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Overview of the talk

« Demand-side drivers:
- Changing relative importance of pop and income
- Energy prices are the wildcard
« Supply-side:
- Technological progress is key to food security
- Reconciling slowing yields and rising TFP
- Climate impacts and implications for food security
* Emerging issues:
- Urbanization
- Water scarcity
- Food waste/loss as new sources of supply
- Climate regulation

 How does it all add up?



Historical analysis of global crop prices: 1961-2006
SIMPLE model, based on past trends of key drivers

D Change in global crop price (in %)
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Naive projections of global crop price to 2050:
SIMPLE model, based on past trends of key drivers

Historical rates

for key drivers
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Future replicates past!! Population remains a
dominant driver of food demand in naive forecast



Global population in 2100: 9 or 11 billion?

UN: population * [IASA: female
stabilization unlikely education will lead to
this century pop peak in 2070

World Population Projection
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Fortunately for us, much less uncertainty/
disagreement about 2050

« UN: 2050 population * 11ASA: 2050
will be 9.6Dbill population of 9.3bill

World Population Projection
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With slower global growth rate, the absolute
decadal increment is shrinking
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Population growth is most rapid in Africa:
where capita food consumption is more modest

World Population Growth, 1950-2050 (medium variant)
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Other less developed countries
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SOURCES: UNPD, 2011

Extracted from Leslie Roberts, “9 Billion?”, Science vol. 333, 29 July, 2011.



When we impose future population growth rates,
projected change in global crop prices falls sharply...

Historical

rates for Future Pop +
key Historical
drivers rates
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But income growth will affect food
consumption : 2006 vs. 2050

Food consumption (grams/cap/day)

m Crops Livestock = Processed Food
Source: Baldos and Hertel (2014b)



More rapid growth in developing economies translates
Into larger impact of income growth on demand
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For the first time, income dominates population as a driver of
agricultural demand



Overview of the talk
 Demand-side drivers:

- Energy prices are the wildcard



Low oil prices and environmental concerns have curbed
growth in biofuels; lowered cost of intensification

Biofuel subsidies and mandates gradually being rolled back

Low oil and gas prices lessen economic incentive; lower
cost of intensification of agriculture

Further biofuels growth looks less likely — unless oil prices
rise or 2G biofuels become part of climate policy

US corn used in ethanol to grow modestly
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Most of biofuel growth from 2006 has already been felt
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Overview of the talk

« Supply-side:
- Technological progress is key to food security
- Reconciling slowing yields with rising TFP



Technological progress is key to food security, but there are
divergent views... Pessimists focus on slowing crop yield growth

* Yield growth has slowed in key breadbaskets has slowed to
less than 0.5%/yr (Fischer et al.)

— Actual yield = yield gap ratio x potential yield
« Fischer et al. project slowing of potential yield growth:
* Interception of photo-synthetic radiation by leaves
« Radiation use efficiency
« Harvest index
— Biophysics limit first and third to 20% maximum increase
— Radiation efficiency has more potential for improvement
« Potential yield growth depends critically on R&D:

— Alston, Beddow and Pardey document slowdown in US
R&D, mirrored in Japan and Europe (also Australia)

— Also, funds increasingly diverted from farm-level research
— Reluctance to embrace GMOs slowing potential yield gains



Pessimists focus on slowing crop yield growth

* Yields can also grow by closing the yield gaps
« (Gaps are the result of a variety of factors:
— Poor infrastructure/lack of market access
— Absence of irrigation
— Limited information about technology
— Lack of credit
« These challenges will take time to address
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Pessimists focus on slowing crop yield growth

« Simple arithmetic
means linear trending

yields must result in Z
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Technological progress is key to food security, but there are
divergent views... Optimists tend focus on strong TFP growth

 Slowing yield growth has
been due tO economic Annual growth rate by decade, global average

factors:

srowth Resource Decomposition

— declining prices from 1980 **
to 2005 reduced incentives s

— Intensification fell to just =0

10% of global output —__,, | | , . Lo
growth in 90’s L | | e
* This process can be
reversed in the faceof .. B I m N
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Source: Fuglie (2012)



Optimists tend to focus on strong TFP growth

Source: Economic Research Service, USDA.
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« US output growth since
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Optimists tend focus on rising TFP growth

« But global TFP growth has
risen to historic levels in
2000°s

« Alston and Pardey (JEP,
2014) show that global land
and labor productivity grew
more rapidly over past two
decades than over 1961-1990
period (driven heavily by
China where continue to
benefit from reforms)

Annual growth rate by decade, global average

Total output
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And global public spending on R&D has
responded strongly to the food crisis

° China, India and Public spending on agricultural R&D
Brazil lead the way 18

 CGIAR spending has
grown sharply

* Private agr R&D Is 3
also up strongly :
(43%) from 2000- ‘
2008 (Fuglie et al.,) :

* |f sustained, should
see payoffs over

COming 5 decades Source: Pardey, Alston and Chan-Kang, 2013
(Alston et al., 2010)
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There 1s room for reconciliation of the two
schools of thought

