
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal
Editor
H. Joseph Newton
Department of Statistics
Texas A&M University
College Station, Texas 77843
979-845-8817; fax 979-845-6077
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Nathaniel Beck
New York University

Rino Bellocco
Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis
Tübingen University, Germany

A. Colin Cameron
University of California–Davis

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

David Epstein
Columbia University

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
University of Bern, Switzerland

Stephen Jenkins
London School of Economics and

Political Science

Ulrich Kohler
WZB, Berlin

Frauke Kreuter
University of Maryland–College Park

Peter A. Lachenbruch
Oregon State University

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Roger Newson
Imperial College, London

Austin Nichols
Urban Institute, Washington DC

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Editorial Manager
Stata Press Copy Editors

Lisa Gilmore
Deirdre Skaggs



The Stata Journal publishes reviewed papers together with shorter notes or comments,
regular columns, book reviews, and other material of interest to Stata users. Examples
of the types of papers include 1) expository papers that link the use of Stata commands
or programs to associated principles, such as those that will serve as tutorials for users
first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest
to intermediate or advanced users of Stata; 3) papers that discuss new commands or
Stata programs of interest either to a wide spectrum of users (e.g., in data management
or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival
analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing
the statistical properties of new or existing estimators and tests in Stata; 5) papers
that could be of interest or usefulness to researchers, especially in fields that are of
practical importance but are not often included in texts or other journals, such as the
use of Stata in managing datasets, especially large datasets, with advice from hard-won
experience; and 6) papers of interest to those who teach, including Stata with topics
such as extended examples of techniques and interpretation of results, simulations of
statistical concepts, and overviews of subject areas.

For more information on the Stata Journal, including information for authors, see the
webpage

http://www.stata-journal.com

The Stata Journal is indexed and abstracted in the following:

• CompuMath Citation Index R©

• Current Contents/Social and Behavioral Sciences R©

• RePEc: Research Papers in Economics
• Science Citation Index Expanded (also known as SciSearch R©)

• Scopus
TM

• Social Sciences Citation Index R©

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata, Mata, NetCourse,

and Stata Press are registered trademarks of StataCorp LP.

http://www.stata-journal.com


The Stata Journal (2012)
12, Number 1, pp. 130–146

tt: Treelet transform with Stata

Anders Gorst-Rasmussen
Department of Mathematical Sciences

Aalborg University
Aalborg, Denmark

agorstras@gmail.com

Abstract. The treelet transform is a recent data reduction technique from the field
of machine learning. Sharing many similarities with principal component analysis,
the treelet transform can reduce a multidimensional dataset to the projections on a
small number of directions or components that account for much of the variation in
the original data. However, in contrast to principal component analysis, the treelet
transform produces sparse components. This can greatly simplify interpretation.
I describe the tt Stata add-on for performing the treelet transform. The add-
on includes a Mata implementation of the treelet transform algorithm alongside
other functionality to aid in the practical application of the treelet transform. I
demonstrate an example of a basic exploratory data analysis using the tt add-on.

Keywords: st0249, tt, ttcv, ttscree, ttdendro, ttloading, ttpredict, ttstab, treelet,
principal component analysis, dimension reduction, factor analysis

1 Introduction

A common task in data analysis is to summarize a multidimensional dataset. One
popular and convenient approach is to find a few interesting directions in the data and
use the corresponding linear projections of data as representatives of the original data in
plots, regression models, and so forth. This is known as dimension reduction. Principal
component analysis (PCA) is a standard dimension reduction method that works by
calculating the first few eigenvectors (components) of a covariance or correlation matrix
and reducing the dataset to a collection of component scores—the projection of data
onto components. This strategy has the optimality property of explaining as much
variation as possible in the original data using as few dimensions as possible.

Entries of the components (loadings) are often subject to interpretation. Variables
corresponding to “large” loadings are interpreted as being important for describing the
original data; variables corresponding to “small” loadings can be discarded. Such inter-
pretation is complicated by the fact that all component loadings are nonzero. Various
cutoff rules, component rotation strategies, and other procedures have been developed
to simplify interpretation (Jolliffe 2002), but these largely ad hoc procedures do not
contribute to the transparency or objectivity of PCA.

