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Modeling the Impact of Food Safety Information with No Information* 
 
 
Abstract  
 
This paper aims to propose a stochastic approach to measure the time pattern of a food 

scare, which does not require the inclusion of additional explanatory variables such as a 

news index. The application is based on the 1982 Heptachlor milk contamination in 

Oahu, Hawaii. 

Keywords: food scare, food safety information, media coverage, demand. 

JEL classification:  D120, Q110 

Introduction 
 

The measurement of consumer response to food scares has been the subject of many 

empirical investigations. It is a policy relevant task, as it provides the basis for calibrating 

countermeasures and establishing potential compensations. This paper aims to propose a 

flexible stochastic approach to measure the time pattern of a food scare, which does not 

require the inclusion of additional explanatory variables such as a media index and easily 

accommodates the reoccurrence of the same or different scares.   

Sociological studies acknowledge that food scares exhibit a fairly standard pattern. 

Beardsworth and Keil (1996) classify public reaction in five steps: (i) initial equilibrium 

characterized by unawareness or lack of concern about the potential food risk factor; (ii) 

news about a novel potential risk factor and public sensitization; (iii) public concern is 

raised as the risk factor becomes a major element of interest and concern in public debate 

                                                           
* Research supported by the European Commission Quality of Life Programme, Key Action 1 – Food 
Nutrition and Health, Research Project QLK1-CT-2002-02343, “Food Risk Communication and 
Consumers’ Trust in the Food Supply Chain – TRUST”. 
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and media; (iv) public response begins, usually with avoidance of the suspect food item; 

(v) public concern gradually decreases as attention switches from the issue, leading to the 

establishment of a new equilibrium. The same study highlights that public response in 

stage (iv) is often exaggerated and unrelated to the objective risk and even after the new 

equilibrium is reached in stage (v) a “chronic low-level anxiety may persist and can give 

rise to a resurgence of the issue at a later date”.  

Despite this general framework can be applied to most of food scare events, the duration 

of the single steps and the potential reoccurrence of the same scare remains a relevant 

econometric issue. Previous studies have followed different approaches to measure 

demand response. One direction is based on the assumption that consumer reaction is 

directly related to the amount of news released. Smith et al. (1988) and Liu et al. (2001) 

estimated the impact of the 1982 heptachlor contamination of milk in the Hawaiian island 

of Oahu by including a variable related to media coverage in a demand function. On the 

same case study, Foster and Just (1989) discard the media variable and substitute it with a 

nonlinear shift on the intercept which allows for an exponential decrease in the food scare 

effects and also some long-term persistence. Burton and Young (1996), Verbeke and 

Ward (2001) and Piggott and Marsh (2004) extend the Almost Ideal Demand System 

(AIDS) to account for a media index specifically built for distinguishing the impact on 

meat demand of positive and negative news about Bovine Spongiform Encephalopathy 

(BSE). Even though the empirical performance of the above models is generally 

acceptable, we argue that they have some key limitations that reduce their reliability in 

many situations, not least the one of scare resurgence. Our objection is founded on three 

main considerations.  
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The first is that discrimination between positive and negative information is a highly 

subjective operation. For example, news about the incubation period of the Creutzfeldt-

Jakob disease (CJD), which has been linked to BSE, informed the public about a possible 

latency period of up to 20 years. While this could be a source of anxiety for younger 

consumer, the same information could lead to a lower hazard perception for the elderly 

one. Furthermore, Smith et al. (1988) noted the extremely high correlation between news 

classified as positive and negative, as their amount is related to the media interest rather 

than scientific evidence, which usually takes too long to be advertised and rarely 

influence behavior in the short term.  

A second consideration concerns the way information is discounted over time in 

consumer perception, as it is recognized that within the same food scare event the 

marginal effect of additional information is decreasing. Also, the acute phase of a scare is 

characterized by the social amplification phenomenon (Beardsworth and Keil, 1996) 

which is generated by the initial ‘news spiral’, but is recognized as a self-limiting 

process. Some researchers (Smith et al., 1998) address this issue by including lags of the 

media variable, others (Verbeke and Ward, 2001) correct their index in order to account 

for decreasing lagged impacts, but both approaches require some subjective and 

undesirable assumptions. 

The third argument against the modeling of consumer reaction through a media index or 

the nonlinear shift by Foster and Just is related to the crisis reoccurrence. It is clear that 

the marginal effect of novel or confirmatory news about a food risk factor already known 

to the public is likely to be different than in the period of the first occurrence. This 
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outcome which is consistent with the persisting low-level anxiety discussed by 

Beardsworth and Keil.  

