 1973). Changes in the equity index can also 
signal shifts in economic activity and real demand for commodities (Tang and Xiong, 2012). In addition, we 
include the US dollar index as risk factor to control for the exposure of energy futures (priced in US dollars) 
to  exchange rate risk, based on Erb and Harvey (2006). Finally, we include the weekly change in the short 
rate, yield spread and credit spread, based on Bessembinder and Chan (1992) and Hong and Yogo (2010).  

The regression results (Table 3) indicate that common aggregate market factors can be relevant in explaining 
the returns of individual agricultural futures. In particular, the S&P 500 returns and dollar index returns turn 
out to be important determinants for all commodities with the notable exception of corn. In contrast, we find 
no clear-cut evidence that risk factors related to bond markets are reflected in agricultural returns. 
Altogether, the explanatory power of the AR-GARCH models remains modest as witnessed by the adjusted 
R2 ranging from 2% for sugar to 14% for wheat and cocoa. Unreported Ljung-Box tests on residuals from the 
models indicate that using AR(1)-GARCH(1,1) processes is sufficient to remove serial correlation in all 
return series. 

 
 
 

Table 3 Summary of filtering procedure 

  Cocoa Coffee Corn Cotton Soy Sugar Wheat 

Mean equation 

Constant 0.201 0.014 0.045 0.089 0.220* -0.119 -0.125 

(0.27) (0.95) (0.96) (0.71) (0.07) (0.49) (0.67) 

AR term -0.074 0.019 -0.052 0.033 -0.083* -0.077 -0.011 

(0.13) (0.76) (0.65) (0.62) (0.09) (0.11) (0.85) 

S&P 500 return 0.137 0.393*** 0.284 0.378*** 0.333*** 0.198** 0.267** 

(0.26) (0.00) (0.39) (0.00) (0.00) (0.04) (0.01) 

Dollar index return -1.237*** -0.641* -0.850 -0.550** -0.421** -0.444** -1.203** 

(0.00) (0.05) (0.40) (0.02) (0.01) (0.02) (0.01) 

∆ Short rate -0.004 0.000 0.000 0.004 0.001 0.003 0.001 

(0.11) (0.91) (0.87) (0.11) (0.77) (0.18) (0.73) 

∆ Yield spread 0.030* -0.003 0.031 0.005 -0.006 -0.029 0.039 

(0.09) (0.84) (0.67) (0.80) (0.68) (0.11) (0.10) 

∆ Credit spread -0.039 -0.005 -0.029 0.043 -0.031 0.076 0.003 

(0.66) (0.94) (0.81) (0.67) (0.62) (0.31) (0.97) 

GARCH equation 

Constant 0.051 1.000* 1.000 0.753 1.000*** 0.401* 0.972 

(0.77) 0.07 0.77 0.14 0.00 0.05 0.18 

ARCH term 0.045*** 0.047** 0.013 0.142** 0.224*** 0.136*** 0.099** 

(0.00) (0.04) (0.92) (0.02) (0.00) (0.00) (0.01) 

GARCH term 0.951*** 0.892*** 0.943*** 0.845*** 0.725*** 0.854*** 0.855*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Adjusted R2 0.14 0.09 0.08 0.07 0.07 0.02 0.14 

Note: p-values in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01 

                                                      
2 For robustness, we have also implemented a filtering procedure using a VAR model containing one lag and our set of 
common risk factors. The VAR framework can also account for the possibility that return dynamics depend on their 
own characteristics and those of economically related agricultural futures. Results remain qualitatively similar, but are 
not presented here due to space limitations. They are available upon request. We believe the reported main results based 
on a GARCH framework are more conservative, since they control for volatility clustering. 
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We subsequently use the residuals from the regression models to identify extreme returns for each 
agricultural market. To this end, we define an extreme return – or exceedance – as one that lies either below 
the 10% or above the 90% quantile of the filtered return distribution. Since there are 417 observations, the 
10% cut-off yields 42 positive return (“top-tail”) exceedances and 42 negative return (“bottom-tail”) 
exceedances for each agricultural commodity.3  

Figure 3 Number of agricultural commodity markets experiencing extreme returns  

 
Note: The graphs show the number of joint occurrences of extreme agricultural commodity returns, referred to as co-exceedances, 
across the seven agricultural markets within a given week. A negative (positive) extreme return lies in the bottom (top) 10% tail of 
the return distribution. The co-exceedances are plotted separately for (i) bottom tails (upper panel) and top tails (lower panel) and (ii) 
raw returns (red) and filtered returns (green). 