In the machine learning community, there has been a growing interest in developing
alternatives to PCA that offer more-interpretable components by forcing loading patterns
where many loadings are exactly zero (that is, by forcing sparse components). For

c© 2012 StataCorp LP st0249



A. Gorst-Rasmussen 131

example, Zou, Hastie, and Tibshirani (2006) developed a variant of PCA where sparse
components are estimated via penalized regression with automatic variable selection.

The treelet transform (TT) proposed by Lee, Nadler, and Wasserman (2008) is a
similar recent alternative to PCA. The TT introduces sparsity among component load-
ings in an elegant and simple fashion by combining ideas from hierarchical clustering
analysis with ideas from PCA. This leads to sparse components that, similarly to PCA

components, account for a large part of the variation in the original data and can be
used analogously. In addition, it leads to an associated cluster tree that provides a
concise visual representation of loading sparsity patterns and the general dependency
structure of the data.

I describe in this article the Stata add-on tt, which contains a Mata implementation
of the TT algorithm. In addition to the TT algorithm itself, tt includes several other
functions to aid in model selection and output analysis in practice. Using the auto.dta
dataset that comes with Stata, I provide a small demonstration of how the various
functions work together and how a complete TT analysis using tt might look.

2 The TT algorithm

This section provides a brief, nontechnical review of the TT algorithm. For a more
formal derivation of the TT algorithm and its properties, see the original article by Lee,
Nadler, and Wasserman (2008).

Given a collection of p variables, the TT algorithm proceeds as follows:

Variable pairing. Locate the two variables with the largest correlation coefficient.

Local PCA. Merge these two variables by performing PCA on them. Keep the new
variable whose score has the largest variance (the “sum” variable); discard the
other new variable (the “residual” variable).

This process yields a new collection of p−1 variables, namely, the sum variable and the
remaining p − 2 original variables, on which we then repeat the above two steps. The
“variable pairing” and “local PCA” scheme is repeated for a total of p − 1 times until
only a single sum variable is left. This in turn defines a basic hierarchical clustering
algorithm, the output of which is conveniently represented as a binary tree with p levels
(a cluster tree or cluster dendrogram). Variables that are “close” in this cluster tree
and that are merged early represent groups of more highly correlated variables.

Hierarchical clustering is itself a well-known technique. The novelty of the TT is its
use of PCA to merge variables because it enables us to construct, at each level of the
TT cluster tree, a complete coordinate system for the data. Specifically, viewing the
TT in terms of its action on components rather than on variables, let us begin with
a coordinate system consisting of the trivial, one-variable components (the standard
coordinate system of R

p). Each local PCA of two variables corresponds to performing
an orthogonal rotation of two components. It follows that a coordinate system for the
data at a given level of the TT cluster tree is given by the collection of



132 tt: Treelet transform with Stata

1. the components corresponding to sum variables available at the current level;

2. components corresponding to all previously calculated residual variables; and

3. “trivial” components for variables that have not yet joined the cluster tree.

The level-specific and data-specific coordinate system thus comprises “sum” com-
ponents that encode coarse-grained, low-resolution information about the dependency
relationships between all variables included so far alongside “residual” components that
encode information about the more local relationships between variables at an increas-
ingly greater resolution. It can be shown that if a TT is applied to a collection of
variables with a covariance matrix featuring high intrablock correlation and low in-
terblock correlation, then the loadings of sum components will be constant on variables
within blocks in large samples (Lee, Nadler, and Wasserman 2008). Hence, the TT can
help identify groups of correlated variables.

2.1 Selecting a cut-level

Application of the TT to a dataset yields, as its basic output, a cluster tree alongside a
coordinate system for the data at each level of the cluster tree. As described above, the
coordinate system combines coarse components (similar to components obtained from
PCA) with higher-resolution components that reflect local dependency relationships. We
seek to use this collection of coordinate systems for dimension reduction purposes.

If we knew which cluster tree level (cut-level) to use, we could calculate variances of
the level-specific component scores and retain components corresponding to the highest-
variance scores. This is the approach used in PCA with one difference: TT component
scores are generally correlated and do not lead to a true decomposition of variance. This
is a known issue in dimension reduction (Gervini and Rousson 2004) because PCA is the
only method yielding both orthogonal components and uncorrelated scores.

