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Abstract. In this article, I describe and illustrate Stata programs that facilitate i)
the fitting of smooth age–period–cohort models to event data and ii) the plotting
of observed and fitted rates. The programs include postestimation functional-
ity and flexibility to fit models not possible using Stata’s glm command. What
distinguishes this article from a recent Stata Journal article on age–period–cohort
models by Rutherford, Lambert, and Thompson (2010, Stata Journal 10: 606–627)
is that the emphasis here is on extrapolating the model fit to make projections
into the future.
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1 Background

The study of trends in disease generally involves a mixture of descriptive plots and
formal modeling of rates. Many diseases rates (whether of incidence or mortality) vary
hugely with age, and for this reason, trends tend to concentrate on either age-specific
rates or age-standardized rates. While the general interest is to consider trends over
time, there is also interest in seeing whether those trends can best be attributed to
trends in the age-specific rates corresponding to different birth cohorts.

For many diseases, the key risk factors have largely been determined before the
disease is common, whether that be in utero, in childhood, or in young adulthood.
Thus it is common to approximate the rates over disease in the Lexis diagram as a
function of age (at the time of the event) combined with a function of period (or the
date of the event) and a function of cohort (or the date of birth).

2 Age–period–cohort models

Age–period–cohort (APC) models have long been used in demography and medical statis-
tics to describe the rate of mortality of incidence of a disease as a function of both age
and period. The idea is to approximate the rate, which is a function of age and period,
by an additive combination of function of age, period, and cohort:

λ(age,period) = g {fA (age) + fP (period) + fC (cohort)}

c© 2012 StataCorp LP st0245



46 Age–period–cohort models in Stata

where age = period − cohort. Traditionally, the functions fA, fP , and fC are step-
functions and g is the exponential function, but other choices are possible. Much of the
literature concerns the linear components of the three functions being nonidentifiable
because of the linear dependence between age, period, and cohort.

A good reference for APC models is Clayton and Schifflers (1987).

3 Fitting functions of age, period, and cohort

To fit an APC model in Stata, you would most naturally use the poisson command.
Provided age, period, and cohort were each coded discretely, you might use the command

. poisson events i.age i.period i.cohort, exposure(pyears)

This command is fine if you are happy to use step-functions but it lacks flexibility.
Additionally, it does not facilitate the visualization of the functions fA, fP , and fC .

3.1 Natural cubic regression splines

The APC model is a special form of a generalized additive model (see Hastie and Tibshi-
rani [1990]). There are many ways to flexibly estimate smooth functions of continuous
variables in Stata. A fully flexible APC command in Stata could be written so that the
user would specify what sort of smoother should be used for each of the three functions.
Instead, we have simply allowed the use of natural regression splines.

A natural spline is the shape that would be taken by a flexible rod forced to pass
through a number of points (or knots). The rod will take the form of a cubic spline—
cubic between knots with continuous second derivatives at each knot and linear beyond
the end knots. The adjective “regression” indicates that we use a limited number of
knots and obtain the fit by (nonpenalized) regression. Such splines were made available
in Stata in 1994 (Sasieni 1994). The Stata ado-files have been adapted slightly for use
in the program described here. The command mkspline, which is part of Stata, will
also generate a set of variables for cubic splines.

The number of knots determines the flexibility of the spline function. The default
values used are arbitrary but were chosen to allow greater flexibility in fitting the age-
effects (six interior knots) and to prevent over-fitting of the nonlinear period (five knots)
and cohort (three knots) effects. The default gives more knots to the period than to
the cohort effects because there tend to be relatively few events at the extremes of the
cohort variable, whereas the events are more often approximately uniformly distributed
over the period.

A trade-off exists between having the flexibility to capture the salient features of the
cohort effect and having a parsimonious model. Even with millions of events, you may
wish for a small number of knots. Each additional knot adds an explanatory variable to
the regression model. Because the splines are forced to be linear beyond the end knots,
a natural cubic spline with no internal knots is simply a straight line (linear function).
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Natural cubic splines were used in APC models by Sasieni and Adams (1999, 2000)
for drawing inference on the impact of cervical screening on cervical cancer rates.
Carstensen (2007) has written about their use more generally. Rutherford et al. (2010)
has provided software in Stata for fitting APC models using natural cubic splines.