Next, we count the number of agricultural markets that simultaneously experience an extreme return within a 
given week – referred to as co-exceedances. Figure 3 shows the top-tail and bottom-tail co-exceedance 
counts over time. We have plotted the co-exceedances separately for raw returns (red) and filtered returns 
(green) to illustrate the importance of filtering the return data. Indeed, a comparison indicates that serial 
correlation, volatility clustering and the risk factors used in the filtering procedure account for some of the 
clustering in extreme price changes across markets. However, the co-exceedance patterns, based on filtered 
returns, still provide evidence of clustering in extreme agricultural returns. A cluster of worst agricultural 
returns appears during the financial crisis at the turn of the year 2008-09. The extent of clustering in top-tail 
co-exceedances seems to be pronounced in periods of unfolding crises, i.e. in the first half of 2008 (subprime 

                                                      
3 A 5% cut-off as in Bae et al. (2003) gives too few observations (only 21) for a meaningful analysis. 
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crisis) and the second half of 2010 (European sovereign debt crisis). Another episode of top-tail clustering is 
the year 2009, when commodity prices recovered from the financial crisis. We subsequently seek to explain 
this extreme dependence among agricultural commodities. 

 

4.2 Multinomial logit model 

To estimate the probabilities associated with the joint emergence of extreme price events among agricultural 
commodities, we implement a multinomial logistic model following Koch (2014) and Bae et al. (2003). The 
major advantage of this model class, especially relative to those based on extreme value theory grounded on 
a copula function, is that it can condition the likelihood of observing (co-)exceedance events on attributes of 
relevant economic variables. Most important, the conditioning on covariates offers an econometrically 
efficient way of exploring which factors help explaining the propagation of tail events across agricultural 
markets.  

Formally, the multinomial logit model can be written as:  

 n0,1,...,for        
)  ( Pr

)  ( Pr
ln)(ln ' 




 jx

xby

xjy
x bjbj   (1) 

 

 

Where ln Ω is the log of the odds, j is one category of n+1 possible categories, b is the base category, which 
is referred as comparison group, x is a vector of covariates (or explanatory variables), y is the dependent 
polytomous variable, Pr (y = j) is the predicted probability of belonging to category j, and βj is the vector of 
coefficients associated with the explanatory variables that is estimated by maximum likelihood. Since 

0   1ln)(ln  xbb
, it holds that βb|b =0. That is, the log odds of an outcome compared to itself is always 0, and 

thus the effects of any independent variables must also be 0. The log of the odds ranges from −∞ to ∞. 

The n equations can be solved to compute predicted probabilities: 

 n0,1,...,j     )  Pr(

0

'

'


 

n
k

x

x

bk

bj

e

e
xjy





 
(2) 

 

 
In general, with n+1 categories, only n binary logits need to be estimated. This is because the multinomial 
logistic regression compares the probability of being in each of n categories to the baseline or reference 
category b. It is noteworthy that the estimation results are contingent on the choice of the threshold required 
for defining extreme events (here 10% tail). In addition, the focus on large return shocks, by definition, 
decreases the sample size.  

To perform this analysis, we choose to restrict the dependent variable to four categories (0, 1, 2, 3) in order 
to balance the need of having a model that is parsimonious and yet one that elaborately captures the range of 
possible categories (0, 1, 2, 3, 4, 5, 6, 7 markets experiencing an extreme event). We, therefore, differentiate 
between four tail event scenarios: the categorical variable y is set equal to 0 when no extreme returns are 
observed during the week (this is the baseline, “calm” time case); y is set equal to1 if one exceedance is 
observed during the week (“slightly agitated” time case), y is set equal to 2, if two or three co-exceedances 
are observed during the week (“agitated” time case); and y is set equal to 3, if four or more co-exceedances 
are observed during the week (“turbulent” time case). Table 4 presents a frequency table of our dependent 
variable reflecting the four different tail event scenarios. 
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Table 4 Summary of dependent variable 

