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Abstract. Network analysis is a multidisciplinary research method that is quickly
becoming a popular and exciting field. Though some statistical programs possess
sophisticated packages for analyzing networks, similar capabilities have yet to be
made available in Stata. In an effort to motivate the use of Stata for network
analysis, I designed in Mata the Stata graph library (SGL), which consists of
algorithms that construct matrix representations of networks, compute centrality
measures, calculate clustering coefficients, and solve maximum-flow problems. The
SGL is designed for both directed and undirected one-mode networks containing
edges that are either unweighted or weighted with positive values. Performance
tests conducted between C++ and Stata graph library implementations indicate
gross inefficiencies in current SGL routines, making the SGL impractical for large
networks. The obstacles are, however, welcome challenges in the effort to spread
the use of Stata for analyzing networks. Future developments will focus toward
addressing computational time complexities and integrating additional capabilities
into the SGL.

Keywords: st0248, netsis, netsummarize, centrality, clustering, network analysis

1 Introduction

1.1 What is network analysis?

Network analysis is an application of network theory, a subfield of graph theory, that is
concerned with analyzing relational data. Some questions network analysis addresses are
how important or central individual actors are in a given network and how concentrated
the network is. Example uses of network analysis include the following:

• Determining the importance of a webpage using Google’s PageRank.

• Examining communication networks in intelligence and computer security.

• Solving transportation problems that involve flow of traffic or commodities.

• Addressing the too-connected-to-fail problem in financial networks.

• Analyzing social relationships between individuals in social network analysis.

c© 2012 StataCorp LP st0248
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1.2 Modeling relational data

A graph model representing a network G = (V,E) consists of a set of vertices V and
a set of edges E. The size of set V , the number of vertices in network G, is denoted
|V |; similarly, the size of set E, the number of edges in network G, is denoted |E|. An
edge is defined as a link between two vertices i and j, not necessarily distinct, that has
vertex i on one end and vertex j on the other. An edge may be directed or undirected.
A network may be weighted, as when two edges are weighted with differing edge values,
or it may be unweighted, as when all edges have an edge value of one.

There are special types of vertices and edges that standard graph algorithms cannot
handle or for which accommodating routines simply do not exist. Thus the following
types of vertices and edges are excluded from analysis:

• Isolated vertex—a vertex that is not attached to any edges.

• Parallel edges—two or more edges that connect the same pair of vertices.

• Self-loop—an edge connecting vertex i to itself.

• Zero- or negative-weighted edge.

A variety of methods exist for capturing relational data, with the adjacency matrix
and adjacency list forms being some of the more widely used storage types. In Stata,
however, as will be demonstrated in a later section, capturing relational data in a
coordinate list or edge list is more advantageous because it allows the user to use Stata’s
built-in capabilities, such as the ability to restrict the scope of the analysis by specifying
if expression and in range qualifiers.

1.3 Edge list

An edge list for an undirected, unweighted network is an |E|× 2 matrix where each row
represents an edge between vertices i and j. A directed, unweighted network is defined
similarly with an |E| × 2 matrix capturing information on directed edges from source
vertex i to target vertex j. A weighted network can be represented by adding a third
column containing edge weights.

⎡⎣1 2
2 3
4 2

⎤⎦
Figure 1. Example of an edge list and its corresponding graph (undirected and un-
weighted); drawn using netplot (Corten 2011)
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Substantial modifications may be needed to arrive at an edge list from an initial
dataset. The task of modifying initial data applies to datasets in both long and wide
formats, as well as data in matrix form.

2 Matrix representation

2.1 Adjacency matrix

Adjacency matrix A for unweighted networks is defined as a |V |×|V | matrix with entries
Aij equal to one if an edge connects vertices i and j, and equal to zero otherwise. Aii

entries are set to zero, and matrix A is symmetric for undirected networks. For directed
networks, rows of matrix A represent outgoing edges and columns represent incoming
edges.1 For weighted networks, entries Aij are equal to the weight of the edge connecting
vertices i and j.

2.2 Distance matrix

Distance matrix D is defined as a |V | × |V | matrix with each entry Dij equal to the
length of the shortest path between vertices i and j. A path is defined as a way to reach
vertex j from vertex i using a combination of edges that do not go through a particular
vertex more than once. If no such path exists between vertices i and j, then Dij is
set to missing, signifying what is sometimes called an infinite path. Dii is set to zero.
Matrix D is symmetric for undirected networks.

2.3 Path matrix

Path matrix P is defined as a |V |×|V | matrix with Pij entries being equal to the number
of shortest paths between vertices i and j. If no paths exist between vertices i and j,
Pij is set to zero. Pii is set to one. Matrix P is symmetric for undirected networks.

3 Centrality measures

3.1 Degree centrality

Degree centrality measures the importance of a vertex by the number of connections
the vertex has if the network is unweighted (Freeman 1977), and by the aggregate of
the weights of edges connected to the vertex if the network is weighted (Barrat et al.
2004). For an undirected network, degree centrality for vertex i is defined as

1
|V | − 1

∑
j �=i

Aij (1)

1. The convention of denoting Xij entries as an edge from i to j is adopted for all matrices.
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where the leading divisor is adjusted for excluding the j = i term. Directed networks
may entail vertices having a different number of incoming and outgoing edges, and thus
we have out-degree and in-degree centrality. Out-degree centrality for vertex i is defined
equivalently to (1). For in-degree centrality, we simply transpose the adjacency matrix:

1
|V | − 1

∑
j �=i

A′
ij

3.2 Closeness centrality

Closeness centrality provides higher centrality scores to vertices that are situated closer
to members of their component (the set of reachable vertices) by taking the inverse
of the average shortest paths as a measure of proximity (Freeman 1977). That is, the
closeness centrality for vertex i is defined as

(|V | − 1)∑
j �=i Dij

(2)

which reflects how vertices with smaller average shortest path lengths receive higher
centrality scores than those that are situated farther away from members of their com-
ponent.

An immediate concern in computing (2) is how to deal with infinite distances to
unreachable vertices. A common workaround is to average over only the vertices that are
reachable. However, caution must be exercised because distances between vertices tend
to be shorter in smaller components, possibly resulting in vertices in such components
receiving higher closeness centrality scores than vertices in larger components, going
against the notion that vertices in small components are less central in the network
(Newman 2010, sec. 7.6).

3.3 Betweenness centrality

Betweenness centrality bestows larger centrality scores on vertices that lie on a larger
proportion of shortest paths linking pairs of other vertices. Let Pij denote the number
of shortest paths from vertex i to j, as defined above. Let Pij(k) denote the number of
shortest paths from vertex i to j containing vertex k. Then following Anthonisse (1971)
and Freeman (1977), the betweenness centrality measure for vertex k is defined as

∑
i�=j �=k �=i

Pij(k)
Pij

(3)

To normalize (3), divide by (|V | − 1)(|V | − 2), the maximum number of paths that a
given vertex could lie on between pairs of other vertices.2

2. Actual implementation is completed for undirected networks by calculating both Pij(k) and Pji(k),
and thus the numerator does not need to be multiplied by two.



