
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal
Editor
H. Joseph Newton
Department of Statistics
Texas A&M University
College Station, Texas 77843
979-845-8817; fax 979-845-6077
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Nathaniel Beck
New York University

Rino Bellocco
Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis
Tübingen University, Germany

A. Colin Cameron
University of California–Davis

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

David Epstein
Columbia University

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
University of Bern, Switzerland

Stephen Jenkins
London School of Economics and

Political Science

Ulrich Kohler
WZB, Berlin

Frauke Kreuter
University of Maryland–College Park

Peter A. Lachenbruch
Oregon State University

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Roger Newson
Imperial College, London

Austin Nichols
Urban Institute, Washington DC

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Editorial Manager
Stata Press Copy Editors

Lisa Gilmore
Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments,
regular columns, book reviews, and other material of interest to Stata users. Examples
of the types of papers include 1) expository papers that link the use of Stata commands
or programs to associated principles, such as those that will serve as tutorials for users
first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest
to intermediate or advanced users of Stata; 3) papers that discuss new commands or
Stata programs of interest either to a wide spectrum of users (e.g., in data management
or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival
analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing
the statistical properties of new or existing estimators and tests in Stata; 5) papers
that could be of interest or usefulness to researchers, especially in fields that are of
practical importance but are not often included in texts or other journals, such as the
use of Stata in managing datasets, especially large datasets, with advice from hard-won
experience; and 6) papers of interest to those who teach, including Stata with topics
such as extended examples of techniques and interpretation of results, simulations of
statistical concepts, and overviews of subject areas.

For more information on the Stata Journal, including information for authors, see the
webpage

http://www.stata-journal.com

The Stata Journal is indexed and abstracted in the following:

• CompuMath Citation Index R©

• Current Contents/Social and Behavioral Sciences R©

• RePEc: Research Papers in Economics
• Science Citation Index Expanded (also known as SciSearch R©)

• Scopus
TM

• Social Sciences Citation Index R©

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata, Mata, NetCourse,

and Stata Press are registered trademarks of StataCorp LP.

http://www.stata-journal.com

The Stata Journal (2012)
12, Number 1, pp. 147–158

Speaking Stata: Output to order

Nicholas J. Cox
Department of Geography

Durham University
Durham City, UK

n.j.cox@durham.ac.uk

Abstract. Wanting to present Stata output in a different way is a very common
desire that lies behind many substantial user-written programs. Here I start at
the beginning with some basic tips and tricks. I discuss using display to replay
the results you want; putting results into new variables so that they can be listed,
tabulated, or plotted; and using existing reduction commands to produce new
datasets containing results.

Keywords: pr0053, collapse, contract, display, egen, estimates, foreach, format,
forvalues, generate, list, postfile, quietly, replace, saved results, SMCL, statsby,
tabdisp

1 Introduction

Stata users often want their results presented in a form that differs from Stata’s own
output. Many research reports depend on a complicated collation of results from several
different commands, models, variables, or datasets. Even at a simpler level, you may
need to rearrange a set of results in a different layout, or with different text headings,
or with different rounding of numbers. The last in particular is a common need. Like
most mathematical and statistical software, Stata typically gives you far more precision
than you really need. Spelled out, the argument is elementary: Stata cannot discern
exactly what that precision is, and in any case, it is easier to discard detail you do not
want than to re-create detail no longer visible.

Sometimes this reordering can all be done within Stata, while at other times the
major concern is preparing output in suitable form for other software, ranging from word
and text processors to spreadsheets, databases, and browsers. Many of the most popular
user-written commands offer tools within this area. Indeed, some of those commands
provide highly versatile and well-developed toolkits for reordering your results. Citing
some but not others could seem invidious, so instead I invite readers to look through
past issues of the Stata Journal or to rummage in the Statalist archives for a short while
to find out what is available.

In contrast, I concentrate in this column on some of the simpler tips and tricks of
a kind that can be very easily used interactively, or in do-files or in simple programs.
I am drawing on my experience following Statalist traffic over several years, which has
gained me many impressions of what people want to do and what they often do not
know about. You may want to look ahead to the concluding section, where all the
specific tips are gathered together, to get a more detailed overview of what is explained.

c© 2012 StataCorp LP pr0053

148 Speaking Stata

2 Divide, conquer, and display

For a first example, suppose that we wish to show results for several variables or several
groups of observations for skewness and kurtosis. This example is chosen partly out of
personal interest (Cox 2010a), but more importantly because it is simple but not trivial.