    Bottom tails Top tails 

    Frequency Per cent Frequency Per cent 

y=0 Calm           
(0 tail event) 236 56.59% 243 58.27% 

y=1 Slightly Agitated  
(1 tail event) 112 26.86% 103 24.70% 

y=2 Agitated                
(2-3 tail events) 45 10.79% 39 9.35% 

y=3 Turbulent             
(4-7 tail events) 24 5.76% 32 7.67% 

 
The choice of explanatory variables in our specifications is motivated by the existing literature (e.g. Algieri, 
2014b; Tadesse et al. 2014; Tang and Xiong, 2012). We therefore distinguish between three conduits: (1) 
The “macroeconomic conduit” reflects fundamental demand factors and captures the possibility that the 
synchronized extreme price events are triggered by business-cycle driven demand shock mainly from 
emerging economies. (2) The “energy conduit” accounts for possible spillover effects due to oil price shocks 
and the demand for biofuels. (3) The “financial conduit” refers to the financialization and speculation in 
commodity market and captures potential links between extreme returns and the increasing flow of 
speculative money into agricultural futures markets. 

Specifically, the “macroeconomic” conduit includes:  

 The Baltic Dry Freight Index. The log return of this variable is used as proxy for the real economic 
activity in line with Kilian (2009) who argues that fluctuations in freight rates are a leading indicator of 
changes in the global real economic activity and a measure for changes in global demand.  

 The MSCI Emerging Market Index. The log return of this index is considered as proxy for the strength 
of economic growth in emerging economies that determines the commodity demand from emerging 
markets as in Tang and Xiong (2012) and Koch (2014).  

 
The “energy conduit” comprises:  

 The WTI crude oil futures price (log returns). A rise in oil prices exerts an upward pressure on input 
costs such as fertilizers, irrigation, and transportation costs, which in turn lead to a decline in 
profitability and production, with a consequent rise in commodity prices. 

 Ethanol futures price (log returns). Biofuels impact commodity prices through the demand side. This is 
because the demand for corn, soybeans and other grains increases in order to produce more biofuels, 
resulting in higher prices of these grains. The demand for biofuels has been further facilitated by 
subsidies and biofuel mandates.  

 
The “financial conduit” includes: 

 An indicator variable for extreme stock market shocks (set to one if the S&P 500 has a return in the 10% 
tails of the return distribution, and zero otherwise). This dummy variable accounts for possible spillover 
effects from the stock market to commodity markets due to portfolio-reallocation in times of flight-to-
quality (e.g., Caballero et al., 2008). 

 CBOE Volatility Index (VIX). The VIX captures the implied volatility in the S&P 500 and reflects stock 
market expectations of volatility. It is a popular barometer of investor sentiment and often referred to as 
the fear index. This inclusion is motivated by evidence that tail events are more likely in a high volatility 
environment. We use stationary log returns of the VIX in the empirical analysis. 

 The scalping index. Scalping is known as an intraday activity made up of instant transactions by traders 
which open and close contract positions within a very short period of time to make profits. The scalping 
index is a proxy for short-term speculation and computed as the ratio of trading volume (TV) to open 
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interest (OI)4 in future contracts (Peck, 1982; Du et al., 2011; Manera et al., 2013). Formally, it is given 
by: 5  

 �� � � � � = ����  

 
(3) 

 
 

 The relative change of Managed Money (MM) trading position. Managed money represents professional 
fund managers and is a good proxy for hedge funds speculators. The inclusion is motivated by the 
common concern that a “small bet” by large hedge funds using leverage can overwhelm relatively small 
markets resulting in large price changes (Fung and Hsieh, 2000). The managed money index6 is 
calculated as change in net long positions of managed money traders relative to its total size (i.e. the sum 
of short, long and spread open interest):  

 ��  � � = ∆�� � ������ ��� + �� ℎ�� + �� ���  

 

(4) 

 

 

 The relative change of Commodity Index Traders (CIT) trading position. This category of traders 
identified by CFTC corresponds to index investors (Guilleminot et al. 2014, Verleger, 2007; Commodity 
Futures Trading Commission, 2008), who track a given commodity index. They can invest through OTC 
derivative instruments or exchange-traded-funds. These traders can take long or short exposure to the 
index and the CFTC separately releases the short and long position for each commodity. Our CIT index 
is computed as change in net long positions of index traders relative to the total open interest of index 
traders:7 

 ���  � � = ∆�� � ������� ���� + �� ℎ���  

 
(5) 

 
It is worthwhile noting that each of the considered financial indices (scalping, managed money and index 
traders) has been constructed aggregating data over the seven agricultural commodities and each commodity 
enters the index with a specific weight. In particular, we used the following weighted index: 

 Xw =  ∑ ��7
�=1  X � 

 

(6) 

 