98 Stata network analysis

3.4 Eigenvector centrality

Eigenvector centrality can provide an indication of how important a vertex is by having
the property of being large if a vertex has many neighbors, important neighbors, or
both. The measure first proposed by Bonacich (1972) defines the centrality of vertex i,
xi, as the sum of the centrality of its neighbors multiplied by a constant. That is, for
an undirected network with adjacency matrix A,

xi = λ−1
∑

j

Aijxj (4)

which can be rewritten as
λx = Ax (5)

Vector x in (5) is an eigenvector of adjacency matrix A, and λ is its corresponding
eigenvalue. The convention is to use the eigenvector corresponding to the dominant
eigenvalue of A. When the network is directed, the general concern is obtaining a
centrality measure based on how often a vertex is being pointed to and the importance
of neighbors associated with the incoming edges. Thus with a slight modification to (5),
eigenvector centrality is redefined as a vector x that satisfies

λx = A′x (6)

where A′ is the transposed adjacency matrix. As discussed in detail in Newman (2010,
sec. 7.2), there are several shortcomings to the eigenvector centrality, including that a
vertex with no incoming edges will always have centrality of zero. Furthermore, vertices
with neighbors that all have zero incoming edges will also have zero centrality because
the sum in (4) will not have any nonzero terms.

The Katz–Bonacich centrality, a variation of the eigenvector centrality, seeks to
address these issues.

3.5 Katz–Bonacich centrality

The additional inclusion of a free parameter (also called a decay factor) and a vector of
exogenous factors into (6) avoids the exclusion of vertices with zero incoming edges while
allowing connection values to decay over distance; this is attributed to the culmination of
works by Katz (1953), Bonacich (1987), and Bonacich and Lloyd (2001). The centrality
measure is defined as a solution to the equation

x = αA′x + β

where α is the free parameter and β is the vector of exogenous factors that can either
vary or remain constant across vertices. For the centrality measure to converge properly,
the absolute value of α must be less than the absolute value of the inverse of the dominant
eigenvalue of A. A positive α allows vertices with important neighbors to have higher
status, whereas a negative α reduces the status.



H. Miura 99

4 Clustering coefficient

A clustering coefficient is one way of gauging how tightly connected a network is. The
general idea is to consider transitive relations; that is, if vertex j is connected to vertex
i and i is connected to k, then j is also connected to k.

Global clustering coefficients provide indication of the degree of concentration of the
entire network and consist of overall and average clustering coefficients. The overall
clustering coefficient is equal to the number of observed transitive relations divided
by the number of possible transitive relations in the network. The average clustering
coefficient involves applying the definition of an overall clustering coefficient at the
vertex level and then averaging across all the vertices.

For an undirected, unweighted adjacency matrix A, the overall clustering coefficient
is defined as

co(A) =

∑
i;j �=i;k �=j;k �=i

AjiAikAjk∑
i;j �=i;k �=j;k �=i

AjiAik

(7)

where the numerator represents the sum over i of all closed triplets in which transitivity
holds and the denominator represents the sum over i of all possible triplets. With a
slight modification in notation, the local clustering coefficient for vertex i is defined as

ci(A) =

∑
j �=i;k �=j;k �=i

AjiAikAjk∑
j �=i;k �=j;k �=i

AjiAik

(8)

which leads to the average clustering coefficient:

ca(A) =
1
|V |

∑
i

ci(A) (9)

By convention, ci(A) = 0 if vertex i has zero links or only one link. Because the
average clustering coefficient computes clustering coefficients for each vertex and then
takes the average across all vertices, the coefficient gives more weight to low-degree
vertices, whereas the overall clustering coefficient takes the average across all triplets.
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(a) A closed triplet.
ci = 1.

(b) Closed and open
triplets. cp = 1/3.

Figure 2. Examples of triplets; drawn using netplot (Corten 2011)

Generalized methods exist for computing clustering coefficients. Building upon the
works of Barrat et al. (2004), Opsahl and Panzarasa (2009) proposed a set of measures
consisting of four types of coefficients, using either the arithmetic mean, geometric mean,
maximum, or minimum of the triplet values. Clustering coefficients for vertex i based on
the weighted adjacency matrix W and the corresponding unweighted adjacency matrix
A are calculated as

ci(W) =

∑
j �=i;k �=j;k �=i

ωAjk∑
j �=i;k �=j;k �=i

ω

where the scalar ω equals (Wji+Wik)/2 for arithmetic mean,
√

Wji × Wik for geometric
mean, max(Wji,Wik) for maximum, and min(Wji,Wik) for minimum.3 For unweighted
networks, W = A and the four types of clustering coefficients are all equal. For un-
weighted, undirected networks, the overall, local, and average clustering coefficients are
equal to (7), (8), and (9), respectively.

5 Maximum flow and minimum cut

The maximum-flow problem, first formulated by Harris and Ross in 1955, involves find-
ing the maximum value that can be routed from the source vertex to the sink vertex,
given available paths and capacity constraints along the edges.

In the context of the maximum-flow problem, the adjacency matrix A is called the
capacity matrix. Nonzero Aij entries represent capacity, or the maximum amount of
flow that edges can allow through. The flow matrix F contains entries representing the
actual amount of flow that goes through the edges. The residual capacity matrix R
represents the unused edge capacity and is defined as R = A − F.

The minimum cut is defined as a partition of graph G into two nonempty sets S
and T such that the number of edges (unweighted network) or the aggregation of edge
weights (weighted network) connecting S to T is minimal. The value to be minimized is
called the weight of the minimum cut, and sets S and T are called sets of source and sink

3. Calculations for the pair {Wki, Wij} are also conducted.
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vertices, respectively. The minimum-cut set is equal to the set {(i, j) ∈ E|i ∈ S, j ∈ T}
that minimizes ∑

(i,j)∈S×T

Aij

The maximum-flow minimum-cut theorem, obtained independently by Elias, Fein-
stein, and Shannon (1956) and Ford and Fulkerson (1956), states that the minimum-cut
weight is equal to the maximum-flow value.

Figure 3. Example network from the Boost graph library (BGL) from Siek, Lee, and
Lumsdaine (2001),4 manually drawn using Microsoft Excel. Fractions represent value
of flow in numerator and edge capacity in denominator. A maximum-flow value of 4 is
pushed from source vertex A to sink vertex H. Dashed edges (D,G) and (C,E) make
up the minimum-cut set with the sum of their capacities equal to 4, consistent with the
maximum-flow minimum-cut theorem.

4. http://www.boost.org/doc/libs/1 47 0/libs/graph/doc/graph theory review.html#fig:maximum-
flow.
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6 Mata implementation

6.1 Syntax

struct matrix struct scalar bfs sp(E, nodots)
struct matrix struct scalar dijkstra sp(E, nodots)
struct matrix struct scalar floyd warshall sp(E, nodots)
real vector bfs betweenness(E, nodots)
real vector brandes dijkstra betweenness(E, nodots)
struct matrix struct scalar clustering coefficients(E, nodots)
struct matrix struct scalar power(E, nodots, left)
real vector power katzbonacich(E, alpha, beta, nodots,

left)
struct matrix struct scalar edmonds karp max flow(E, s, t)
real vector bfs minimum cut(R, s)
real matrix sparse2full(E, initial)
real matrix full2sparse(X)

where

E: real matrix E (|E| × 3 edge list)
alpha: real scalar alpha (alpha parameter for Katz–Bonacich

centrality)
beta: real vector beta (|V | × 1 beta vector for Katz–Bonacich

centrality)
s: real scalar s (source vertex for maximum flow)
t: real scalar t (sink vertex for maximum flow)
R: real matrix R (|V | × |V | residual capacity matrix)
X: real matrix X (|V | × |V | input matrix)
nodots: string scalar nodots (optional indicator to suppress display

of status dots)
left: string scalar left (optional indicator to transpose

adjacency matrix)
initial: real scalar initial (optional initial real value of full matrix)

and matrix struct is a structure with real matrix variables X1 through X6.