As you probably know, the command summarize, detail reports skewness and
kurtosis together with several other statistics. So in particular, you can type

. sysuse auto
(1978 Automobile Data)

. summarize mpg, detail

Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12

10% 14 14 Obs 74
25% 18 14 Sum of Wgt. 74

50% 20 Mean 21.2973
Largest Std. Dev. 5.785503

75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

However, it is very likely that you do not want all the other results of summarize. It
is also likely that you do not want all the detail shown (in this example, 7-digit output
for skewness and kurtosis). If you were comparing Stata’s results with those of some
other program, then you might indeed want to keep as much detail as possible, but we
will suppose otherwise.

If you are very new to all this, you might guess that you need to copy out results
into a different file, say, by copying and pasting from the Results window or a text (log)
file. Fortunately, Stata offers better routes to more congenial output.

Tip 1: Stata typically holds major results in memory, at least immediately after the
command has run. You can thus access these for presentation in a different form.

The key distinction here is that most of Stata’s commands that produce numeric
output are either e-class or r-class, and so saved results can be seen immediately after
the command in question by typing either ereturn list or return list. In practice,
users quickly learn to abbreviate these to eret li and ret li.

Broadly, e-class commands (think that “e” stands for estimation) are those that
statistical people would think of as fitting a model, while r-class commands are the
other commands that produce statistical output, usually descriptive statistics of some
kind. summarize is an r-class command and so you should type

N. J. Cox 149

. ret li

scalars:
r(N) = 74

r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141

r(skewness) = .9487175964588155
r(kurtosis) = 3.97500459645325

r(sum) = 1576
r(min) = 12
r(max) = 41
r(p1) = 12
r(p5) = 14
r(p10) = 14
r(p25) = 18
r(p50) = 20
r(p75) = 25
r(p90) = 29
r(p95) = 34
r(p99) = 41

Usually, as here, the names of the results are clear enough, at least when matched
with the previous output. We see that r(skewness) and r(kurtosis) hold the results
we want. It is also reassuring to see even more decimal places in evidence here for
results with fractional parts, underlining that Stata is holding results to a high degree
of numeric precision.

It is not necessary in our running example, but I will underline here that such results
also are the ingredients for many further calculations, even of results not shown by the
command in question. summarize does not show the coefficient of variation, which is
standard deviation as a fraction or percentage of mean. Nor does it show measures of
skewness based on median and quartiles, or on mean, median, and standard deviation.
However, such extra measures are all easy to calculate.

If you are not sure what a particular r-class or e-class result means, or even whether
a particular command is e-class or r-class, it is easy enough to find out. The manual
entry or other documentation should explain in more detail, or in the latter case, typing
both return list and ereturn list will elicit the flavor of the command.

Tip 2: The display command with specified format is convenient for presenting numeric
results as you wish.

The first step toward doing something different with Stata’s results is just to replay
them using display. Users of display quickly learn its abbreviation, di.

. display r(skewness)

.9487176

150 Speaking Stata

Note that just 7 decimal places are displayed here, whereas the return list results
show that Stata is holding more or, more precisely, is holding more detail as a binary
number that translates into more decimal places. So what happened to the other decimal
places? The answer is that display, like summarize, has its own default for how much
precision it will show if not otherwise instructed.

If you want a different format for display, you merely have to ask. The help
for format gives the small details, but my own decisions usually center on how many
decimal places I want to show after the decimal point. For skewness and kurtosis, 3
decimal places seems more than enough, which makes me reach for a format such as
%4.3f.

. display %4.3f r(skewness)
0.949

Stata’s formats are pretty smart and will often give you more space than you ask
for, as in

. display %4.3f 1000/3
333.333

but you may need to be less cavalier in displaying several results on the same line, at
least if you want results nicely aligned, as you will.

Tip 3: To show a set of results for different variables or groups, loop over the possibilities
with foreach or forvalues. Typically, you will need to explain each piece of output
with appropriate text.