Where Xi is a specific financial index for commodity i and λi is the weighting factor, that is calculated as the 
share of the market value of the open interest of commodity i of the market value of the open interest of all 

commodities, i.e., �� = �∗ ���_���∑ ∗���_��  . The price of the contract, pi, is converted from the reported market 

price (which refers to a specified unit of the commodity) to the price of contract (using the contract size). For 

                                                      
4 Open interests refer to the number of futures contracts outstanding. 
5 Volume and OI refer to all contracts of the commodity – i.e. all contracts with different maturities, not only active 
contracts. 
6 Different managed money indices were also computed and used in a battery of regressions but the results across 
indices are very similar. These alternative indices are summed up as follows:  

(1) ���  � � = ∆ ��� ��� − ∆ �� ℎ��  

(2) ���  � � = ∆�� � ������ �+��� ℎ  

(3) ���  � � = ∆�� � ����� ��� +�� ℎ��  

7 Alternative CIT measures have been also considered, they are highly correlated and the results are quite similar across 
estimations. Specifically, the two alternative considered indices are:  

(1) the absolute change in net long positions of index traders: ∆ ��� ���� − ∆ �� ℎ���   

(2) change in net long positions of index traders relative to total market open interest:  ∆�� � ������� �+��� ℎ  
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open interest all contracts of a commodity (not only the active one) are used. Note that all change variables 
and log returns are multiplied by 100 to consider percentage values. 

 

4.2.1 Multinomial logit analysis: empirical results 

The estimates of the multinomial logit model are reported separately for bottom tails and top tails in Table 5. 

Calm time is the most frequently occurring state and it is, therefore, employed as reference group. We 
estimate the model for three scenarios: a model for a slightly agitated scenario relative to calm state, a model 
for an agitated state relative to calm state, and a model for turbulent time relative to calm state. Since the 
parameter estimates are relative to the reference group, the standard interpretation of the multinomial logit is 
that for a unit change in the predictor variable, the logit of outcome j relative to the reference group is 
expected to change by its respective parameter estimate (which is in log-odds units) given the variables in the 
model are held constant. 

Table 5 Results of Main Specification 

 Bottom Tails  Top Tails  

 Slightly agitated Agitated Turbulent Slightly agitated Agitated Turbulent 
       
Macroeconomic conduit      
       
Baltic dry -0.0269 ** -0.0187 0.00634 0.0193 -0.00951 0.0109 
 (0.045) (0.291) (0.783) (0.140) (0.621) (0.610) 
       
MSCI emerging mkt. -0.0410 0.0422 0.0714 0.0361 -0.0645 -0.0943 
 (0.353) (0.489) (0.345) (0.417) (0.326) (0.201) 
       
Financial conduit       
       
MM net long -0.346 ** -0.860 *** -1.165 *** 0.247 0.581 *** 0.825 *** 
 (0.022) (0.000) (0.000) (0.105) (0.009) (0.001) 
       
CIT net long -0.0180 -0.218 -0.609 *** -0.0117 0.148 0.0885 
 (0.872) (0.158) (0.002) (0.914) (0.373) (0.634) 
       
Scalping index -0.0206 0.0117 0.0257 0.0187 0.0109 0.0410 
 (0.365) (0.715) (0.556) (0.406) (0.746) (0.261) 
       
VIX volatility -0.00223 -0.0126 -0.0202 0.00803 -0.0124 -0.0205 
 (0.843) (0.451) (0.363) (0.482) (0.480) (0.273) 
       
Extreme S&P 500 0.222 0.0770 0.594 0.169 0.133 0.962 ** 
 (0.462) (0.860) (0.273) (0.579) (0.777) (0.048) 
       

Energy conduit       
       
WTI oil 0.00649 -0.0670 -0.0255 0.0145 0.0244 0.0625 
 (0.833) (0.123) (0.639) (0.633) (0.610) (0.245) 
       
Ethanol -0.0533 ** -0.0491 -0.0963 *** 0.00381 0.0577 0.160 *** 
 (0.032) (0.150) (0.009) (0.870) (0.158) (0.001) 
       
_cons -0.333 -2.128 *** -3.662 *** -1.302 *** -2.190 *** -3.661 *** 
 (0.502) (0.003) (0.000) (0.009) (0.003) (0.000) 
       
N  416   416  
pseudo R2  0.097   0.068  
AIC  872.2   896.2  
BIC  993.1   1017.1  
ll_0  -449.7   -448.4  
ll  -406.1   -418.1  
chi2  87.26   60.66  

Note: Base category: calm times; p-values in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 
Bottom tails refer to extreme events with negative signs (price falls), top tails refer to extreme events with positive signs (price 
surges). Three (bottom and top) tail event scenarios are differentiated: The “slightly agitated” scenario if one exceedance occurs, the 
“agitated” scenario if two or three co-exceedances take place in a week, and the “turbulent” scenario if four or more co-exceedances 
occur during the week.  