6.2 Description

This section assumes familiarity with Mata and matrix programming (see [M-0] intro).

Structure matrix struct is already compiled as part of the Stata graph library
(SGL). Thus users will want to define a variable of type struct matrix struct scalar
in their functions to retrieve results from compiled functions that return objects as
members of the structure. For example, here is a function that returns a distance matrix
for an unweighted network that takes in an edge list matrix with optional parameters
for suppressing status dots and replacing missing values:
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(Lines enclosed with “/* */” denote comments)

real matrix distance matrix(real matrix E, |string scalar nodots,
real scalar infinity){
/* Declare variables. */
struct matrix struct scalar mystruct
real matrix D
/* Implement breadth-first search algorithm. */
mystruct=bfs sp(E,nodots)
/* Replace missing values. */
D=editmissing(mystruct.X1,infinity)
/* Return distance matrix. */
return(D)

}

In the following descriptions, we assume that the user has declared a variable
mystruct of type struct matrix struct scalar. See [M-2] struct.

bfs sp(E, . . .) returns the distance matrix, path matrix, leaf vertex matrix, and
adjacency list for an unweighted network in mystruct.X1, mystruct.X2, mystruct.X3,
and mystruct.X4, respectively. Dimensions of the distance, path, and leaf vertex ma-
trices are |V | × |V |, and dimensions of the adjacency list are |V | × m where m denotes
the largest number of outgoing edges among all vertices in the network.

dijkstra sp(E, . . .) returns the distance and path matrices for a weighted network
in mystruct.X1 and mystruct.X2, respectively. Dimensions of the distance and path
matrices are |V | × |V |.

floyd warshall sp(E, . . .) returns the distance matrix for both unweighted and
weighted networks in mystruct.X1. Dimensions of the distance matrix are |V | × |V |.

bfs betweenness(E, . . . ) returns the betweenness centrality vector for an un-
weighted network. Dimensions of the returned vector are |V | × 1.

brandes dijkstra betweenness(E, . . .) returns the betweenness centrality vector
for a weighted network. Dimensions of the returned vector are |V | × 1.

clustering coefficients(E, . . .) returns the overall and average clustering coeffi-
cients in mystruct.X1 and the local clustering coefficients in mystruct.X2.
mystruct.X1 contains a 2 × 4 matrix, and mystruct.X2 contains a |V | × 4 matrix.

power(E, . . .) returns the dominant eigenvector in mystruct.X1 and the dominant
eigenvalue in mystruct.X2 if convergence is achieved; the returned eigenvector has
dimensions |V | × 1. If convergence is not achieved, Mata error code 3360 is returned in
mystruct.X1.

power katzbonacich(E, alpha, beta, . . .) returns the Katz–Bonacich centrality
vector if convergence is achieved and Mata error code 3360 if convergence is not achieved.
The scalar alpha is the free parameter, and beta is the |V |×1 vector of exogenous factors.
The returned Katz–Bonacich centrality vector has dimensions |V | × 1.
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edmonds karp max flow(E, s, t) returns the maximum-flow value in mystruct.X1,
|V | × |V | flow matrix in mystruct.X2, and |V | × |V | residual capacity matrix in
mystruct.X3. The scalars s and t are the source vertex and the sink vertex, respectively.

bfs minimum cut(R, s) returns an indicator vector for the minimum cut with 1
indicating vertices that belong to the set of source vertices and −1 indicating vertices
that belong to the set of sink vertices. The returned vector has dimensions |V | × 1.

sparse2full(E, . . .) returns the full matrix corresponding to the inputted edge list
matrix E. The returned full matrix has dimensions |V | × |V |.

full2sparse(X) returns the |E|×3 edge list matrix corresponding to the full matrix
X.

nodots specifies whether to display status dots. If nodots is set to a nonempty string,
status dots are suppressed. Status dots are displayed if nodots is set to “ ” or is not set.

left specifies that the power method be implemented to calculate the left dominant
eigenvector. The right dominant eigenvector is calculated if left is set to “ ” or is not
set.

initial specifies initial values to fill the full matrix. If initial is not set, the default is
to fill the full matrix with all missing values.

6.3 Remarks

The SGL is compiled using Stata version 11.1.

Without loss in generality, all routines assume a directed one-mode network. An
undirected edge can be thought of as two directed edges, one going from vertex i to
j and another from j to i. Therefore, when working with an undirected network, the
edge list matrix E should have reciprocal relations defined. If reciprocal relations are
not defined, such that the edge from vertex i to j is stored but not the edge from j to
i, the edge list matrix must be redefined as

E = uniqrows((((E[., 1]\E[., 2]), (E[., 2]\E[., 1])), (E[., 3]\E[., 3]))) (10)

where uniqrows() returns sorted, unique values. See [M-5] uniqrows( ).

Reciprocal relations for weighted networks must be defined with caution. If the initial
edge list matrix contains (i, j, w1) and (j, i, w2) where w1 �= w2, then (10) would produce
(i, j, w1), (j, i, w2), (j, i, w1), and (i, j, w2), resulting in parallel edges and violating one
of the assumptions laid out in section 1.2. In such cases, an appropriate adjustment of
edge weights may need to be conducted beforehand to avoid generating parallel edges.
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The third column consisting of edge weights is required. When connections are
intended to represent proximity or intensity, a transformation of those weights may
be necessary. If dijkstra sp() is called for an undirected network with edge weights
stored as double fails to produce symmetric matrices, try converting edge weights to
float. See [M-5] floatround( ).

bfs sp() implements the breadth-first search single-source shortest-path algorithm
(the algorithm follows Newman [2010, sec. 10.3]).

bfs betweenness() calls bfs sp() and uses the resulting matrices to compute be-
tweenness centrality (the algorithm follows Newman [2010, sec. 10.3]).

dijkstra sp() implements Dijkstra’s single-source shortest-path algorithm based
on pseudocode provided by Siek, Lee, and Lumsdaine (2001).5

floyd warshall sp() implements the Floyd–Warshall all-pairs shortest-path algo-
rithm based on pseudocode available from Wikipedia.6

brandes dijkstra betweenness() implements Brandes’s (2001) method of calcu-
lating betweenness centrality for weighted networks while using Dijkstra’s algorithm to
find shortest paths.

clustering coefficients() returns a 2 × 4 matrix in mystruct.X1 with the first
row corresponding to overall coefficients and the second row corresponding to aver-
age coefficients. Columns one to four correspond to coefficients calculated using the
arithmetic mean, geometric mean, maximum, and minimum, respectively. The |V | × 4
matrix returned in mystruct.X2 maintains the same column ordering, but the rows
correspond to local clustering coefficients instead. When the network is unweighted,
the four calculation methods produce the same number.

power() and power katzbonacich() routines implement the power method using
the sparse matrix or the coordinate list data structure of edge list matrix E, respectively.
Convergence criteria consist of two rules: There is a maximum of 16,000 iterations, and
the maximum relative difference signals convergence if mreldif() drops below 1e−10
(see [M-5] reldif( )). Depending on the size and density of the network, the power
method may provide faster and equally accurate results compared with using Mata’s
built-in linear algebra functions.

edmonds karp max flow() implements the Edmonds–Karp algorithm based on
pseudocode available from Wikipedia.7

bfs minimum cut() implements a breadth-first search of the residual capacity matrix
returned from running edmonds karp max flow() to determine the sets of source and
sink vertices.