Tip 4: To suppress output you do not want, prefix a command with quietly.

Tip 5: Stata Markup and Control Language (SMCL) offers extra control over presenta-
tion with display.

Now let us suppose that we want to loop over the numeric variables in the dataset
to get the skewness and kurtosis of each. We could issue a summarize command, and
the separate skewness and kurtosis results would all be displayed, but that won’t help
us here, because afterward only the r-class results for the last variable analyzed will be
accessible. So we need to loop: for each variable, we issue a summarize command but
then immediately pick up the results we want and put them where we want before they
are overwritten.

Stata provides tools that are exactly suited for this need: forvalues and, more
usually in practice, foreach. A detailed tutorial on both was given in an earlier Speaking
Stata column (Cox 2002), so I will not repeat an explanation here.

N. J. Cox 151

. foreach v of var price-foreign {
2. quietly summarize `v´, detail
3. display "`v´{col 16}" %10.3f r(skewness) %10.3f r(kurtosis)
4. }

price 1.653 4.819
mpg 0.949 3.975
rep78 -0.057 2.678
headroom 0.141 2.208
trunk 0.029 2.192
weight 0.148 2.118
length -0.041 2.042
turn 0.124 2.229
displacement 0.592 2.376
gear_ratio 0.219 2.102
foreign 0.887 1.787

The foreach loop takes the variable list price-foreign (conveniently, all the nu-
meric variables in auto.dta) and then for each variable does two things.

First, we fire up summarize, detail for that variable, but we do so quietly. That
suppresses the display that summarize would give, which is fine because of what we do
next.

Second, we will pick up results for skewness and kurtosis. Note the extra detail
that the SMCL annotation {col 16} shifts the output to column 16. The number 16
was based on a little calculation that is easy in this small dataset: it is evident that
the longest variable name, displacement, is just 12 characters long, so we will want to
accommodate that plus a little space.

For more on SMCL, see help smcl, except that usually you will want to consult that
documentation as a reference only when you need it.

The formats for skewness and kurtosis are more generous (%10.3f) than what we
used earlier (%4.3f), but as can be seen, one important side-effect of a format more
generous than needed is to give extra spaces. Even so, in practice many people might
still regard the display just given as rather compressed and so would be tempted by a
format like %12.3f. The key point is simply that you are in charge and can make your
own decision.

The output just given is clearly rather unpolished in some respects. For example, it
lacks explanatory column headers and is tied to the particular fact that variable names
in this dataset are all no more than 12 characters long. However, it could still be fine
for many purposes. display should also now be evident as a command that could be
used to produce header lines before the main body of the table is shown. Rather than
refining this approach further, we will now show a different approach.

3 From data variables to results variables

Tip 6: Use generate and replace to put results from a command one by one into new
variables.

152 Speaking Stata

If we go back to the first variable we used with summarize, we could instead place
the results in new variables with, say,

. generate skewness = r(skewness) in 1
(73 missing values generated)

. generate kurtosis = r(kurtosis) in 1
(73 missing values generated)

That is what you might do, but it is not a good idea.

To explain the syntax, however: “in 1” flags that we would be putting the results in
the first observation only. However, typically we will want to do something like this in a
loop. Although a generate statement will work fine the first time around the loop, the
loop will fail the second time around because generate will complain that the variable
already exists.

The solution is simple. You first generate the variable outside the loop, doing that
just once, and change the command within the loop to replace. replace will not
complain about changing what already exists; that is its sole purpose.

While we are exploring this idea, we will see that we can also make the problem more
ambitious with very little extra effort. Let’s say that we also want to see number of
observations, mean, and standard deviation as minimal context for assessing skewness
and kurtosis. We also want to record explanatory text for each variable, here variable
name and label.

. quietly foreach v in n mean sd skewness kurtosis {

. generate double `v´ = .