Selecting a cut-level for the TT cluster tree amounts to deciding the level of detail
desired in the dimension reduction (the amount of regularization). A coordinate system
close to the leaves of the cluster tree mostly contains highly sparse components and may
not be useful for dimension reduction in the sense that the high-resolution components
are not much more informative than the original one-variable components. Conversely, a
coordinate system close to the root includes coarse-grained, low-resolution components
more suitable for dimension reduction, but it may be harder to interpret because of a
lack of sparsity. We usually prefer a data-driven choice of cut-level.

Choosing a cut-level from data is not trivial because coordinate systems at different
cut-levels are equally capable of describing the data so long as we use a sufficiently
large number of components. However, cross-validation methods can be used to find
a cut-level at which we can describe the data using only a few components. Sup-
pose that we wish to describe the data using exactly m components. Then we deter-
mine an appropriate cut-level by using the following K-fold cross-validation strategy
(Lee, Nadler, and Wasserman 2008):



A. Gorst-Rasmussen 133

1. Split the data randomly into K roughly equal-sized subsets. For each of these
subsets, do the following:

• For each cut-level 1, . . . , p − 1, calculate the m highest-variance components
using all subsets of data except the current one. Next calculate the sum of
variances of scores based on these components using only the current subset.

2. For each cut-level 1, . . . , p − 1, calculate a cross-validation score by averaging the
K sums of component variances obtained in step 1.

A flowchart visualizing step 1 of the cross-validation strategy is shown in figure 1.

Data

Fold K

Fold 1
Cut-level 1

Get the m highest-variance TT components using

all data except fold 1 and;

Get variances of scores of these components within fold 1

Cut-level p − 1

Figure 1. Flow chart of the cross-validation strategy for deciding an optimal cut-level

Once cross-validation scores have been obtained, a suitable cut-level can be found
by locating a “knee” in the graph of cross-validation scores against cut-level (a “knee”
is a point at which increasing the cut-level does not substantially increase the cross-
validation score). In other words, we select the cut-level at which we can explain almost
as much variation as possible, using as low a cut-level as possible to simplify interpre-
tation of components.

Note that the cross-validation strategy requires us to specify the number of compo-
nents m to use. This is not much different from the corresponding problem of selecting
the number of components to retain in PCA, or selecting the number of clusters in a
cluster analysis. In section 4, we propose a simple data-driven strategy for selecting
both the cut-level and the number of components.

2.2 Stability assessment

A data analyst may wish to know how much trust to place in a collection of com-
ponents obtained using the TT. Because a key feature of the TT is its ability to pro-
duce sparse components, it is of particular interest to assess the stability of loading
sparsity patterns. This can be done by using a subsampling approach inspired by
Ben-Hur, Elisseeff, and Guyon (2002).



134 tt: Treelet transform with Stata

We first specify a cut-level k and a number m of TT components to retain. Then we
repeat the following subsampling scheme 100 times:

1. Randomly sample 80% of the data.

2. Within this subsample, calculate the m highest-variance TT components at cut-
level k of the cluster tree. For each of these m components, do the following:

• Calculate the sign pattern of the component. For example, a component
whose loadings in the original variables are (−0.1, 0.2, 0, 0.1) corresponds to
the sign pattern (−,+, 0,+).

• Calculate the variance explained by the corresponding component.

• Calculate the rank according to the variance explained by the corresponding
component.

The collection of all 100×m sign patterns, alongside their variances and ranks, carries
information about the stability and the importance of different sign patterns appearing
in the subsampled TT analyses. As a measure of stability, we count the number of times
we see a particular sign pattern among all 100×m patterns while using the average rank
and average variance of the sign pattern as measures of importance. The final output
of the stability analysis is the relative frequency, average variance, and average rank of
each sign pattern occurring in more than 10 out of the 100 subsampled TT analyses.
Note that this number is generally different from m.

3 The tt add-on

3.1 Syntax

The main function tt is implemented as a Mata function run via a Stata wrapper. It
is loosely based on the R-code by Liu (2011) and has the following syntax:

tt varlist
[
if
] [

in
] [

weight
]
, cut(#)

[
components(#)[

correlation | covariance
]
noblanks

]
After running tt, the user will typically run ttcv, which uses the cross-validation

strategy of section 2.1 to select a cut-level for the TT cluster tree. ttcv has the following
syntax:

ttcv varlist
[
if
] [

in
] [

weight
]
, components(#)

[
folds(#) reps(#)

percent(#)
[
correlation | covariance

]
force

]
A range of different postestimation commands is also available. As usual with postes-

timation commands, they require an initial run of tt.