5. http://www.boost.org/doc/libs/1 47 0/libs/graph/doc/dijkstra shortest paths.html.
6. http://en.wikipedia.org/wiki/Floyd-Warshall algorithm.
7. http://en.wikipedia.org/wiki/Edmonds-Karp algorithm.
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7 Stata implementation (1): SGL wrapper

7.1 Syntax

netsis varname source varname target
[
if
] [

in
]
, measure(network measure)[

name(mata mname
[
, replace

]
) weight(weightvar) label(var prefix

[
,

replace
]
) directed nodots infinity(real) power notranspose alpha(real)

beta(beta varlist) source(string) sink(string) mincut residual
]

where network measure can be one of the following:

adjacency adjacency matrix
distance distance matrix
path path matrix
betweenness betweenness centrality
clustering local and overall/average clustering coefficients
eigenvector eigenvector centrality
maxalpha maximum free parameter alpha
katzbonacich Katz–Bonacich centrality
maxflow maximum-flow minimum-cut

varname source and varname target must be either both numeric or both string type
variables. When working with an undirected network, the notions of source and target
do not matter. Furthermore, reciprocal relations for undirected networks do not need
to be defined when using the netsis command in Stata. Caution must still be exer-
cised when working with weights, however, as outlined in section 6.3. weightvar and
beta varlist must be type numeric with variables of beta varlist corresponding to the
order of varname source and varname target.

netsis will return an error code of 198 and exit if parallel edges, self-loops, or
nonpositive weights are encountered. Otherwise, the analysis sample will automatically
exclude isolated vertices, edges with missing weights (if weightvar is specified), and
vertices with missing beta exogenous factors (if beta varlist is specified).

7.2 Options

measure(network measure) specifies the network measure to be computed. measure()
is required.

name(mata mname
[
, replace

]
) specifies the name of the Mata matrix in which to

store results. replace requests that the existing Mata matrix be overwritten.

weight(weightvar) specifies a numeric edge weight variable. By default, edge weights
are set to one for all vertices internally to assume an unweighted network.

label(var prefix
[
, replace

]
) specifies that vertex labels be returned to Stata with

variable names prefixed with var prefix and suffixed with source and target for
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varname source and varname target, respectively. replace also specifies that exist-
ing same-named label variables be overwritten.

directed specifies directed edges. By default, edges are assumed to be undirected.

nodots specifies that status dots be suppressed.

infinity(real) specifies a real number to replace missing or “infinite” distances. Scalars
returned in e() refer to the matrix before replacement. name(mata mname) contains
the distance matrix after replacement. infinity() applies only when generating a
distance matrix.

power specifies that the power method be implemented in computing the eigenvector
centrality, maximum alpha, and Katz–Bonacich centrality. By default, Mata’s built-
in linear algebra functions are used.

notranspose specifies that the adjacency matrix not be transposed when computing
the eigenvector and Katz–Bonacich centralities. By default, the adjacency matrix
is transposed.

alpha(real) specifies a real number for the free parameter in the Katz–Bonacich cen-
trality calculation. The default is alpha(1).

beta(beta varlist) specifies exogenous factors for the Katz–Bonacich centrality measure.
By default, exogenous factors are set to one for all vertices.

source(string) specifies the source vertex for maximum-flow minimum-cut. The vertex
name should be enclosed in double quotes even if it is numeric.

sink(string) specifies the sink vertex for maximum-flow minimum-cut. The vertex
name should be enclosed in double quotes even if it is numeric.

mincut specifies that the sets of source and sink vertices be determined from the breadth-
first search of the residual capacity matrix produced by maximum-flow calculation.
An indicator vector is returned instead of the default flow matrix. mincut cannot
be specified with residual.

residual specifies that the residual capacity matrix be returned instead of the default
flow matrix. residual cannot be specified with mincut.

7.3 Remarks

netsis is a wrapper for class network measure, which is itself a wrapper for functions
compiled in SGL. Because SGL functions are each designed to complete specific tasks, a
class wrapper is useful in providing additional organization. See [M-2] class.

netsis does not store results as Stata matrices. See [M-5] st matrix( ) for how to
transfer Mata matrices from and to Stata.

netsis is designed for a one-mode network, which is defined as a network with
vertices all of the same type. Projections can be made from a two-mode network (a
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network where vertices are classified into two different types) onto a one-mode network
by separately considering a network for each type. For example, a two-mode film af-
filiation network with |V |a actors and |V |m movies as vertices can be projected onto
two one-mode networks: A |V |a-vertex network with vertices representing actors and
edges indicating the appearance of actors in the same film, and a |V |m-vertex network
with vertices representing movies and edges indicating movies sharing a common actor
(Newman 2010, sec. 6.6). joinby can be used to accomplish the projection as shown in
section 9.1.

The recommended approach to using the Katz–Bonacich function is to first obtain
maximum alpha by using maxalpha(), and then based on the returned value, specify
the alpha() option while calling katzbonacich(). Note that singular or near-singular
matrices pose computational problems, and thus eigenvector(), maxalpha(), and
katzbonacich() functions may not converge in such cases.

. . ., measure(clustering) name(mata mname) stores the mata mname matrix in
the Mata programming language, where columns one through four correspond to local
clustering coefficients based on the arithmetic mean, geometric mean, maximum, and
minimum, respectively.

When implementing maximum-flow minimum-cut, the default return object when
both the mincut and the residual option is suppressed is the flow matrix. The mincut
and residual options cannot be specified at the same time.

7.4 Saved results

netsis, measure(network measure), where network measure is equal to one of
adjacency, distance, path, betweenness, or katzbonacich, saves the following in
e():

Scalars
e(mean) mean(mean(X)’) e(sum) sum(X)
e(min) min(X) e(missing) missing(X)
e(max) max(X) e(nonmissing) nonmissing(X)

netsis, measure(clustering) saves the following in e():

Matrices
e(cc) overall and average coefficients

netsis, measure(eigenvector) saves the following in e():

Scalars
e(l) dominant eigenvalue e(sum) sum(X)
e(mean) mean(mean(X)’) e(missing) missing(X)
e(min) min(X) e(nonmissing) nonmissing(X)
e(max) max(X)

netsis, measure(maxalpha) saves the following in e():

Scalars
e(alpha max) maximum alpha
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netsis, measure(maxflow) saves the following in e():

Scalars
e(flow max) maximum-flow value e(sum) sum(X)
e(mean) mean(mean(X)’) e(missing) missing(X)
e(min) min(X) e(nonmissing) nonmissing(X)
e(max) max(X)

In addition, all network measures return the following in e():