. }

. quietly foreach v in varname varlabel {

. generate `v´ = ""

. }

. local i = 1

. quietly foreach v of var price-foreign {

. summarize `v´, detail

. replace varname = "`v´" in `i´

. replace varlabel = "`: var label `v´´" in `i´

. replace n = r(N) in `i´

. replace mean = r(mean) in `i´

. replace sd = r(sd) in `i´

. replace skewness = r(skewness) in `i´

. replace kurtosis = r(kurtosis) in `i´

. local ++i

. }

In essence, there are two phases to this operation. First, we initialize variables
to missing; the loops are over the result variables. Here we separate initialization of
the numeric and string results. The numeric result variables are initialized to numeric
missing . and the string result variables are initialized to the empty string "". In most
problems, specifying double for numeric results will cost us little in memory but may
save some later embarrassment or frustration in holding values precisely that may be

N. J. Cox 153

very large or very small. (People very interested in p-values or their kin will care about
that.)

Second, in the last block of code just given, we put the results one by one in the
result variables; the loop is over the data variables. There are new small details here:

1. Before the loop, we initialize a counter (the local macro i) to 1. Each time around
the loop, we add 1 to the counter by using local ++i. We are thus looping over
both the variables and the counter 1, 2, 3,

If you would like more discussion of looping in general, see Cox (2002), or of
looping in parallel, see Cox (2003a).

2. It is easy but often forgotten to put quietly on the loop as a whole rather than
on each individual statement that would otherwise produce output. That saves
typing, produces less cluttered code, and saves on small fixes as you realize that
you did not insist that some command remain silent.

3. Because it will be useful for friendlier display later on, we are also putting the
variable labels alongside. The syntax "‘: var label ‘v’’" instructs Stata to
look up the variable label. The nesting of ‘ ’ here should not cause alarm. You
need to understand only that Stata works with such nested macro references just
as you would with parenthesized expressions in algebra of the form (. . . (. . .
) . . .): what is innermost gets evaluated first. So Stata works out what ‘v’ is
referring to, which is the variable name each time around the loop. Then it looks
up the variable label for that variable. If there is no variable label defined, an
empty string will be returned and no harm done.

Stata has a bundle of such look-up tools called extended macro functions; even
some very experienced users cannot trust themselves to remember how to find the
help on such functions quickly, but they do find it easy to remember to look at
help macro first and then jump to the help for extended macro functions.

4. It does not apply here, but I will add that if double quotes, ", appear inside any
variable label, you will need compound double quotes, ‘" "’, to hold the entire
label.

5. You might have spotted that the replace commands with numeric results all have
very similar form and so could be rewritten as another foreach loop. That is a
matter of programming taste.

The strategy needs to be introduced with caution. There is a tacit assumption that
we have no more variables we want to summarize than observations—congratulations if
you spotted that instantly! If we have 101 variables and 100 observations, where would
we put results for the 101st variable? That usually is not a problem, but if it is, then
there is a work-around of just increasing the number of observations in the dataset.
However, you are now in territory where switching to a more versatile tool is a better
idea.

154 Speaking Stata

We are also deliberately breaching a convention that whatever is in an observation (in
non-Stata terminology, a row, record, or case of a dataset) belongs together. That is, we
are putting results for entire variables in single observations and putting results alongside
original data with which they are not aligned. If you use spreadsheets frequently, none
of this may surprise you because you may do similar things often. If you use relational
databases frequently, your reaction to what I am explaining may be some mixture of
disbelief and revulsion. What is certain is that Stata won’t object to that, and equally,
it won’t object to your doing things later with the combined dataset that do not make
sense. So the counsel can only be: Watch out. If you dislike this strategy on principle,
you have admirably refined tastes and should immediately consider the next tip.

What is also crucial in our example is that in looping over variables, we let summarize
use for each variable as many nonmissing values as exist. If you wished to insist on
exactly the same observations being used each time, that would imply an extra if
condition on the summarize command. It could be, for example, that you want to
select only observations with nonmissing values for all the variables shown.

Tip 7: For a more general way of posting results, check out postfile and its associated
commands.

I am going to let this tip stand as a flag. The idea is well explained in self-contained
documentation. Start with the help for postfile, and proceed if desired to the manual
entry.

Tip 8: list can be very useful for tabulation of results stored in variables.

Most Stata users learn list early, and many use it often to look at their dataset or
at least at small parts of it. In early versions of Stata, before there was a Data Editor,
list was the main command for looking at data, although many users who have started
with Stata with more recent versions may find looking at the Data Editor to be more
congenial or convenient.

list has some simple but important advantages in looking at results stored in vari-
ables. As it often seems overlooked for this purpose, let’s spell some of them out briefly.