The approach proposed in this paper is based on the inclusion of a stochastic shift related 

to the food scare within the demand equation. The model allows a direct estimate of the 

time-varying pattern of consumer response based on actual data. Thus, the subjective and 

often difficult and expensive operation of retrieving media coverage data becomes 

unnecessary. We assess the performance of the stochastic shift approach as compared to 

the use of a media index using the data from Smith et al. (1988)1 about the heptachlor 

milk contamination incident in Hawaii, March 1982.  

This paper is structured as follows. Next section introduces the single-equation demand 

model employed by Smith et al. (1988) and extends it to account for the scare related 

stochastic shift. In the following section we briefly discuss the estimation strategy for 

such model. We then present the comparative results and some concluding remarks are 

drawn in the final section. 

 

The model 

The starting point of Smith et al. is to assume that consumers maximizes an utility 

function which includes their perception of the quality of a good, which is expressed as a 

function of available information. A change in information induces a modification in 

perceived quality and a re-allocation of consumer expenditure. Using the same notation 

as in Smith et al., the demand function is expressed as follows: 

1 1 1 2( , , , )X X P P I N=  (1) 
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where X1 is the demand for the good concerned by the food scare, P1 is its price, P2 is the 

price of substitute goods, I is the income level and N is the information variable 

influencing perceived quality. The specification of an econometric model based on (1) 

with time series data requires a number of assumption on how information is processed 

over time. With reference to Smith et al. application on the 1982 Heptachlor incident in 

Hawaii, the lagged effect of information is approximated by a second-degree Almond lag 

structure. They estimate the following equation: 

11

0 1 2 3 4 5
1

( )t i j t t t t t t t
j

Q S DPM SUB INC TRND DV A L Nα α β β β β β ε
=

= + + + + + + + +∑  (2) 

where Qt is the quantity of fluid milk sales, Sj is a set of monthly dummies to capture 

seasonal effects, DPMt is the deflated retail price of whole milk, SUBt is the price of a 

fruit drink identified as the main substitute for milk, INCt is the deflated per capita 

income, TRNDt is a trend variable, DVt is the dummy variable designed to capture the 

impact of the food scare that is 0 before March 1982 and 1 thereafter, Nt is a vector of 

variables which measure negative media coverage, A(L) is a polynomial lag structure for 

the media variable and εt is the random error.   

In our study we consider two alternative specifications to equation (2). The first model is 

based on the assumption that no media coverage index is available, hence the information 

variable is regarded as latent. This can be specified as follows: 

11

0 1 2 3 4
1

t i j t t t t t t t
j

Q S DPM SUB INC TRND DVα α β β β β η ε
=

= + + + + + + +∑   (3) 

where the stochastic shift ηt is assumed to follow a random walk, ηt= ηt-1+ut, which 

models the shift in preferences due to the new perceived quality.  
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The second model assumes again a stochastic shift for the food scare and also a stochastic 

coefficient for the media coverage variable, expected to measure the time-varying impact 

of additional information.   

11

0 1 2 3 4
1

t i j t t t t t t t t t
j

Q S DPM SUB INC TRND DV Nα α β β β β η γ ε
=

= + + + + + + + +∑   (4) 

where also γt= γt-1+vt is a random walk and both ut and vt are random errors. 

 

Estimation 

Equations (3) and (4) can be estimated by rewriting the model in the state-space form and 

applying a maximum-likelihood algorithm.  The state-space form of the system is given 

by defining a measurement equation and a transition equation as follows: 

M
t t t t tQ Z a W b e′ ′= + +  (5)  

1
T

t t ta Ta e−= +   (6) 

where the state vector at includes the time-varying parameters of the model, i.e. ηt for 

equation (3) and (ηt, γt) for equation (4), the vector Zt contains the explanatory variables 

whose coefficients are time-varying, i.e. DVt for equation (3) and (DVt, Nt) for equation 

(4). All other variables whose coefficients are constant are included in the vector Wt. The 

measurement equation is perfectly equivalent to the original model, apart from the 

stochastic specification of the time-varying parameters, which is defined through the 

transition matrix T within equation (6). The stochastic specification of the model is 

completed by the disturbance terms  M
te  and T

te , each with mean zero and with 

covariances equal to h and K respectively.. A detailed discussion about the state-space 

specification of a time-varying demand model is provided in Mazzocchi (2003). 
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Once a model is expressed in the state-space form2, the Kalman filter (KF) can be 

applied. The Kalman filter is a recursive procedure producing the optimal estimates of the 

state vector at time t conditional upon the available information in the same time period. 

The optimal filtered estimator at time t is defined as  

11 tt ta Ta −− =    (7a) 

and its covariance matrix is 

11 tt tP TP T K−−
′= +   (7b) 

where tt PaVar =)(  is the covariance matrix for the state vector. Equations (7a) and (7b) 

are the prediction equations of the Kalman filter. Once the actual observation Qt becomes 

available, the optimal estimator is updated according to the previous prediction error. 