Scalars
e(vertices) number of vertices e(edges) number of edges

Macros
e(cmd) netsis e(measure) network measure
e(cmdline) command as typed e(edge) unweighted or weighted
e(source) source vertex variable e(network) undirected or directed
e(target) target vertex variable

Functions
e(sample) marks estimation sample

8 Stata implementation (2): Postcomputation command

8.1 Syntax

netsummarize mata exp, generate(newvar prefix) statistic(stat name)

where stat name can be one of the following:

mean mean(mean(mata exp)’)
min min(mata exp)
max max(mata exp)
sum sum(mata exp)
missing missing(mata exp)
nonmissing nonmissing(mata exp)
rowmean mean(mata exp’)’
rowmin rowmin(mata exp)
rowmax rowmax(mata exp)
rowsum rowsum(mata exp)
rowmissing rowmissing(mata exp)
rownonmissing rownonmissing(mata exp)
colmean mean(mata exp)’
colmin colmin(mata exp)’
colmax colmax(mata exp)’
colsum colsum(mata exp)’
colmissing colmissing(mata exp)’
colnonmissing colnonmissing(mata exp)’

mata exp must be a Mata matrix or a Mata expression, and it must evaluate to either a
scalar, a |V |×1 column vector, or a |V |×|V | matrix. New variables newvar prefix source
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and newvar prefix target are generated for varname source and varname target, respec-
tively. See [M-5] sum( ), [M-5] mean( ), [M-5] missing( ), and [M-5] minmax( ).

8.2 Remarks

Constructing network measures can be time intensive. The postcomputation command
allows the user to generate multiple statistics after a network object has been created.
For example, after generating a distance matrix D, the user can generate variables for
closeness centrality with the command8

netsummarize (rows(D)-1):/rowsum(D), generate(closeness) statistic(rowsum)

Specifying rowmin or rowmax would have also worked because the expression eval-
uates to a column vector. You also could have set the closeness centrality to a Mata
vector beforehand and inserted it as mata exp.

9 Examples

9.1 Creating a one-mode projection from a two-mode network

Here let’s illustrate the method of creating a one-mode network out of a two-mode
network dataset by using the joinby command (see [D] joinby). The sample dataset
of movies and actors, from the BGL’s installation package (Siek, Lee, and Lumsdaine
2001), is based on the Six Degrees of Kevin Bacon game created by Fass, Turtle, and
Ginelli (1996). kevin-bacon.dta contains data for a two-mode network of movies and
actors, with edges indicating an actor’s appearance in a film. By conducting a projection
onto the actors, we can create a one-mode network with vertices representing actors and
edges representing the appearance of actors in the same movie. See the result in figure 4.

. // Load Kevin Bacon two-mode network dataset.

. use kevin-bacon
(Kevin Bacon two-mode network dataset (Siek et al. 2001))

. // Generate one-mode network of actors. An edge between actors

. // represents actors appearing in the same movie.

. rename actor actor1

. preserve

. rename actor1 actor2

. save temp_using, replace
(note: file temp_using.dta not found)
file temp_using.dta saved

. restore

. joinby movie using temp_using

. // Remove self-loops.

. drop if actor1==actor2
(91 observations deleted)

8. When working with networks involving disconnected components, users may want to specify
(rownonmissing(D)-J(rows(D),1,1)):/rowsum(D) as the mata exp. Refer to section 3.2.
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. // Describe data.

. describe

Contains data
obs: 124 Kevin Bacon two-mode network

dataset (Siek et al. 2001)
vars: 3
size: 8,308 (_dta has notes)

storage display value
variable name type format label variable label

movie str33 %33s Movie
actor1 str17 %17s Actor
actor2 str17 %17s Actor

Sorted by:
Note: dataset has changed since last saved

Figure 4. A one-mode network of actors. Sample dataset from BGL (Siek, Lee, and
Lumsdaine 2001); drawn using netplot (Corten 2011)
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9.2 Workflow using pajek2stata, netsis, and netsummarize

Next we create an example workflow using the pajek2stata (Corten 2010), netsis,
and netsummarize commands to convert a Pajek (Batagelj and Mrvar 2011) .net file
to Stata format, and then computing the network centrality measures. See figure 5. The
dataset, consisting of fifteenth-century Florentine marriages, is from Padgett and Ansell
(1993). The network is undirected and unweighted with the isolated vertex Pucci re-
moved.

. // Transfer Pajek´s .net file into Stata using Rense Corten´s

. // pajek2stata.ado.

. pajek2stata using florentine_marriages.net, name(X) clear replace

Vertices: 15
Network matrix format: Edges
Network matrix shape (r x c): 20 X 2

. // Display edge list saved as Mata matrix.

. mata X
1 2

1 1 2
2 1 3
3 1 4
4 2 3
5 2 5
6 3 6
7 3 4
8 4 7
9 5 8

10 6 8
11 6 9
12 8 9
13 8 10
14 8 11
15 8 12
16 9 7
17 7 13
18 7 10
19 10 14
20 11 15



H. Miura 113

. // Display vertex label.

. list

var1 var2

1. 1 Peruzzi
2. 2 Castellan
3. 3 Strozzi
4. 4 Bischeri
5. 5 Barbadori

6. 6 Ridolfi
7. 7 Guadagni
8. 8 Medici
9. 9 Tornabuon
10. 10 Albizzi

11. 11 Salviati
12. 12 Acciaiuol
13. 13 Lambertes
14. 14 Ginori
15. 15 Pazzi

. destring var1, replace
var1 has all characters numeric; replaced as byte

. // Generate new value-label. See [M-5] st_vlexists().

. mata st_vlmodify("vertex_label",st_data(.,"var1"),st_sdata(.,"var2"))

. label list vertex_label
vertex_label:

1 Peruzzi
2 Castellan
3 Strozzi
4 Bischeri
5 Barbadori
6 Ridolfi
7 Guadagni
8 Medici
9 Tornabuon

10 Albizzi
11 Salviati
12 Acciaiuol
13 Lambertes
14 Ginori
15 Pazzi

. // Store edge list in Stata.

. drop var*

. getmata (source target)=X

. // Assign value label to variables.

. label values source target vertex_label
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. list

source target

1. Peruzzi Castellan
2. Peruzzi Strozzi
3. Peruzzi Bischeri
4. Castellan Strozzi
5. Castellan Barbadori

6. Strozzi Ridolfi
7. Strozzi Bischeri
8. Bischeri Guadagni
9. Barbadori Medici
10. Ridolfi Medici

11. Ridolfi Tornabuon
12. Medici Tornabuon
13. Medici Albizzi
14. Medici Salviati
15. Medici Acciaiuol

16. Tornabuon Guadagni
17. Guadagni Lambertes
18. Guadagni Albizzi
19. Albizzi Ginori
20. Salviati Pazzi

. // Generate degree centrality.

. netsis source target, measure(adjacency) name(A,replace)
matrix A saved in Mata

. netsummarize A/(rows(A)-1), generate(degree) statistic(rowsum)

. // Generate closeness centrality.

. netsis source target, measure(distance) name(D,replace)

Breadth-first search algorithm (15 vertices)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
...............
Breadth-first search algorithm completed
matrix D saved in Mata

. netsummarize (rows(D)-1):/rowsum(D), generate(closeness) statistic(rowsum)

. // Generate betweenness centrality.