4 Nonidentifiable

As mentioned previously, there is a very large literature regarding the linear components
of the age, period, and cohort functions being not identifiable. This makes no difference
in terms of the fitted rates, but it does cause difficulties in interpreting trends. In
particular, it is not possible to say whether an increase in age-specific rates over time
is due to a period or a cohort effect. Although Stata will identify the collinearity and
drop a term from the regression model, this does not help to interpret the individual
effects.

One partial solution to the problem is to remove the linear term from both the period
and the cohort effect and to relabel it as “drift”. This is straightforward when there is
no nonlinear term in either period (yielding an age–cohort model) or cohort (yielding
an age–period model), but care must be given as to what one means by “removing the
linear component” in the general case. To see this, consider y = x2, a function that has
no linear component in x. Now suppose that you use z = x− c. Then y = z2 +2cz + c2,
which does include a linear term in z.

The linear cohort constraint could be obtained by fC(c0) = fC(c1) for two values of
cohort; these might be the minimum and maximum values of the year of birth. But we
might want to avoid the extremes of year of birth and use instead p0− 75 and p1− 60,
where p0 is the first period (year) with observations and p1 is the last. Another way to
remove the linear component would be to regress each of the variables used to estimate
the cohort effect (that is, the basis) on the year of birth and replace each variable by
the resulting residual. Here too one might use either a simple regression or a weighted
regression, taking into account the number of events at each observation.

When considering the estimated age, period, and cohort effects, an arbitrary con-
straint must be placed on the constant (it is included in age) and the linear components.
We do this by centering period at the mean year (of the observed counts) and by center-
ing cohort at the weighted mean year of birth, with weights proportional to the observed
counts at each year of birth.

5 Extrapolation—projection into the future

We might think that the constraint used to make the model identifiable is unimportant
because it does not affect the model fit. This is true for the model itself, but the
constraints will often affect how we extrapolate the model to project future rates. While
it seems sensible to use the cohort effect estimated for someone born in 1955 (say) to
project their rates at the age of 70, it is not clear that we should project the trend in
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the period effect into the future. A sensible option might be to extrapolate existing
cohort effects into the future, allow the drift to continue but attenuate it, and stop all
nonlinear period effects. That is, the period effect 10 years into the future would be
assumed to be the same as the current period effect (after removing the drift). Similarly,
cohorts not yet born (or not yet included in the model) will have the same cohort effect
as the youngest birth cohort contributing data to the model. Although this sort of
extrapolation seems more reasonable than extrapolation of cubic splines beyond the
domain of the observed data, it does require the imposition of arbitrary constraints.

In the apcspline command, constraints are imposed by centering period at the
mean year (of the observed counts) and by centering cohort at the weighted mean year
of birth, with weights proportional to the observed counts at each year of birth. apcfit
has options that allow the user to specify the centering of each variable.

5.1 Technical note

To prevent unstable extrapolation of cohort effects for future generations, the cohort
variable is replaced by Cmax + log(C −Cmax + 1) for C > Cmax, where C is the year
of birth and Cmax is the 99th percentile of the weighted distribution of year of birth
(weighted by observed counts). (As a result of this transformation, age, period, and
cohort are no longer linearly dependent beyond Cmax. Because 1% of the events are
born beyond Cmax, this slightly changes the model.)

The exact choice of transformation is arbitrary: we could have chosen Cmax to
be some other percentile (such as the 98th) or simply replaced C by Cmax for all
C > Cmax; however, in practice it is important to make Cmax less than the maximum
year of birth, and it seems reasonable to allow the transform to increase albeit slowly
with increasing year of birth. The effect of the transformation can be seen by comparing
the cohort effect estimated by apcspline with that estimated by apcfit using data on
colorectal cancer incidence in Great Britain. Although the fitted counts are similar, the
cohort effects (illustrated in figure 1) are quite different. In particular, the command
apcfit suggests that those born in 1995–2000 have five-fold higher risk than those born
in 1900–1950.

Because spline basis functions are defined for values of period and cohort for which
there are no data, there is no computing issue regarding extrapolation of the model.
In practice, however, without additional information, it is impossible to predict the
nonlinear cohort and period effects. We might wish to assume that the drift is attenuated
over time—it is not reasonable to assume that rates will continue to double every 20
years for the next 200 years!