A. Gorst-Rasmussen 135

Stability assessment as described in section 2.2 is available through the command
ttstab, which has the following syntax:

ttstab
[
, reps(#) subsample(#) keep(#) force

]
The TT cluster tree can be plotted by using the following command:

ttdendro
[
, dendro options

]
Scree plots of variances and “skyscraper plots” of component loadings are imple-

mented in the commands ttscree and ttloading, respectively, with these syntaxes:

ttscree
[
, scatter options neigen(#)

]
ttloading

[
, scatter options components(numlist)

]
Finally, ttpredict implements prediction of component scores. As previously de-

scribed, these are the projections of the original data onto the relevant TT component
and can be informally interpreted as the degree of “adherence” of a given observation
vector to the given component. The ttpredict syntax is

ttpredict
[
if
] [

in
]
{stub* |newvarlist}

3.2 tt options

cut(#) is required and specifies the cut-level of the TT cluster tree at which to ex-
tract components. The cut-level influences both the sparsity and the composition of
components. See ttcv for a cross-validation method to determine a cut-level.

components(#) sets the maximum number of components to be retained. tt displays
the full set of components variances but displays loadings only for retained compo-
nents. The default is the number of variables in varlist.

correlation or covariance specifies that TT cross-validation be calculated using the
correlation matrix or the covariance matrix, respectively. Choose only one of these
two options; the default is correlation. Usually, TT cross-validation using the
covariance matrix will be meaningful only if variables are expressed in the same
units.

noblanks displays zero loadings as 0s instead of as blanks. This option is included for
readability.



136 tt: Treelet transform with Stata

3.3 ttcv options

components(#) is required and sets the number of components to be retained. In
practice, this number may not be known in advance, in which case one should
investigate the output of ttcv for a range of different choices of #.

folds(#) specifies the number of folds (test samples) to use in cross-validation. The
default is folds(10).

reps(#) specifies the number of Monte Carlo repetitions of cross-validation. The de-
fault is reps(5). Monte Carlo repetitions reduce the sampling variation inherent in
cross-validation. Increase # if the output of ttcv appears unstable over different
runs.

percent(#) specifies that a “knee” on the graph of cross-validation scores should
be sought among cut-levels for which the score is within # percent of the cross-
validation score associated with the maximal cut-level. The default is percent(10).

correlation or covariance specifies that TT cross-validation use the correlation matrix
or the covariance matrix, respectively. Use only one of these two options; the default
is correlation. Usually, TT cross-validation using the covariance matrix will be
meaningful only if variables are expressed in the same units.

force tries to force cross-validation even when zero-variance variables are found in
training samples. This is usually an indication that there is something wrong; use
this option with caution.

3.4 ttstab options

reps(#) specifies the number of subsamples. The default is reps(100).

subsample(#) specifies the subsample size as a percentage of the original sample size.
The default is subsample(80).

keep(#) specifies to keep sign patterns appearing in more than # percent of replica-
tions. The default is keep(20).

force tries to force subsampling even when zero-variance variables are found in sub-
samples. This is usually an indication that there is something wrong; use this option
with caution.

3.5 ttdendro options

dendro options are any of the options allowed by the cluster dendrogram command;
see [MV] cluster dendrogram.



A. Gorst-Rasmussen 137

3.6 ttscree and ttloading options

scatter options are any of the options allowed by the graph twoway scatter command;
see [G-2] graph twoway scatter.

The following option applies only to ttscree:

neigen(#) plots only the largest # component variances. The default is to plot all
component variances.

The following option applies only to ttloading:

components(numlist) plots components in numlist. The default is components(1 2 3).

4 A data example

As a simple illustration of the proposed workflow when using the tt add-on, let us
consider the 1978 automobile dataset that comes with Stata. This dataset describes
various characteristics of 74 vehicles. We will use the 10 variables described below for
the analysis; 69 vehicles have complete observations for these variables.

. sysuse auto
(1978 Automobile Data)

. describe price-gear_ratio

storage display value
variable name type format label variable label

price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair Record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn Circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear Ratio



138 tt: Treelet transform with Stata

4.1 Step 1: Running tt

To familiarize ourselves with the dataset, we first make two preliminary runs of tt and
the tt postestimation plotting routines.