Divergence of TFP and yields
arises due to intensification

Divergence of staple grains and
total agr TFP in India:
— Nick Rada: agricultural TFP

has been rising, even as staple
grains yields have been falling

— Due to productivity gains in
high value crops

Also: yield growth may be
slowing, but so too is population;
required growth is just half 1961-
2007 period (Bruinsma)

Ultimately, yields and TFP play
different roles in the food system:

» Yields = primary driver of land use,
given TFP and aggregate demand

- TFPdrives prices, given input levels
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Productivity growth is critical for future outcome; slower growth
could lead to food price rise — but baseline flat to declining
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S
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Based on
projected growth
rates in the core
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drivers of ;
change: E
population,

Income and
technology....
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Factoring in uncertainty about all drivers and
economic responses, we find that the majority of
outcomes point to a long run price decline

Monte Carlo
Analysis: 1,000
model simulations

Sampling from . GlubaICrch:'rlcesinzom
distributions of ? /2% of
. 7 simulations

drivers and 2 _ showa LR price
% 2 - decline
responses :




Implications for food security in 2050

Malnutrition Headcount, by Region

« Simulated with SIMPLE model 350
— Validated over historical period :Z
(Baldos and Hertel, 2013, 2014) oo

— 15 regional markets are either: 150

« Segmented (historical economy) 1:2
 Integrated (future world?) 0

SSAfrica China SE Asia South Asia Cent Amer  South Amer

— Baseline driven by:
« Population and income growth

» Productivity growth in crops,
livestock and food processing

— Analyze full distribution of caloric
intake to predict malnutrition
headcount and gap

— Combination of TFP and income
growth greatly reduces malnutrition
in 2050
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Overview of the talk

« Supply-side:

- Climate impacts and implications for food security



How will this be story be altered by climate

change?

e [PCC WGII states:

o “median yield impacts
from 0 to -2%/decade over
rest of century”

o “negative impacts of more
than 5% are more likely
than not after 2050”

8 5 8 o 8 & &8

Production change (% relative to 15802010 mean)

Source: Rosenzweig et al. 2013, PNAS; Results from
7 crop models (dashed lines omit CO2 effects)



But impacts at mid-century are more

modest

e [PCC WGII states:

o “negative Impacts on avg
yields become likely in the
2030°s”

o “median yield impacts
from 0 to -2%/decade over
rest of century”

2050
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AgMIP global yield impacts due to climate change in 2050 for
staple grains & oilseeds vary widely by region, crop model &
CO2 fertilization on/off

Crop Model: LPJmL Crop Model: pDDSAT
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A Global Malnutrition Count in 2050

A Global Malnutrition Count in 2050

(%)

vs. Baseline w/o Climate Change
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» Uncertainty inherited
from both climate and
crop models

e CC generally boosts global
malnutrition in 2050 —
possibly by as much as
50%, relative to baseline;

« Some model combos result
In slight Improvements in
2050, relative to baseline

Source: Baldos and Hertel (forthcoming)



Impact of climate change on regional malnutrition in
2050: HADGEM/LPJmL combination

» Greatest potential for
adverse impacts are in
South Asia (up to 120%
rise in malnutrition,
relative to the 2050
baseline) 40

« Sub Saharan Africa, i I
maximum rise, relative to — -
2050 baseline, 1s 8090, H0 bseharan  SouthAsa  RestofWord
while Rest of World small

« HADGEM/LPJmL only
combination shown here
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A Malnutrition Count in 2050
vs, Baseline w/o Climate Change (%)

Source: Baldos and Hertel (forthcoming)



A Malnutrition Count in 2050
vs, Baseline w/o Climate Change (%)

Market integration moderates
most severe nutritional impacts
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However, crop impact models do not reflect
full extent of uncertainty

Most biophysical crop models were developed for other purposes —
not focused on impacts of extreme temps

White et al. review 221 studies using 70 crop models to assess
climate impacts and find only a handful consider:

— Effects of elevated CO2 on canopy temperature
— Direct heat effects on key stages of crop development

Only a subset of relevant processes are included in any one model;
often the omitted processes are:

— those that become more damaging with climate change

— empirically more important in context of tropical systems (e.g.
VPD, heat stress on crop development and pests and disease)

As a consequence, IAMs likely understate impact of climate change
In the low Income tropics

Source: Hertel and Lobell (2014)
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Main effect of market integration Is to moderate
malnutrition under worst case CC scenario

Crop Model: LPJmL GCM:HADGEM
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Overview of the talk

Emerging issues:
- Water scarcity
- Urbanization

- Food waste/loss as new source of supplies
- Climate regulation



Future water scarcity will also shape food trade

Index of irrigation water availability

Increased scarcity of
water for irrigation —
particularly in South
Asia and China

! Year 2030

Source: Liu et al. (2013)