1. There is no puzzling out of how much space to assign to values, spaces, text
headers, and so forth, because list does all that for you.

2. The ordering of columns (namely, variables) in the list and the selection of obser-
vations using if or in are totally under your control.

3. Because list respects display format, to get (for example) particular numbers
of decimal places, you just need to call up format beforehand to say what you
want. So you will usually want the number of observations, always an integer,
to be shown as such. But you might also want skewness and kurtosis rounded,
say, to 3 decimal places. Some but by no means all tabulation commands support
different formats for different result columns: at the time of writing, it is a major
limitation of tabstat, for example, that you can have just one numeric format
throughout a results table.

N. J. Cox 155

4. Because list will happily mix numeric and string variables at your command,
you can add comment columns or fields easily. That could be a way, for example,
of adding stars to match significance levels if they are to your taste, or if your
boss or reviewers insist upon them.

5. Because list should be a command you already know, learning some more details
is likely to be less effort than mastering yet another new command. As hinted
above, it seems that many Stata users are aware of the basic syntax of list but
have not explored its more advanced options for tuning presentation.

6. list itself offers no export options, but the user-written command groups (Cox
2003c) is a wrapper for list, and as of January 2012 it includes a saving() option
so that what is listed can be saved as a new Stata dataset. If interested, download
groups using the ssc command.

That is quite enough of a small sermon on virtues. Let us see how we can put this
to work without too much effort.

. format mean sd %3.2f

. format skew kurt %4.3f

. char varlabel[varname] " "

. char sd[varname] "s.d."

. list varlabel n mean sd skewness kurtosis if n < ., noobs sep(0) subvarname

n mean s.d. skewness kurtosis

Price 74 6165.26 2949.50 1.653 4.819
Mileage (mpg) 74 21.30 5.79 0.949 3.975

Repair Record 1978 69 3.41 0.99 -0.057 2.678
Headroom (in.) 74 2.99 0.85 0.141 2.208

Trunk space (cu. ft.) 74 13.76 4.28 0.029 2.192
Weight (lbs.) 74 3019.46 777.19 0.148 2.118
Length (in.) 74 187.93 22.27 -0.041 2.042

Turn Circle (ft.) 74 39.65 4.40 0.124 2.229
Displacement (cu. in.) 74 197.30 91.84 0.592 2.376

Gear Ratio 74 3.01 0.46 0.219 2.102
Car type 74 0.30 0.46 0.887 1.787

The preparation needed is minor.

1. We think up reasonable formats for the noninteger numeric result variables. With
display of small integers, Stata’s default formats will always work well with list,
but you may need to do more work with very large integers, especially if you dislike
displays of large integers in scientific or exponential format, such as 1.000e+09.

2. An extra detail here is showing how to define headers that could not be legal
variable names: we insist on a blank header for the variable label column and
spell out s.d. rather than sd. The subvarname option instructs list to look for
the characteristics that carry the text. Note that variable labels would usually be

156 Speaking Stata

too long for this purpose, so it is convenient that list lets you define header text
using characteristics. That may seem awkward, but having to redefine variable
labels for this purpose only to have to redefine them for most other purposes would
be even more awkward.
If characteristics are new to you, then help characteristics gives a miniature
tutorial.

3. Seeing the observation identifiers and separation lines that would appear by default
would not help us here, so we override those defaults.

4. Note also that we select observations with nonmissing values with an if qualifier;
using if is less efficient, but when working interactively it is easier to apply than
the equivalent in qualifier. (Programmers should try to work with in rather than
if, however.)

Tip 9. tabdisp can be useful interactively for preparing simple tables.

This is going to be another flag. Another earlier column gave detailed discussion
(Cox 2003b). Here is a trick worth mentioning, which is obvious once you know it. At
first sight tabdisp offers the possibility of just one numeric format, which seems very
restrictive. However, this is easy to subvert. Just create a string variable version of
what you want to show, using the format argument of the string() function. tabdisp
shows string variables exactly as they are and does not look inside. So long as readers
of the table see the numeric characters they expect to see, no one need know or care
that they are seeing a string variable.

Tip 10. Remember that results in variables may be plotted in graphs, possibly in
table-like graphs.