. tt price-gear_ratio, cut(3) correlation components(3)

Treelet transform/correlation Number of obs = 69
Number of comp. = 3
Cut-level = 3

Component Variance Proportion Cumulative Adj. proportion

TC1 3.6404 0.3640 0.3640 0.3640
TC2 1.0000 0.1000 0.4640 0.0360
TC3 1.0000 0.1000 0.5640 0.0746
TC4 1.0000 0.1000 0.6640 0.0344
TC5 1.0000 0.1000 0.7640 0.0787
TC6 1.0000 0.1000 0.8640 0.0371
TC7 1.0000 0.1000 0.9640 0.0652
TC8 0.1875 0.0187 0.9828 0.0143
TC9 0.1199 0.0120 0.9948 0.0086
TC10 0.0522 0.0052 1.0000 0.0031

Components

Variable TC1 TC2 TC3

price
mpg

rep78
headroom 1.0000

trunk
weight 0.5080
length 0.5080

turn 0.4851
displacement 0.4985

gear_ratio 1.0000



A. Gorst-Rasmussen 139

. tt price-gear_ratio, cut(6) correlation components(3)

Treelet transform/correlation Number of obs = 69
Number of comp. = 3
Cut-level = 6

Component Variance Proportion Cumulative Adj. proportion

TC1 4.5497 0.4550 0.4550 0.4550
TC2 1.6565 0.1657 0.6206 0.0432
TC3 1.0000 0.1000 0.7206 0.0800
TC4 1.0000 0.1000 0.8206 0.0717
TC5 0.6353 0.0635 0.8842 0.0515
TC6 0.4555 0.0455 0.9297 0.0328
TC7 0.3435 0.0343 0.9640 0.0335
TC8 0.1875 0.0187 0.9828 0.0143
TC9 0.1199 0.0120 0.9948 0.0086
TC10 0.0522 0.0052 1.0000 0.0031

Components

Variable TC1 TC2 TC3

price
mpg 0.7071

rep78 1.0000
headroom 0.3052

trunk 0.3639
weight 0.4471
length 0.4471

turn 0.4269
displacement 0.4387

gear_ratio 0.7071

. ttdendro

. ttscree

In both runs of tt, we retain three components, but we use different cut-levels 3 and
6, respectively. The relatively low cut-level of 3 in the first analysis yields components
that are more sparse. In fact, components 2 and 3 in this first analysis are somewhat
uninteresting for the purpose of dimension reduction because they contain only one
variable. The second analysis uses the cut-level 6 and yields components that are less
sparse.

Running tt returns both the “raw” variances explained by components and the
variances adjusted for correlation between scores using the conservative method of
Gervini and Rousson (2004). For this dataset, the first TT component explains the
majority of the variation for both cut-level 3 and cut-level 6, irrespective of the method
used for variance calculation. In both analyses, this first component can be informally
interpreted as measuring the overall “size” of a vehicle.

Our output of ttdendro is shown in figure 2. The TT cluster tree shows that trunk,
weight, length, displacement, and turn form a tight cluster. With the addition of the
variable headroom, it is this particular cluster that is reflected by the first TT component



140 tt: Treelet transform with Stata

in the second run of tt above. It is a general feature of the TT algorithm that cluster
membership in the cluster tree translates to nonzero loadings in some TT component.
In other words, the cluster tree provides a concise visual representation of the possible
TT components.

0
2

4
6

8
10

pr
ic

e

he
ad

ro
om

tru
nk

w
ei

gh
t

le
ng

th

di
sp

la
ce

m
en

t

tu
rn

m
pg

ge
ar

_r
at

io

re
p7

8

Treelet dendrogram

Figure 2. Cluster tree produced by ttdendro

Figure 3 is obtained by ttscree. It is a graphical representation, similar to PCA

scree plots, of the (unadjusted) variance explained by components. It is clear from this
plot that a single component suffices to capture much of the variation in the data.

0
1

2
3

4
5

Va
ria

nc
e

0 2 4 6 8 10
Number

Scree plot of variances after TT (cut−level: 6)

Figure 3. Scree plot of variances of TT component scores when cut-level 6 is used



A. Gorst-Rasmussen 141

The first TT component in the second run of tt above is very similar to the first
component obtained from the corresponding PCA, as seen in the numerical loadings and
Pearson correlation between scores calculated below. However, the first TT component
is potentially simpler to interpret because of its sparsity.