. netsis source target, measure(betweenness) name(b,replace)

Breadth-first search algorithm (15 vertices)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
...............
Breadth-first search algorithm completed

Betweenness centrality calculation (15 vertices)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
...............
Betweenness centrality calculation completed
matrix b saved in Mata

. netsummarize b/((rows(b)-1)*(rows(b)-2)), generate(betweenness)
> statistic(rowsum)
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. // Generate eigenvector centrality.

. netsis source target, measure(eigenvector) name(e,replace)
matrix e saved in Mata

. netsummarize e, generate(eigenvector) statistic(rowsum)

. // Describe and list results.

. describe, full

Contains data
obs: 20
vars: 10
size: 680

storage display value
variable name type format label variable label

source byte %10.0g vertex_label

target byte %10.0g vertex_label

degree_source float %9.0g rowsum of Mata matrix
A/(rows(A)-1)

degree_target float %9.0g rowsum of Mata matrix
A/(rows(A)-1)

closeness_source
float %9.0g rowsum of Mata matrix

(rows(D)-1):/rowsum(D)
closeness_target

float %9.0g rowsum of Mata matrix
(rows(D)-1):/rowsum(D)

betweenness_source
float %9.0g rowsum of Mata matrix

b/((rows(b)-1)*(rows(b)-2))
betweenness_target

float %9.0g rowsum of Mata matrix
b/((rows(b)-1)*(rows(b)-2))

eigenvector_source
float %9.0g rowsum of Mata matrix e

eigenvector_target
float %9.0g rowsum of Mata matrix e

Sorted by:
Note: dataset has changed since last saved
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. list source target degree* closeness*

source target degree~e degree~t closen~e closen~t

1. Peruzzi Castellan .2142857 .2142857 .368421 .3888889
2. Peruzzi Strozzi .2142857 .2857143 .368421 .4375
3. Peruzzi Bischeri .2142857 .2142857 .368421 .4
4. Castellan Strozzi .2142857 .2857143 .3888889 .4375
5. Castellan Barbadori .2142857 .1428571 .3888889 .4375

6. Strozzi Ridolfi .2857143 .2142857 .4375 .5
7. Strozzi Bischeri .2857143 .2142857 .4375 .4
8. Bischeri Guadagni .2142857 .2857143 .4 .4666667
9. Barbadori Medici .1428571 .4285714 .4375 .56
10. Ridolfi Medici .2142857 .4285714 .5 .56

11. Ridolfi Tornabuon .2142857 .2142857 .5 .4827586
12. Medici Tornabuon .4285714 .2142857 .56 .4827586
13. Medici Albizzi .4285714 .2142857 .56 .4827586
14. Medici Salviati .4285714 .1428571 .56 .3888889
15. Medici Acciaiuol .4285714 .0714286 .56 .368421

16. Tornabuon Guadagni .2142857 .2857143 .4827586 .4666667
17. Guadagni Lambertes .2857143 .0714286 .4666667 .3255814
18. Guadagni Albizzi .2857143 .2142857 .4666667 .4827586
19. Albizzi Ginori .2142857 .0714286 .4827586 .3333333
20. Salviati Pazzi .1428571 .0714286 .3888889 .2857143

. list source target betweenness* eigenvector*

source target betwee~e betwee~t eigenv~e eigenv~t

1. Peruzzi Castellan .021978 .0549451 .2757304 .2590262
2. Peruzzi Strozzi .021978 .1025641 .2757304 .3559805
3. Peruzzi Bischeri .021978 .1043956 .2757304 .2828001
4. Castellan Strozzi .0549451 .1025641 .2590262 .3559805
5. Castellan Barbadori .0549451 .0934066 .2590262 .2117053

6. Strozzi Ridolfi .1025641 .1135531 .3559805 .3415526
7. Strozzi Bischeri .1025641 .1043956 .3559805 .2828001
8. Bischeri Guadagni .1043956 .2545788 .2828001 .2891156
9. Barbadori Medici .0934066 .521978 .2117053 .4303081
10. Ridolfi Medici .1135531 .521978 .3415526 .4303081

11. Ridolfi Tornabuon .1135531 .0915751 .3415526 .3258423
12. Medici Tornabuon .521978 .0915751 .4303081 .3258423
13. Medici Albizzi .521978 .2124542 .4303081 .2439561
14. Medici Salviati .521978 .1428571 .4303081 .1459172
15. Medici Acciaiuol .521978 0 .4303081 .1321543

16. Tornabuon Guadagni .0915751 .2545788 .3258423 .2891156
17. Guadagni Lambertes .2545788 0 .2891156 .0887919
18. Guadagni Albizzi .2545788 .2124542 .2891156 .2439561
19. Albizzi Ginori .2124542 0 .2439561 .0749227
20. Salviati Pazzi .1428571 0 .1459172 .0448134
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(a) Betweenness centrality. (b) Eigenvector centrality.

Figure 5. The centrality measures are reported in parentheses. The network of Flo-
rentine marriages is based on data from Padgett and Ansell (1993) and is drawn using
netplot (Corten 2011).

9.3 Time-series analysis

The use of if exp allows network measures to be easily generated for subsamples of
data. Let’s consider a country-level relational dataset and generate overall clustering
coefficients for each of the reported years. The dataset is from publicly available Inter-
national Monetary Fund (IMF) Coordinated Portfolio Investment Survey (CPIS) data,
Table 8.1—Geographic Breakdown of Portfolio Investment Assets: Equity Securities
(2010). Surveys conducted from 2001 through 2009 are available. The data are pro-
vided in matrix format with ij entries pertaining to the amount of country i’s equity
securities held by country j. Only information on positive investment is used and edge
weights are taken to be the inverse of investment deflated using the U.S. consumer price
index from the World Bank (2011). Edge weights should reflect proximity between
countries that have larger cross-border security holdings. The network is directed.

We focus on the overall measure of clustering coefficients, because nonrespondents
from the surveys are included in the network as vertices with only incoming edges, and
their local clustering coefficient value of zero causes a bias in the average clustering
coefficient toward zero; see figure 6.
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. // Load IMF CPIS dataset.

. use imfcpis, clear
(IMF Coordinated Portfolio Investment Survey: Table 8.1 - Equity Securities)

. describe

Contains data from imfcpis.dta
obs: 26,160 IMF Coordinated Portfolio

Investment Survey: Table 8.1 -
Equity Securities

vars: 6 7 May 2011 12:54
size: 3,793,200 (_dta has notes)

storage display value
variable name type format label variable label

source str34 %34s Holder of equity securities, IMF
CPIS

target str95 %95s Issuer of equity securities, IMF
CPIS

weight float %9.0g Edge weight - inverse of deflated
investment in USD, author

year float %9.0g Year
investment long %10.0g Year-end holdings of equity

securities in millions of
nominal USD, IMF CPIS

uscpi float %9.0g US Consumer price index (2005 =
100), World Bank WDI

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

source 0
target 0
weight 26160 1.72e-07 3.07e-07 1.49e-12 1.10e-06

year 26160 2005.393 2.531253 2001 2009
investment 26160 3479.511 20176.56 1 714928

uscpi 26160 101.4221 6.906585 90.6678 110.2466
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. // Compute clustering coefficients for each year.

. // Suppress status dots.