This happens through the following updating equations: 

( )1
1 1 1t t t t tt t t t t ta a P Z F Q Z a−

− − −′ ′= + −  (7c)  

1
1 1 1t t t tt t t t t tP P P Z F Z P−

− − −
′= −   where 1t t tt tF Z P Z H− ′= +   (7d) 

The equations described in (7) constitute the Kalman filter. 

Once the full set of filtered estimates 1t ta −  and ta are computed through the Kalman filter, 

it becomes possible to smooth the estimates of the state vector by exploiting all the 

information available in the data set. In other words, the Kalman smoother allows the 

computation of the least square estimates of the state vector at time t, conditional to the 

whole set of τ observations ℑτ, i.e. ( )tta E ττ α= ℑ . The fixed interval smoothing 

algorithm is a backward recursive procedure, described by the following equations: 

( )*
1t t tt ta a P a Taτ τ+= + −   (8a) 
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( )* *
1 1 't t tt t tP P P P P Pτ τ τ+ += + −  (8b) 

where 1
1

* −
+′= tttt PTPP . The smoother runs from t=τ-1 to t=1, with τττ aa =  and τττ PP =  as 

starting values. Estimates obtained through the Kalman smoother show mean square error inferior 

or equal to those obtained through the Kalman filter, as they are based on a larger set of 

observations. Given the assumption of a normal distribution for the disturbances in the 

model and the initial state vector, the distribution of the vector of observation Qt 

conditional on the set of observation up to time t-1 is itself normal, where the mean and 

covariance for such distribution can be derived through the Kalman filter. Hence, it 

becomes possible to write explicitly the log-likelihood function for a multivariate normal 

model: 

1
1 1

1 1

1 1log ( , ) log 2 log ( ) ( )
2 2 2t t t t t tt t t t

t t
L Q F Q Z a F Q Z a

τ ττ π −
− −

= =

′Ψ = − − − − −∑ ∑   (9) 

where Ψ  represents all unknown parameters of the model. Maximum likelihood 

estimates can now be obtained using an optimization algorithm, as the BHHH procedure 

by Berndt, Hall, Hall and Hausman (1974).  

 

Application 

The March 1982 Heptachlor contamination incident in Oahu, Hawaii provides a valuable 

setting for evaluating the models performance. This data set is especially interesting for 

various reasons. First, in their original study (Smith et al., 1984), the authors explore in 

great details the events following the food scare and provide a thorough discussion of the 

issues related to classifying information as positive or negative. Second, in a subsequent 

article (Smith et al., 1988), the same authors extend the analysis to account for what they 
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terms as the lagged effects of media coverage. As discussed, time dynamics need to be 

taken into account when measuring the impact of food safety information, both for the 

discounting (memory) effect and the possibly changing marginal impact of information. 

As these effects can have different directions, the overall pattern is difficult to be 

anticipated. Third, this data set has become a sort of classic example, as Foster and Just 

(1989) used the same data set for welfare evaluations and Liu et al. (1998) for risk 

assessment. 

Table 1 reports the parameters estimates and some diagnostics for 3 models: (a) the 

original Smith (1988) et al. model as described in equation (2)3; (b) the model with no 

information variable and a time-varying shift following the scare as in equation (3); (c) 

the model where the negative information variable is included, but with a random-walk 

coefficient as in equation (4). 

While there are only relatively small differences in the parameters estimates, it is clear 

from the models’ diagnostics that the stochastic approach leads to more efficient 

estimates. Also, evidence of higher order serial correlation from Smith’s model 

disappears when the model allows for a random-walk intervention. The most relevant 

difference lies in the shift parameter linked to the scare, which is -0.39 according to the 

original model and is significantly larger in the alternative models. 

The smoothed estimates of the state vectors, portraying the time-varying patterns of the 

random-walk parameters in (2) and (3), are represented in Figure 1. 
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Table 1. Parameters estimates 

    
 Smith Model (a) Model (b) Model (c) 
         
CONSTANT 5.81**  5.83**  5.74** 

JAN 0.27  0.33**  0.32** 

FEB 0.31  0.33**  0.31* 

MAR 0.17  0.25*  0.19 

APR 0.52**  0.56**  0.58** 

MAY 0.54**  0.54**  0.49* 

JUN -0.24  -0.27*  -0.27* 

JUL -0.33  -0.31*  -0.33* 

AUG -0.02  -0.25  -0.27 

SEP 0.66**  0.52**  0.51** 

OCT 0.46**  0.39*  0.36* 

NOV 0.24  0.25*  0.23* 

DPM -4.40*  -3.88**  -3.48 

SUB 3.84  3.07*  2.67 

INC 0.00031(a)  0.00031a  0.00031a 

TRND -0.0051*  -0.0064**  -0.0064** 

DV -0.39 η(b) -1.62** η(b) -1.39** 

Nt -0.023** h 0.042** γ(b) -0.0073 

Nt-1 -0.014** k 0.536* h 0.043 

Nt-2 -0.008**    k1 0.328 

Nt-2 -0.004**    k2 0.0001 

         