. ttpredict tt1score
(9 components skipped)

. pca price-gear_ratio, correlation components(2)

Principal components/correlation Number of obs = 69
Number of comp. = 2
Trace = 10

Rotation: (unrotated = principal) Rho = 0.7389

Component Eigenvalue Difference Proportion Cumulative

Comp1 6.31248 5.23618 0.6312 0.6312
Comp2 1.0763 .0622654 0.1076 0.7389
Comp3 1.01403 .583752 0.1014 0.8403
Comp4 .430283 .0343745 0.0430 0.8833
Comp5 .395908 .116712 0.0396 0.9229
Comp6 .279196 .0229213 0.0279 0.9508
Comp7 .256275 .130573 0.0256 0.9764
Comp8 .125701 .0442338 0.0126 0.9890
Comp9 .0814675 .0531123 0.0081 0.9972

Comp10 .0283551 . 0.0028 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

price 0.2074 0.3876 .5668
mpg -0.3394 0.0520 .2699

rep78 -0.1830 0.7639 .1606
headroom 0.2304 0.3049 .565

trunk 0.3003 0.3401 .3061
weight 0.3848 0.0095 .06535
length 0.3771 0.0432 .1003

turn 0.3542 -0.1831 .1719
displacement 0.3742 -0.0121 .1157

gear_ratio -0.3306 0.1388 .2895

. predict pc1score

(output omitted )

. correlate tt1score pc1score
(obs=69)

tt1score pc1score

tt1score 1.0000
pc1score 0.9842 1.0000

4.2 Step 2: Running ttcv

From the analysis in step 1, we found evidence that a single TT component suffices to
describe the majority of variation in the data. It turns out that the optimal cut-level



142 tt: Treelet transform with Stata

for a single-component solution is 9 (the maximal possible) and that the single retained
component has all nonzero loadings for this cut-level.

To illustrate, suppose instead that we decide to keep three components. We then
find a suitable cut-level by running ttcv, as follows:

. ttcv price-gear_ratio, correlation components(3)
Cross-validation (10 folds, 5 repetitions)

0% 25% 50% 75% 100%

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

TT cross-validation/correlation Number of obs = 69
Number of comp. = 3

Number of folds = 10
Number of reps = 5

Cross-validation scores

Cut-level Score Proportion

1 5.3090 0.6464
2 6.1245 0.7457
3 6.8463 0.8336
4 7.1436 0.8698
5 7.4875 0.9116
6 7.7642 0.9453
7 7.8010 0.9498
8 7.9786 0.9715
9 8.2131 1.0000

Estimated optimal cut-level = 6

(optimal cut-level sought within 10% of highest cut-level score)

Figure 4 shows a plot of the cross-validation scores generated when running ttcv.
Although not entirely convincing, a “knee” in the graph seems to be located around
level 6, indicating that increasing the cut-level beyond this level may not substantially
improve the amount of variance explained by the three components. Thus for a three-
component solution, a cut-level of 6 appears adequate.



A. Gorst-Rasmussen 143

5
6

7
8

9
C

ro
ss
−v

al
id

at
io

n 
sc

or
e

0 2 4 6 8 10
Cut−level (vertical line at estimated optimal cut−level)

Cross−validation for TT (components: 3)

Figure 4. Graph of cross-validation scores for the TT when three components are re-
tained; the graph suggests that a “knee” in the graph is located at cut-level 6

Choosing simultaneously the number of components to retain and a cut-level is easy
for this dataset because a single-component solution seems to be preferable at most
nontrivial cut-levels. In situations where it is unclear how many components to retain,
the choice can be more difficult. The following strategy is recommended:

1. Decide on a range of different sensible values of components() for tt via, for
example, an investigation of scree plots.

2. Perform ttcv for each of these choices of components().

In our experience, there will often be a reasonably small range of cut-levels that are
universally preferable for the selected range of components(). A parsimonious solution
is then to use the smallest acceptable cut-level among these.



144 tt: Treelet transform with Stata

4.3 Step 3: Running ttstab

For the choice cut(6) and components(3) in running tt, we conclude our analysis by
investigating the stability of the obtained solution via ttstab.