Future water scarcity will also shape food trade

Index of irrigation water availability

Year 2000

Increasing water scarcity alters the
geography of food trade

Year 2030 ] ] ]
- Regions facing the most severe water scarcity

Source: Liu et al. (2013) are most likely to increase net food imports




Future water scarcity will also shape food trade

Index of irrigation water availability

Year 2000

Increasing water scarcity alters the
geography of food trade

Year 2030 ] ] ]
- Regions facing the most severe water scarcity

Source: Liu et al. (2013) are most likely to increase net food imports




Future water scarcity will also shape food trade

Index of irrigation water availability

Year 2000

Increasing water scarcity alters the
geography of food trade

Year 2030 ] ] ]
- Regions facing the most severe water scarcity

Source: Liu et al. (2013) are most likely to increase net food imports




Future water scarcity will also shape food trade

Index of irrigation water availability

Year 2000

Increasing water scarcity alters the
geography of food trade

Year 2030 ] ] ]
- Regions facing the most severe water scarcity

Source: Liu et al. (2013) are most likely to increase net food imports




Urbanization and water scarcity are likely to
have minor impacts on the global price trajectory

Future rates

Future rates for key drivers + biofuels

for key

drivers +

biofuels w/ Urbanization w/ Water Scarcity
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...but will likely have significant impacts on local economies



Food waste and post-harvest losses are another

source of food ‘supply’

* Food “waste” mainly related
to consumer behavior in
medium & high-income
countries

» “Post-harvest crop losses™ are
main source of food loss In
low-income countries

« However, requires investment
and innovations
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Figure 2. Per capita food losses and waste, at consumption
and pre-consumptions stages, in different regions
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Source: FAO, 2011

Post-harvest crop losses



Impacts on cropland and caloric consumption due alternately to 1/3 reductions
In postharvest losses or food waste, using 3 different policy instruments
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Climate regulation: Pricing carbon will change
the way we manage the world’s resources

* When the world decides to move ahead on climate policy
carbon pricing could significantly alter global land use

« Land based mitigation (forestry and agr) could provide up to
50% of efficient GHG abatement at $27/ton CO2 (Golub et al.)

« Carbon vs. commercial timber: Brent Sohngen estimates that,
at $5-$15 per ton CO2, the value of carbon in most forests is
greater than the value of timber; therefore, the management of
carbon stocks can play a large role in carbon sequestration

« And presently less than 500million of the 3.5 billion hectares of
global forests are actively managed; this could change



L_eading to more intense competition between food,
fuel and environmental services from land

Amazon Deforestation: 2000-2012 Golub et al (2012) explore

Implications of
Implementing REDD+
worldwide in conjunction
with Annex | emissions
taxes ($27/tCO2e) on
fossils fuels combustion as
well as non-CO2 gases

— Carbon incentive payments
limit further deforestration

— Encourage afforestation
Increased carbon intensity

Source: Hansen et al., Science, November 15, 2013



Global carbon sequestration incentives have a
big iImpact on future forest land
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REDD+ has could also have a big impact on
cropland after 20 years of implementation
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Overview of the talk

 How does It all add up?



As recently as 2013: there was apparent
consensus that were in a ‘new normal’

World Bank (2013)
“..high and volatile food
prices have become the “new
normal”...”

FAOQO (2013) noted that the
long-term trend in declining
food prices has been reversed

OECD-FAO (2013)
projects “Higher priced
agricultural products over
the coming ten years...”
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However, commodity prices have subsequently

dropped ... where is the new equilibrium? Will
they bounce back? Was this just a bubble?
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Data Sources: CPI data from Federal Reserve Bank of Minneapolis (2014)
Historical corn prices from USDA ERS (2014)



The ‘Scarcity Syndrome’:

“Pessimism has arisen about the ability of the
Earth to feed its people .... [Due to]

- Burgeoning population growth...

- Doubts about the adequacy of the
agricultural resource base...

- Misgivings about weather in the years
ahead..”

— 1981 USDA Yearbook of Agriculture: “Will there be enough food?”’

From the opening paragraph of Don Paarlberg’s chapter:

“Enough Food? Sure, If We Don’t Play it Dumb.”



Where are we headed?
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Hurt (2014) personal communication

* But we believe that this “consensus” is misguided and 1s heavily influenced by the
2007/08 and 2010/11 spikes in commodity prices

« \We argue that long-run global crop prices will “likely resume their historical
pattern of decline”



But lower prices do not mean lower returns

Figure 11: Real U.S. Corn Revenue (+Insurance)

$1,300 Per Harvested Acre: 2013 = 100
! 1973 =
$1,221 —
- $999
$900
4}
G
T $700
1M
o
w
1 ol |
©
D ol i is .
$300 4%
'V ;
3100 - 1921=
s128 | 1931=
$100 $110

I I I I e B S I S B S TR BN s N R s BN R B N e e S e 2B SR )
S SSSEFPFEEEF S S L E S S S

Source: Abbott, Hurt and Tyner 2011; updated by Chris Hurt (2014)



Conclusions

* Population and income drivers are changing

* Energy prices remain a wildcard

« Technological progress is key for food security

* Food waste/loss offers additional source of ‘supply’

« Water scarcity and urbanization will have local/regional
Impacts and shape future trade

 Climate mitigation policies will change the way we
manage the world’s land resources and could have
significant impacts on agricultural land and prices

* Recent price rise seems to be a repeat of 70’s; the long
term price trajectory is likely to continue downwards —
albeit more slowly




Thank you to my
collaborators!
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