The coefficient of the Baltic variable in the first column of Table 5, for example, allows calculating the log-
odds ratio of a slightly agitated market (one bottom tail event) relative to the calm state based on Equation 
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(1). This applies to the other estimated coefficients in column (1), too. Hence, the negative coefficient of the 
Baltic variable in column (1) implies that if the real economic activity were to increase by one unit, the 
multinomial log-odds for having slightly agitated times – when there is only one extreme price drop – 
relative to calm time would be expected to decrease by 0.027 units, holding the other variables constant.8 
Considering the variable managed money in the first, second, and third column of Table 5, it emerges that if 
net long positions were to increase by one unit, the multinomial log-odds for observing extreme price busts 
instead of “tranquil” times would decrease from 1.16 to 0.35 units. 

Caution is indicated when transferring the interpretation of the estimated coefficients from the log-odds ratio 
equation (1) to the actual probabilities of observing a specific event (equation 2): Because the probabilities of 
the complementary categories – i.e. the denominator in (1) – also change, the sign of the estimated 
coefficient � does not always translate to the same sign for the marginal effect on the probability. Marginal 
effects at the mean of the explanatory variables are calculated in order to get a better interpretation of 
qualitative and quantitative results of the multinomial logit regression (Table 6). Marginal effects indicate 
the change in probability if one explanatory variable changes marginally at the mean, holding all other 
variables constant.9 It can be quickly verified that the signs of those coefficients that are statistically 
significant at the 10% level do not change compared to the sign of their marginal effects.10 In some rare cases 
significance levels change. The marginal effects can be interpreted easily. Take again the case of the Baltic 
dry index: when the variable is at its mean value, a reduction of one percentage point, increases the 
probability of observing one bottom tail event by 0.5 percentage points. The largest marginal effects can be 
found for Managed Money (MM) positions: Considering top-tail events, a one percentage point increase of 
the relative MM positions, increases the probability of observing agitated and turbulent markets by 3.8 and 
3.0 percentage points, respectively (Table 6). Likewise, for the top tail, the relative probability of having 
calm periods decreases by 9 percentage points for every percentage point of increase in managed money. 

To sum up, the considered channels have a different impact on tail events. Specifically, with reference to the 
macroeconomic channel, economic shocks in emerging economies (proxied by the MSCI emerging markets) 
do not cause tail events in either direction. Likewise, the Baltic Dry index is statistically insignificant except 
for the occurrence of single bottom tail events: a drop in freight costs, for example due to lower global 
demand, is only associated to isolated extreme price drops in agricultural commodity markets, but not to 
synchronous tail events. Thus, business-cycle driven demand factors provide virtually no explanatory power 
for the propagation of tail events across agricultural markets. This finding is not in contrast with the view 
that shifts in demand shape commodity prices (Krugman, 2008; Kilian and Hicks, 2013), but highlights that 
demand shocks have not triggered extreme price events. The finding is rather consistent with the theoretical 
predictions that fundamentals have much less explanatory power on extreme price movements in time of 
large inflows of speculative money (Liu et al., 2011). 

Turning to the financial conduit, we find strong evidence that managed money positions help explaining the 
transmission of joint extreme price changes. In fact, this variable seems to have the strongest impact on tail 
events in either direction and in particular for synchronous tail events. More specifically, a reduction 
(increase) of managed money net long position is significantly related to an increasing probability of large 
price falls (rises) across at least two agricultural markets. The significance for the agitated (2-3 tail events) 
and turbulent (4-7 tail events) scenarios may reflect that managed money traders hold positions across many 
agricultural futures markets (Cheng et al., 2014) and, thus, changes in trading positions affect various 
markets at the same time. This finding corroborates the evidence presented in Büyüksahin and Robe (2014) 
which indicates that increased hedge fund activity strengthens cross-market linkages.  