The default is to assume that the drift between k−1 and k years after the last period
is multiplied by a damping factor of 0.92k. This default value is chosen so that the drift
after 8 years will be approximately half of what it is during the observation period. Note
that the average damping in successive 5-year periods is 22% (after 1–5 years), 48% (6–
10 years), 66% (11–15) years, 78% (16–20 years), and 85% (21–25 years). Thus the
amount of geometric damping is similar over 1–25 years to the amount of linear damping
used by the NordPred and empirically validated by Møller et al. (2003).
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As indicated earlier, for the purpose of extrapolation, the nonlinear period effects
beyond the last observed period are assumed to be the same as those in the last observed
period. Although birth cohort effects carry through into the future as cohorts age,
future cohorts are assumed to have the same effect as the last observed cohort. These
assumptions are similar to those made by the NordPred R package based on the work
of Møller et al. (2003).

6 Link functions for Poisson regression

The poisson command in Stata does not provide any flexibility with regard to the link
function. If anything other than the canonical logarithmic link function is required, we
must use the glm command with the family(poisson) option. The glm command fits
a model to the number of events rather than to the rates, and hence the offset/exposure
is not handled as we might wish. With link g, we have

g(μi) = offseti + X
′
iβ

or
g(μi) = ln(exposurei) + X

′
iβ

where μi is the expected number of events for the ith observation. Note, however, that
the rate is equal to μ/exposure. Hence, we might wish to fit the model

g(μi/exposurei) = X
′
iβ

Unless g(x) ≡ ln(x), these models are not the same. I have not modified glm so that
the exposure() option (as opposed to the offset() option) is handled differently, but
I have modified its use within the apcspline command so that different link functions
can be used on the rates.

The linear predictor can take any real value. If the link is such that the fitted
means are not guaranteed to be nonzero, the model may be ill-posed and some form
of regularization may be necessary to fit the model. This can be done most easily by
adding some number (Z) to the observed counts. The addition of such a background is
similar to the use of ridge-regression or a Bayesian prior to smooth the model. Formally,

g(μi/exposurei + Zi) = X
′
iβ

If Z depends at most on age, it can be viewed as a background number of events based
on a background rate common to all observations. Reasonable values for Z will depend
on the extent to which the data are divided into small cells (5-year age bands, 1-year
age bands, annual data, monthly data, etc.), but choosing Z based on the mean rate
seems reasonable.



50 Age–period–cohort models in Stata

The apcspline command allows the user to specify a background number. A default
background is also available, based on the square root of the product of the exposure
times a weighted average of the age-specific empirical rate (weight 98) and the overall
empirical rate (weight 2). The square root corresponds to the standard deviation of the
number of cases.

7 The apcspline command

The apcspline command fits an APC model of the form

N ∼ Poisson(μ)

g

(
μ

exposure

)
= fA(age) + fP (period) + fC(cohort) + βdrift

where g is the link function and fA, fP , and fC are natural cubic splines.

7.1 Syntax

apcspline depvar agevar periodvar
[
if
] [

in
] [

weight
] [

, exposure(varname e)

link(linkname) scale(x2 | dev |#) regularize background(exp) damping(#)

nkage(#) nkperiod(#) nkcohort(#)
]

The cohort variable is calculated as “period − age”, and it is for the user to ensure
that both period and age are in the same units. If age is recorded in 5-year groups and
period is recorded in single years, then the difference in the value of age for group 40–44
compared with group 35–39 should be 5.

Many of the options available to glm or poisson related to standard error, maxi-
mization, and reporting may also be used.

7.2 Options

exposure(varname e) specifies the variable relative to which rates are calculated (see
the discussion in section 6 above).

link(linkname) specifies the link function (see section 6 above) as in the glm com-
mand except that the exposure is handled differently for power links. The default is
link(log).

scale(x2 | dev |#) overrides the default scale parameter; see [R] glm.

regularize specifies that a default number of events be added to each observation
before fitting the model. The default is a noninteger variable that is different for
each value of age. The variable regular is equal to

√
0.98 × Eage + E0/50 where

Eage is the expected count given the age and E0 is the expected count based on the
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overall rate. The background numbers are stored in Ibackground and subtracted
back to obtain the fitted values.