. forvalues i=2001/2009{
2. di ""
3. di "** Year: `i´ **"
4. netsis source target if year==`i´, measure(clustering) directed

> weight(weight) nodots
5. matrix list e(cc)
6. }

** Year: 2001 **

Clustering coefficients calculation (170 vertices)
Clustering coefficients calculation completed

e(cc)[2,4]
Arithmetic~n Geometric_~n Maximum Minimum

Overall .40182592 .35888101 .41012444 .33131425
Average .2318437 .2094 .23590407 .19882116

(output omitted )

** Year: 2009 **

Clustering coefficients calculation (195 vertices)
Clustering coefficients calculation completed

e(cc)[2,4]
Arithmetic~n Geometric_~n Maximum Minimum

Overall .47241108 .42340634 .48064443 .40074538
Average .22293559 .1971275 .22709754 .18638563

Figure 6. Annual networks of reporting economies from the IMF CPIS data, Table 8.1—
Geographic Breakdown of Portfolio Investment Assets: Equity Securities.
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9.4 Relational to panel dataset

In this section, we demonstrate an example of a workflow that begins with a relational
dataset and results in an unbalanced panel dataset that can be used to run regressions.

The relational data are from the IMF CPIS dataset used in the previous example.
Economic, geographic, and governance indicators for the years 2002–2009 are obtained
from the World Bank’s World Development Indicators and Worldwide Governance In-
dicators databases (The World Bank 2010, 2011). To facilitate the merging of the two
datasets, country names in the World Bank dataset are changed to conform with that
of the IMF CPIS dataset. A topic of interest may be to see what factors were important
in attracting foreign investment during this period.

Using the IMF CPIS relational dataset for each of the years 2002–2009, we compute
ineccentricity and eigenvector centrality. Ineccentricity is defined as the maximum value
of incoming shortest paths and is equal to the column maximum of the distance matrix
for the weighted, directed network. Because edge weight is equal to the inverse of
deflated investment, smaller ineccentricity suggests proximity to neighboring vertices.
In computing eigenvector centrality, we use a different type of edge weight instead
and use real investment, because eigenvector centrality bestows larger values on more
important vertices.

. // Load IMF CPIS dataset.

. use imfcpis, clear
(IMF Coordinated Portfolio Investment Survey: Table 8.1 - Equity Securities)

. // Drop year 2001 - World Bank data is available from 2002 to 2009.

. drop if year==2001
(2260 observations deleted)

. // Compute ineccentricity.

. forvalues i=2002/2009{
2. netsis source target if year==`i´, measure(distance) name(D`i´,replace)

> weight(weight) directed nodots
3. netsummarize D`i´, generate(ineccentricity`i´) statistic(colmax)
4. }

Dijkstra´s search algorithm (174 vertices)
Dijkstra´s search algorithm completed
matrix D2002 saved in Mata

(output omitted )

Dijkstra´s search algorithm (195 vertices)
Dijkstra´s search algorithm completed
matrix D2009 saved in Mata

. // Transfer results to one variable per source and target.

. generate ineccentricity_source=.
(23900 missing values generated)

. label variable ineccentricity_source "ineccentricity"

. generate ineccentricity_target=.
(23900 missing values generated)

. label variable ineccentricity_target "ineccentricity"
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. forvalues i=2002/2009{
2. quietly replace ineccentricity_source=ineccentricity`i´_source if

> year ==`i´
3. quietly replace ineccentricity_target=ineccentricity`i´_target if

> year ==`i´
4. }

. drop *eccentricity200*

. // Compute eigenvector centrality.

. // Generate and use real investment as edge weight.

. generate realinvestment=investment/(uscpi/100)

. forvalues i=2002/2009{
2. netsis source target if year==`i´, measure(eigenvector)

> name(e`i´,replace) weight(realinvestment) directed nodots
3. netsummarize e`i´, generate(eigenvector`i´) statistic(rowsum)
4. }

matrix e2002 saved in Mata
matrix e2003 saved in Mata
matrix e2004 saved in Mata
matrix e2005 saved in Mata
matrix e2006 saved in Mata
matrix e2007 saved in Mata
matrix e2008 saved in Mata
matrix e2009 saved in Mata

. // Transfer results to one variable per source and target.

. generate eigenvector_source=.
(23900 missing values generated)

. label variable eigenvector_source "eigenvector"

. generate eigenvector_target=.
(23900 missing values generated)

. label variable eigenvector_target "eigenvector"

. forvalues i=2002/2009{
2. quietly replace eigenvector_source=eigenvector`i´_source if year==`i´
3. quietly replace eigenvector_target=eigenvector`i´_target if year==`i´
4. }

. drop *eigenvector200*

. rename ineccentricity_target ineccentricity

. rename eigenvector_target eigenvector

. // Collapse by target country and year.

. collapse (sum) weight (sum) investment (sum) realinvestment (mean) uscpi
> (mean) ineccentricity (mean) eigenvector, by(target year)

. // Merge in World Bank data. Keep matched observations.

. rename target country

. label variable country "Country name"

. merge 1:1 country year using worldbank, keep(matched) nogenerate

Result # of obs.

not matched 0
matched 1,287

. // Declare data to be a panel.

. encode country, generate(country2)
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. xtset country2 year
panel variable: country2 (unbalanced)
time variable: year, 2002 to 2009, but with gaps

delta: 1 unit

. label data "Country-level panel data"

. describe

Contains data
obs: 1,287 Country-level panel data
vars: 20
size: 284,427 (_dta has notes)

storage display value
variable name type format label variable label

country str95 %95s Country name
year float %9.0g Year
weight double %9.0g (sum) weight
investment double %10.0g (sum) investment
realinvestment double %9.0g (sum) realinvestment
uscpi float %9.0g (mean) uscpi
ineccentricity float %9.0g (mean) ineccentricity
eigenvector float %9.0g (mean) eigenvector
exrate float %9.0g DEC alternative conversion factor

(LCU per US$)
gdpgrowth float %9.0g GDP growth (annual %)
inflation float %9.0g Inflation, consumer prices

(annual %)
region str26 %26s Region
incomegroup str20 %20s Income Group
corruption float %9.0g Control of Corruption: Estimate
effectiveness float %9.0g Government Effectiveness:

Estimate
stability float %9.0g Political Stability and Absence

of Violence/Terrorism: Estimate
regulation float %9.0g Regulatory Quality: Estimate
ruleoflaw float %9.0g Rule of Law: Estimate
accountability float %9.0g Voice and Accountability:

Estimate
country2 long %38.0g country2 Country name

Sorted by: country2 year
Note: dataset has changed since last saved
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. summarize

Variable Obs Mean Std. Dev. Min Max

country 0
year 1287 2005.625 2.278011 2002 2009

weight 1287 2.95e-06 2.52e-06 4.65e-09 .0000121
investment 1287 64439.03 218706.4 1 2383743

realinvest~t 1287 62613.31 210932.3 .9070571 2245200

uscpi 1287 101.9301 6.458229 92.10583 110.2466
ineccentri~y 1287 3.52e-07 2.52e-07 3.71e-08 1.47e-06
eigenvector 1287 .0249071 .0746418 0 .5546467

exrate 1222 506.7404 1860.914 .268788 17065.08
gdpgrowth 1214 4.225663 5.11624 -41.3 40.79159

inflation 1124 29.91726 728.86 -13.22581 24411.03
region 0

incomegroup 0
corruption 1260 .1205744 1.031661 -2.016047 2.466556

effectiven~s 1260 .1524394 1.006756 -2.249335 2.267191

stability 1270 .0321373 .9800003 -2.880965 1.596395
regulation 1260 .1565138 .9833775 -2.691515 1.992202
ruleoflaw 1272 .0948148 .9989472 -2.576503 1.964045

accountabi~y 1271 .0841978 .9925295 -2.290506 1.826686
country2 1287 97.04817 54.78466 1 191

9.5 Maximum flow and minimum cut

Here we demonstrate a method of obtaining the flow matrix, residual capacity matrix,
and the vector indicating sets of source and sink vertices of the minimum cut of the
example network presented in section 5. The directed edge list includes a third column
for edge capacity.