                                                      
8 Another way to interpret the results of Table 5 is to exponentiate the estimated logit coefficients which gives relative 
risk ratios (RRR). The RRR of a coefficient indicates how the risk of the outcome falling in the comparison group (e.g., 
turbulent state) compared to the risk of the outcome falling in the reference group (calm state) changes with the variable 
in question. An RRR>1 indicates that the comparison outcome is more likely. Vice-versa with RRR<1, the outcome is 
more likely to be in the reference group. 
9 Technically, for a continuous variable, marginal change at the mean is the partial derivative or instantaneous rate of 
change in the estimated quantity with respect to its mean. For a factor variable, marginal change is the difference in the 
prediction when the factor variable is 1 compared with the prediction when the variable is 0.  
10 This does, however, not hold for all of the statistically insignificant coefficients due to the non-linearity of the model. 
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Table 6 Marginal Effects   

 Bottom Tails Top Tail 

 Slightly agitated Agitated Turbulent Calm Slightly agitated Agitated Turbulent Calm 

dy/dx y=1 y=2 y=3 y=0 y=1 y=2 y=3 y=0 

Macroeconomic conduit 
    

    

Baltic dry -0.0050** -0.0009 0.0005 0.0055* 0.0038 -0.0012 0.0003 -0.0028 

MSCI emerging mkt. -0.0101 0.0045 0.0024 0.0033 0.0095 -0.0056 -0.0042 0.0004 

Financial conduit 
    

    

MM net long -0.0376 -0.0601*** -0.0290*** 0.1267*** 0.0244 0.0378** 0.0303*** -0.0925*** 

CIT net long 0.0075 -0.0163 -0.0172*** 0.026 -0.0066 0.0118 0.0034 -0.0085 

Scalping index -0.0047 0.0015 0.0009 0.0024 0.0029 0.0003 0.0015 -0.0046 

VIX volatility 0.0001 -0.001 -0.0005 0.0014 0.0021 -0.0011 -0.0009 -0.00003 

Extreme S&P 500° 0.0379 -0.0016 0.0179 -0.0542 0.0145 0.0017 0.0506 -0.0668 

Energy conduit 
    

    

WTI oil 0.0033 -0.0058* -0.0006 0.0030 0.0015 0.0014 0.0024 -0.0053 

Ethanol -0.0087* -0.0025 -0.0022** 0.0134** -0.0024 0.0039 0.0066*** -0.0081 

         

Pr(y|x) 0.2861 0.0932 0.0305 0.5902 0.2572 0.088 0.045 0.6098 

Note: This table provides estimates of the partial derivatives of the exceedance probabilities with respect to the regressors, evaluated 
at their means. They need to be multiplied by 100 to get the marginal effects of the exceedance probabilities in percentages. 
Mean values x: Baltic dry -0.30% ; MSCI emerging mkt. 0.11%; MM net long 0.2%; CIT net long -0.6%; Scalping index 21.72; VIX 
volatility -0.16%; 
Extreme S&P 500 0.20; WTI oil 0.09%; Ethanol -0.15%.  
(°) dy/dx is for discrete change of dummy variable from 0 to 1 

In contrast, our results suggest that index traders have only little impact on tail events: Their net long 
position changes are only significant for bottom-tail events for four or more commodities. As index traders 
follow typically a (long-term oriented) portfolio diversification strategy rather than short-term speculation 
purposes, positions change hardly over time. Nevertheless, massive financial outflows might have 
contributed to extreme price drops. Contrary to the trading positions of the two financial traders, short-term 
oriented speculation, measured by the scalping index, is statistically not relevant to the likelihood of 
observing joint extreme returns in agricultural markets. Besides studying the impact of speculative trading, 
the inclusion of the VIX and extreme stock market dummy allow investigating whether shocks from 
financial markets transmit to agricultural markets. We find no evidence that tail events are more likely in a 
high volatility environment: The VIX estimates are insignificant and the mostly negative signs rather 
indicate that tail events are less likely when stock market expectation of volatility is high. There is also little 
evidence of shock spillover effects from the stock market to agricultural markets. The indicator variable is 
only significant for top tail events in the turbulent scenario. The positive coefficient estimate suggests that 
large price rises in four or more agricultural markets coincide with tail events in the stock market. However, 
it is important to note that the marginal effects at the mean remain statistically insignificant (Table 6). 
Therefore, we should not over-interpret the spillover effect that could be explained by portfolio-reallocation 
of investors moving from stocks to agricultural futures in line with Caballero et al. (2008), who argue that 
the collapse of US asset markets during the subprime crisis triggered the creation of a bubble in commodity 
markets. 