Naturally, that may be turned around too. If you want to plot your results, you
need to put them in variables first. (There are some minor exceptions but the principle
remains valid.)

See particularly Cox (2008, 2009) for earlier discussions of this utterly basic idea,
still far too often neglected.

4 Check out existing reduction commands

Tip 11. Stata commands such as collapse, contract, egen, estimates, and statsby
already offer ways of creating new datasets of results. Be aware of the possibilities
before you start reinventing them for yourself.

What is likely to be the most helpful tip of all has been saved until last for emphasis.
The passage from a dataset to a set of results in the form of a new dataset is often much
easier than you might imagine. I think of such commands as reduction commands,
which reduce a dataset to a smaller one including only key results. There is more than
a nod here to a longstanding but still essential idea of “data reduction” (Ehrenberg
1975).

N. J. Cox 157

Of the commands singled out above, collapse is quite well known, but users often
overlook the complementary contract command, focusing specifically on saving group
frequencies and percentages as new data. estimates is also quite well known, but
statsby is often overlooked (see Cox [2010b] for a tutorial on its graphical application).

The remaining command just mentioned, egen, is not so obvious as a reduction
command but is made so by simple tricks. The running example in this paper focused
on saving results for each of a set of variables. The also common problem of wanting
results for each of various groups of observations was neglected, so let us look at such a
problem. collapse does not support calculations for skewness and kurtosis, but egen
does offer pertinent functions.

Let’s suppose that we want to compare skewness and kurtosis for distinct groups on
the categorical variable foreign. The syntax would be

. by rep78, sort: egen skew = skew(mpg)

. by rep78: egen kurt = kurt(mpg)

The same result, say, the skewness for foreign being 1 (namely, foreign cars made
outside the United States), will be stored repeatedly for all the observations with that
value of foreign. But now that the variable exists, it is available for collapse. We can
specify, for example, that we want to keep its minimum or maximum; that’s enough to
select just one result.

Another trick for reduction is to use egen’s tag() function to select just one obser-
vation in each distinct group. Then reduction to a smaller dataset is effected by keep
if tag, where tag is the variable just created.

5 Conclusion

I will now simply gather the specific tips given.

Stata commands such as collapse, contract, egen, estimates, and statsby al-
ready offer ways of creating new datasets of results. Be aware of the possibilities before
you start reinventing them for yourself.

Stata typically holds major results in memory, at least immediately after the com-
mand has run. You can thus access these for presentation in a different form.

The display command with specified format is convenient for presenting numeric
results as you wish.

To show a set of results for different variables or groups, loop over the possibilities
with foreach or forvalues. Typically, you will need to explain each piece of output
with appropriate text.

To suppress output you do not want, prefix a command with quietly.

SMCL offers extra control over presentation with display.

158 Speaking Stata

Use generate and replace to put results from a command one by one into new
variables.

For a more general way of posting results, check out postfile and its associated
commands.

list can be very useful for tabulation of results stored in variables.

tabdisp can be useful interactively for preparing simple tables.

Remember that results in variables may be plotted in graphs, possibly in table-like
graphs.

6 References
Cox, N. J. 2002. Speaking Stata: How to face lists with fortitude. Stata Journal 2:

202–222.

———. 2003a. Speaking Stata: Problems with lists. Stata Journal 3: 185–202.

———. 2003b. Speaking Stata: Problems with tables, Part I. Stata Journal 3: 309–324.

———. 2003c. Speaking Stata: Problems with tables, Part II. Stata Journal 3: 420–439.

———. 2008. Speaking Stata: Between tables and graphs. Stata Journal 8: 269–289.

———. 2009. Speaking Stata: Paired, parallel, or profile plots for changes, correlations,
and other comparisons. Stata Journal 9: 621–639.

———. 2010a. Speaking Stata: The limits of sample skewness and kurtosis. Stata
Journal 10: 482–495.

———. 2010b. Speaking Stata: The statsby strategy. Stata Journal 10: 143–151.

Ehrenberg, A. S. C. 1975. Data Reduction: Analysing and Interpreting Statistical Data.
London: Wiley.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He wrote several inserts in the Stata Technical Bulletin and is an editor
of the Stata Journal.