. tt price-gear_ratio, cut(6) correlation components(3)

(output omitted )

. ttstab
Bootstrap replications (100)
0% 25% 50% 75% 100%

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Stability of TT/correlation Number of obs = 69
Number of comp. = 3
Cut-level = 6

Bootstrap rep. = 100
Subsample frac. = 0.80
Subsample size = 55

Average rank (by amount of variance explained) and frequency of sign patterns
Displaying results for patterns with frequency >= 10%

Sign pattern Avg. rank Frequency Avg. variance

1 1.000 0.900 4.557
2 2.000 0.990 1.656
3 3.000 0.470 1.000
4 3.000 0.510 1.000

Structure of sign patterns

Variable 1 2 3 4

price 0 0 0 +
mpg 0 + 0 0

rep78 0 0 + 0
headroom + 0 0 0

trunk + 0 0 0
weight + 0 0 0
length + 0 0 0

turn + 0 0 0
displacement + 0 0 0

gear_ratio 0 + 0 0



A. Gorst-Rasmussen 145

ttstab performs 100 subsampling repetitions of the TT, keeping the three highest-
variance components in each subsampled analysis (at cut-level 6). It then transforms
these into their corresponding sign patterns. Note that ttstab is set to return all sign
patterns seen in more than 10% of the subsampling repetitions, here corresponding to
four sign patterns. In the output, Avg. rank is the rank (according to explained variance
of the corresponding component) averaged over the 100 subsamples. Frequency is the
relative frequency of the sign pattern among all 3× 100 sign patterns returned. Finally,
Avg. variance is the variance explained by the component corresponding to the sign
pattern, averaged over the 100 subsamples.

We can see that sign patterns similar to those of the first two components from the
original TT analysis with components(3) and cut(6) appear in almost all subsampling
repetitions. If the first type of sign pattern appears, it corresponds to a component with
rank 1. Moreover, the first component remains by far the most important in terms of
variance explained. Sign patterns 3 and 4, however, do not appear to be very stable.
Increasing the number of retained components to 4 (not shown) leads to greater stability
in terms of frequency of inclusion but does not improve stability of the rank of the last
two components.

5 Concluding remarks

The TT can be viewed as an amalgamation of PCA and cluster analysis. It leads to
components that are sparse, and they can be easier to interpret than their PCA coun-
terparts. I described the tt add-on for Stata, which contains all the basic functionality
needed to apply the TT in practice, including a Mata implementation of the TT algo-
rithm. For a more advanced application example and a detailed comparison with the
output produced by PCA, I recommend the article by Gorst-Rasmussen et al. (2011).

6 Acknowledgments

I thank Søren Lundbye-Christensen and Christina C. Dahm for their helpful comments
and suggestions when preparing this article.

Some of the work on the tt add-on was completed while I was employed at the
Center for Cardiovascular Research, Aalborg Hospital, Aarhus University Hospital in
Aalborg, Denmark.

7 References
Ben-Hur, A., A. Elisseeff, and I. Guyon. 2002. A stability based method for discovering

structure in clustered data. Pacific Symposium on Biocomputing 7: 6–17.

Gervini, D., and V. Rousson. 2004. Criteria for evaluating dimension-reducing compo-
nents for multivariate data. American Statistician 58: 72–76.



146 tt: Treelet transform with Stata

Gorst-Rasmussen, A., C. C. Dahm, C. Dethlefsen, T. Scheike, and K. Overvad. 2011.
Exploring dietary patterns by using the treelet transform. American Journal of Epi-
demiology 173: 1097–1104.

Jolliffe, I. T. 2002. Principal Component Analysis. 2nd ed. New York: Springer.

Lee, A. B., B. Nadler, and L. Wasserman. 2008. Treelets—an adaptive multi-scale basis
for sparse unordered data. Annals of Applied Statistics 2: 435–471.

Liu, D. 2011. treelet: Treelet. R package version 0.3-0.
http://cran.r-project.org/package=treelet.

Zou, H., T. Hastie, and R. Tibshirani. 2006. Sparse principal component analysis.
Journal of Computational and Graphical Statistics 15: 265–286.

About the author

Anders Gorst-Rasmussen is a biostatistician at the Center for Cardiovascular Research, Aalborg
Hospital, Aarhus University Hospital in Aalborg, Denmark. This article was completed in
connection with the author’s PhD studies in the Department of Mathematical Sciences at
Aalborg University in Aalborg, Denmark.