Finally, regarding the energy conduit, oil price returns do not trigger any tail events in agricultural market, 
while ethanol returns are highly significant for synchronous tail events of multiple agricultural commodities: 
High (low) ethanol returns are indeed associated with the occurrence of top (bottom) tail events that occur 
simultaneously for at least three commodities. This result indicates that the demand aspect of the energy 
circuit (agricultural commodities can be used for energy generation) has a stronger role for tail events as the 
input cost aspect (energy prices affect production, transportation and fertilizer costs). It thus testifies that 
ethanol and agricultural prices have become increasingly interwoven, in line with McPhail and Babcock 
(2012), Algieri (2014a).  
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A battery of diagnostic tests to validate our baseline specification is reported in detail in section S.1 of the 

supplementary material. Additionally, we show the results of an extended multinomial model that controls 

also for the T-bill, the TED-spread and the Bid-Ask spread in commodity markets to capture additional 

financial market and liquidity indicators. The estimated coefficients and significance levels of our main 

specification are hardly affected when these variables are added. The additional variables turn out to be all 

insignificant (except for T-bill and TED-spread that are statistically significant at the 10% level in two 

individual cases). Furthermore, we examine the appropriateness of using a multinomial logit model by 

testing it against an ordered logit model.  

 

4.2.2 Graphical analysis of predicted probability 

To complete our analysis we have computed the response of our probability estimates to the full range of 

value associated with the significant covariates holding all other variables constant at their mean. Plotting the 

probabilities of exceedances, as a function of a regressor over the whole relevant range of the regressors, 

enables us to better gauge how changes in the covariates affect the probabilities of exceedance. We report 

two co-exceedance response curves for each significant covariate: one with the probability of different states 

for the bottom tail and one for the top tail (Figure 4; Figure 5).  

Clearly, the probability of having two or more co-exceedances in the bottom tails falls with increasing 

managed money net position, in a non-linear form (Figure 4). This probability ranges from a minimum of 

0% (when the largest increase in the net long position occurs) to a maximum of approximately 24% (when 

the largest decrease in the net long position occurs). On the contrary, the probability of observing the calm 

state with respect to bottom-tail events increases with managed money net positions; and the probability of 

observing slightly agitated markets reaches its maximum around a 1 percent reduction in managed money net 

long positions.  

Figure 4 Co-exceedance response curves: Probability of different states against managed money net positions 

Bottom tails Top tails 

  
Note: The panels illustrate the sensitivity of implied conditional probabilities of the four different tail event scenarios to changes in 

managed money net long positions.  

The probability of observing one or more extreme events in top tails rises with managed money net positions 

and it increases significantly for the turbulent state’s probability. Instead, the probability to experience the 

calm state decreases with an increasing net long position of managed money traders. For example, the 

strongest increase of the net long position results in a probability of extreme price rises in two or three (four 

or more) markets equal to about 26% (35%). 

The same type of behavior appears for ethanol returns (Figure 5). Therefore, we can conclude that price 

upsurges in commodity market are more likely to materialize when returns in ethanol are increasing. 

Additionally, the slope of the response curve for top-tails is relatively flat, unless a large rise in ethanol 

prices occurs. When an ethanol return of 20% per week occurs, for example, the probability of the turbulent 

scenario rises to approximately 49%. 
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Figure 5 Co-exceedance response curves: Probability of different states against ethanol returns 

Bottom tails Top tails 

  
Note: The panels illustrate the sensitivity of implied conditional probabilities of the four different tail event scenarios to ethanol 

returns. 

 

4.2.3 Limitations of our analysis  

In drawing lessons for the future, some important caveats apply to our empirical design. While the 

multinomial logit approach offers an econometrically efficient way of providing valuable information about 

the typical market conditions associated with tail events in one or more markets, the model may suffer from 

an endogeneity problem. Most important, we treat managed money and index trader position changes as 

exogenous. In particular, we implicitly assume that the observed position changes of traders stem from shifts 

in their demand. Yet, we cannot rule out that the financial traders also trade to accommodate other traders 

(i.e. hedgers) in the market. Thus, we face a classical simultaneity bias: Position changes initiated by 

financial traders should be positively correlated with price changes, whereas those coming from 

accommodating producers’ hedging needs should be negatively correlated with price changes (Cheng et al., 

2014). In this respect, our study may suffer from downward-biased estimates of price impacts for position 

changes of managed money traders and index traders.  