. // Load max-flow min-cut network dataset.

. use max-flow_min-cut, clear
(Max-flow min-cut network dataset (Siek et al. 2001))

. // Generate and display flow matrix.

. netsis v1 v2, measure(maxflow) weight(capacity) directed source("A")
> sink("H") name(F,replace)

Edmonds-Karp algorithm
Edmonds-Karp algorithm completed
matrix F saved in Mata

. mata F
1 2 3 4 5 6 7 8

1 0 4 0 0 0 0 0 0
2 0 0 4 0 0 0 0 0
3 0 0 0 2 2 0 0 0
4 0 0 0 0 0 0 2 0
5 0 0 0 0 0 3 0 0
6 0 0 0 0 0 0 0 3
7 0 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0
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. // Generate and display residual capacity matrix.

. netsis v1 v2, measure(maxflow) weight(capacity) directed source("A")
> sink("H") name(R,replace) residual

Edmonds-Karp algorithm
Edmonds-Karp algorithm completed
matrix R saved in Mata

. mata R
1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 0 3 0 0 0 0
4 0 5 0 0 0 0 0 0
5 0 0 0 0 0 2 0 0
6 0 0 0 0 0 0 5 1
7 0 0 0 0 4 0 0 0
8 0 0 0 0 0 0 0 0

. // Generate variables indicating sets of source and sink vertices.

. netsis v1 v2, measure(maxflow) weight(capacity) directed source("A")
> sink("H") name(m,replace) mincut

Edmonds-Karp algorithm
Edmonds-Karp algorithm completed

Breadth-first search algorithm
Breadth-first search algorithm completed
matrix m saved in Mata

. netsummarize m, generate(mincut) statistic(rowsum)

. list

v1 v2 capacity mincut~e mincut~t

1. A B 5 1 1
2. B C 5 1 1
3. C D 5 1 1
4. C E 2 1 -1
5. D B 5 1 1

6. D G 2 1 -1
7. E F 5 -1 -1
8. F G 5 -1 -1
9. F H 4 -1 -1
10. G E 5 -1 -1

11. G H 1 -1 -1

. // Make sure minimum cut weight equals maximum flow value as should be the

. // case by the max-flow min-cut theorem.

. egen mincap=sum(capacity) if mincut_source==1 & mincut_target==-1
(9 missing values generated)

. quietly sum mincap

. assert r(mean)==e(flow_max)
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10 Function and performance testing

10.1 Testing results using C++ and R

The following table (table 1) provides information about packages used to check network
measures for each type of network. These packages include the BGL in C++ (Siek, Lee,
and Lumsdaine 2001) and sna/igraph in R (Butts 2010; Csardi and Nepusz 2006).9

For each of the directed and undirected networks, function tests are conducted for
weighted and unweighted networks, for a series of random networks with |V | starting
from approximately 100 and increasing to a maximum of 500 in increments of about 50
vertices. Maximum density, defined as |E|/|V |2 with undirected edges counted as two
directed edges, is set to 0.1 in all networks.

For clustering coefficients, “L” denotes local, “A” denotes average, and “O” denotes
overall. “NA”s are inserted for cases where the packages used do not compute network
measures for the particular network type or in cases where the network structure is
computationally problematic, such as for packages that differ in handling near-singular
matrices.

9. We use BGL following Gleich (2008) and Carey, Long, and Gentleman (2011). Programs used for
function and performance tests are available at
https://sites.google.com/site/statagraphlibrary/sgl-qa.
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Table 1. Function tests involving BGL are successful if the network measures generated
using SGL and BGL are equal. For tests involving R packages, the success condition is
evaluated for when maximum relative difference, mreldif(), between SGL and measures
produced in R is less than 1e−7. See [M-5] reldif( ).

Unweighted Weighted
Undirected Directed Undirected Directed

Adjacency matrix BGL BGL BGL BGL

Distance matrix BGL BGL BGL BGL

Path matrix BGL BGL BGL BGL

Betweenness centrality BGL BGL BGL BGL

Eigenvector centrality igraph NA igraph NA

Katz–Bonacich centrality igraph igraph igraph igraph

Clustering coefficient igraph sna
NA NA(L,A,O) (O)

Maximum-flow minimum-cut BGL BGL BGL BGL

10.2 Performance tests

Time complexity is an issue, especially for weighted networks. In the function tests
completed above, the current SGL algorithm implementation times for computing the
distance matrix and betweenness centrality increase exponentially when the number of
vertices increases. Illustrations below (in figure 7) demonstrate algorithm completion
times for both SGL and BGL routines on directed, weighted networks. Similar figures
occur for undirected, weighted cases.

The difference between SGL and BGL completion times is not as stark for unweighted
networks. Although SGL routines take longer than BGL, the divergence is not as great
as what is reported from tests involving weighted networks. For a random directed,
unweighted network of approximately 500 vertices, computing the distance matrix and
betweenness centrality takes about 10.93 and 26.03 seconds, respectively, whereas the
corresponding completion times are about 5.18 and 5.86 seconds using BGL. Similar
figures occur for undirected, unweighted networks.
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Figure 7. Distance matrix and betweenness centrality computations for randomly gener-
ated directed, weighted networks with maximum density of 0.1. Tests are conducted for
network sizes in increments of approximately 50 vertices from |V | ∼ 100 to |V | ∼ 500.
SGL is run on 4-core Stata/MP version 11.1 and uses Dijkstra’s single-source shortest-
path algorithm for both computations with methodology from Brandes (2001) applied
to calculate the betweenness centrality. BGL uses Boost version 1.47.0 and implements
Johnson’s all-pairs shortest-path algorithm (Johnson 1977) to compute the distance
matrix and Brandes’ algorithm to calculate betweenness centrality. An adjacency list
graph structure is used to represent the network in BGL. Both libraries are compiled
and run on a 64-bit Linux operating system.

11 Conclusion and future developments

The SGL demonstrates the ability to use relational data and generate network measures
in Stata. As shown in the examples, relational data can be constructed using existing
Stata commands such as joinby or by using user-written commands such as Rense
Corten’s pajek2stata. Network measures computed by netsis and returned to Stata
by netsummarize can be merged to datasets for running regressions.

Though SGL, netsis, and netsummarize work in unison to provide usable network
information, significant work remains to make the process more efficient and to provide
additional enhancements. Areas for future development include implementing more effi-
cient algorithms, designing algorithms for additional network measures, and optimizing
SGL in Mata. It is hoped that further improvements and expansions will help facilitate
the analysis of networks using Stata.
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