R2 0.91  0.99  0.99 

Ljung-Box Q (4) 9.86*  7.50  6.93 

      

Notes:  * Significant at the 95% confidence level; ** Significant at the 99% confidence level 
(a) Estimates conditional on income, as in Smith et al. (1988) 
(b) Smoothed estimate, average for the period after the contamination event 

 

The patterns of the stochastic shift are consistent with the events occurring during the 

1982 contamination period (Smith et al., 1984). The effect of the news is slightly smaller 

in the first month, as the information appeared on the media only on March 18. Model (b) 

capture a peak effect in April 1982, then a relatively quick recovery by June 1982 and a 

slower one thereafter. In September 1982, the pattern shows a small but visible turning 

point, possibly linked to reopening of schools and the concerns expressed by EPA 

representatives on risks for infants. Another turning point emerges in April 1983, most 
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likely due to the renewed interest of media following the Safeway controversy4. Model 

(c) distinguishes between the overall impact of the event and the changing marginal 

impact of news. There are no major differences between the outputs of models (b) and 

(c), but the coefficient of the negative media index shows how the marginal impact of 

news varies significantly over time.   

 

Figure 1. Smoothed estimates of time-varying parameters 
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Finally, it might be interesting to see how the latent information variable in (2) relates to 

the various media coverage indices explored in Smith et al. A simple but powerful insight 

is provided by examining the cross-correlogram between the smoothed state vector and 

ηt 
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the media coverage variables, as in Table 2. This allows to evaluate the degree of 

simultaneous co-movement, but also lagged and leading effects.  

 

Table 2. Correlations and cross-correlations between estimated parameters and 

media coverage indices 

  Lags Leads 
 Simultaneous -1 -2 1 2 
 Negative media coverage 
Model (3) -0.72 -0.75 -0.34 -0.22 0.03
Model (4) -0.61 -0.76 -0.48 -0.28 -0.01
 Total media coverage 
Model (3) -0.85 -0.81 -0.37 -0.37 -0.02
Model (4) -0.75 -0.83 -0.52 -0.39 -0.06
 

Very high simultaneous correlations confirm the close link between the time-varying 

impact of the contamination incident and the media coverage indices. Interestingly, 

correlations are stronger with the total media index, suggesting that the distinction 

between positive and negative information might be redundant and when information is 

about a food safety incident, there is no such thing as positive news. 

An intriguing interpretation of cross-correlations could be derived by assuming that 

lagged correlations measure the carry-over effects, contemporaneous correlation capture 

the immediate impact and lead correlations explore the social amplification effect 

described in Beardsworth et al. (1996). In this perspective, results show a carry-over 

effect lasting from two months, confirm the high immediate impact of (negative) food 

safety news and also present evidence of social amplification, even if to a smaller extent 

and for a shorter time span as compared to the carry-over effect, since no correlation 

emerges after the first lead. 
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Concluding remarks 

We suggest that a stochastic approach to model the impact of a food scare over time 

should be preferred to the methods based on simple dummy shifts or media coverage 

indices, as it is otherwise difficult to give an objective evaluation of carry-over and 

discounting effects in food safety information. This method, based on a random walk 

specification of the intervention variable, avoids the need for subjective assumptions on 

the cumulated impact of information and the difficult distinction between positive and 

negative information. Furthermore it takes indirectly into account the possible spiraling 

impact of media coverage, often observed at the early stages of food scares.  

Results show that how models without media coverage indices or allowing for a time-

varying effect of news perform very well and support the view that the distinction 

between positive and negative media coverage is rather unnecessary when evaluating the 

impact of news on a food safety incident.  
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Footnotes 
1 We are grateful to Ju-Ching Huang and Eileen van Ravenswaay for kindly providing the data and further 
information about the case study. 
2 In the rest of the discussion we assume that all the unknown parameters, including the constant ones, are 
included in the state vector. This is easily done by assuming in the transition equation that in each time 
period their values is equal to the previous period’s one and the variance of the error term is 0. 
3 The final model with a negative media coverage variable resulted from a specification search against other 
models where positive and neutral news were also considered. Our estimates slightly differ from those by 
Smith et al., probably due to rounding effects. 
4 Safeway had applied for a milk distributor’s license to import milk from outside Hawaii, but the license 
was denied by the Board of Agriculture in April 1982. This raised a controversy between Safeway (and 
consumers) on one side and the milk industry on the other. 
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