In addition, the estimated price impact may be biased if the correlation of position changes and price changes 

is due to omitted variables. This can in particular be problematic if commodity traders consider information 

on omitted market fundamentals for their trading decisions. We seek to alleviate this further source of 

endogeneity by introducing a set of control variables (such as VIX, demand fundamentals, market liquidity 

proxies). As the considered commodities are in most cases highly imperfect substitutes (with the exception 

of corn and soybean for feed demand and corn and sugar for ethanol demand) and we control for common 

demand shocks, other omitted demand factors are unlikely to explain the occurrence of synchronous tail 

events in four or more commodity markets. Supply shocks, e.g. due to harvest and trade policy shocks, are 

difficult to control for in high frequency time series analysis. Although discretionary trade policies affected 

food prices in 2008 and 2010 substantially, they were only implemented for wheat and rice (Martin and 

Anderson, 2012). Hence, trade shocks are for only one of our considered commodities relevant and again 

unlikely to cause synchronous tail events across commodities. Regarding the harvest shocks, we expect again 

little simultaneous impact of weather events on the commodities due to different growing seasons and 

regions. Correlation of annual yield shocks is only for two commodity pairs higher than 0.5 – for the corn-

soybean pair (0.61) and wheat-sugar beet pair (0.59) (see the Supplementary Material for the complete 

correlation table). Hence, omitted supply shocks are unlikely to bias the impact of managed money position 

for synchronous tail events in four or more markets.  

Still, position changes of financial traders may come from other factors that influence price expectations. 

Therefore, we caution against an over-interpretation of our estimated results as true estimates of the cause 

and effect relationship between position changes and price changes.  
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5. Conclusions 

This study has investigated the occurrence of extreme price events and boom–bust processes in agricultural 
markets during the period 2006-2014.  

First, we have found that extreme price changes, located in the 10% tails of the distribution, cluster across 
agricultural markets. We have then characterized the tail events, with calm, slightly agitated, agitated and 
turbulent states and investigated which factors contribute to the propagation of extreme scenarios, when 
returns have been extraordinarily high or low. Then, we have disentangled three transmission channels: (1) 
the macroeconomic conduit which captures the possibility that the synchronized extreme price events are 
driven by the increasing importance of commodity demands from rapidly growing emerging economies; (2) 
the energy conduit that accounts for possible spillover effects due to oil price shocks and the demand for 
biofuels; (3) the financialization conduit which refers to potential links between extreme returns and the 
increasing flow of money from financial participants into agricultural futures markets.  

Our results indicate that managed money positions and ethanol prices have a key role in triggering extreme 
price booms and busts. Indeed, the strongest increase of the net long position results in a probability of 
extreme price rises in two or three (four or more) markets equal to about 26% (35%). As well, when an 
ethanol return of 20% per week occurs, the probability of the turbulent scenario rises to approximately 49%. 
At the same time, extreme returns in the US stock market appear to trigger top tail events that affect at least 
three agricultural commodities. This could be an indication that stock market shocks lead to an exaggerated 
appreciation of agricultural commodities through spillover effects. Index traders have only little impact on 
tail events: They are only significant for bottom-tail events for four or more commodities. As index traders 
follow typically a (long-term oriented) portfolio diversification strategy rather than short-term speculation 
purposes, positions change hardly over time. The dominant role of ethanol prices compared to oil prices 
suggests that the agricultural markets are increasingly linked to energy markets through the demand side 
(biofuel use), rather than the production cost side. Finally, the real demand channel remains mostly 
insignificant which indicates that traditional market fundamentals have little role in explaining extreme price 
changes despite their undisputed general impact on prices (Tadesse et al. 2014). Specifically, economic 
shocks in emerging economies do not cause tail events in either direction. Likewise, the Baltic Dry index is 
statistically insignificant except for the occurrence of single bottom tail events. 

Further research employing clear identification strategies is necessary to provide robust evidence on the price 
impact of speculative trading. In this regard, recent work of Henderson et al. (2014) and Mou (2011) that 
exploit different trading motives at different times open up promising avenues for future research. A related 
research direction pertains to the ability of instrument variables to deal with endogeneity as proposed in 
Guilleminot et al. (2014). Specifically, it would be interesting to investigate whether capital market theory 
may guide the selection of appropriate instrument variables that explain speculative activity due to 
systematic market shocks. 
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