background(exp) specifies the background rate of events added to each observation
(dependent on age) so as to stabilize the estimates. Regularization can make the
model converge after fewer iterations and can even enable a model to fit when it
would not otherwise (particularly when using a link function that does not ensure
that the rates are positive). The program first tries to generate Ibackground=exp.
If this generates an error, it tries Ibackground=regular exp where regular is
the variable generated by regularize. Thus background(0.5) adds 0.5 to every
observation, background(*0.5) multiplies the default regularization by 0.5, and
background(*1+0.5) adds 0.5 to the default regularization. Note that the larger
the value of Ibackground, the greater the “smoothing”.

damping(#) specifies the level of geometric shrinking of the drift beyond the last ob-
servation point. During the observed period, the linear predictor is increased by
b[drift] for each unit increase in the period. For k units of time after the last
observation, the linear predictor is increased by b[drift]× damping()k for a unit
increase in the drift. By default, damping() is set to 0.92 so that 8 years after the
last observation, the drift effect is only about half of what it is during the observation
period.

Without damping, increasing (or decreasing) trends would be predicted to go on
forever. To achieve this effect, use damping(1).

nkage(#), nkperiod(#), and nkcohort(#) specify the number of interior knots in
the natural cubic splines used for each of the functions fA, fP , and fC , respectively.
The default values are 6, 5, and 3, respectively. Specifying nkperiod(0) results
in the age–cohort model. Specifying nkcohort(0) results in the age–period model.
Specifying nkperiod(0) and nkcohort(0) results in the age–drift model.

8 Postestimation commands

Although you can use any of the postestimation commands available after fitting a glm
model, I urge you to use them with caution. Certain apcspline-specific behavior is
described here as well as some apcspline-specific options for predict.

The standard predict after glm cannot adjust for the background(). I have adapted
the predictions so that the fitted means are adjusted for the background(). I have also
introduced an option to obtain the estimated rate, defined as the mean divided by
the exposure. By using the option rate(#), we can generate rates per #. Thus, for
instance, rate(1e5) yields rates per 100,000. Other options of predict glm have not
been altered. Thus the standard residual will be true, but the Pearson residual will be
an estimate of (O −E)/(E + b)1/2 where O is the observed count, E is its expectation,
and b is the background.
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Using predict, we can also obtain estimates of fA, fP , and fC by specifying
age, period, and cohort, respectively. In fact, the option period yields the relative
rate as a function of period—that is, exp{fP (period)}—and similarly, cohort yields
exp{fC(cohort)}. The option age gives the estimated rate as a function of age when
the period and cohort relative rates are 1, that is, exp{ const+fA(age)}. The rate(#)
option can be used with the age option.

Strictly speaking, exp{fP (period)} would not be a relative risk if the link were not
logarithmic. Thus the functions fP and fC are difficult to interpret when estimated
based on a noncanonical link. For this reason, predict fits a canonical model (that is,
one with a logarithmic link) to the fitted means of the model specified by apcspline
whenever a noncanonical link is used. Thus the period and cohort effects estimated
using predict can always be interpreted as relative risks even if the link function is not
logarithmic.

Consider y1 = exp{ln(5) + xln(2)/10} and y2 = {50.2 + (100.2 − 50.2)x/10}5. Both
functions are equal to 5 and 10 at x = 0 and x = 10, respectively. At x = 5, y1 = 7.071
and y2 = 7.156, so the functions are almost indistinguishable on (0,10). But at x = 20,
y1 = 20 and y2 = 18.4; and at x = 70, y1 = 640 and y2 = 177. Thus for moderate
trends, the difference between the logarithmic and the power 0.2 links in terms of fitted
values to the observed numbers of events will be minimal, but the impact on long-term
extrapolation could be considerable. The ease with which relative risk functions can be
interpreted suggests that using these to summarize the drift, period, and cohort effects
is sensible even if a different link is used for projections.

9 Example

The data we use to illustrate the apcspline command contain the number of cases of
colorectal cancer in Great Britain in 5-year age bands for each year from 1975–2007
together with mid-year population estimates for 1975–2007 and population projections
until 2030. The numbers of both cancers and population are separated by sex.
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. use colorectal
(COLORECTAL)

. apcspline cases age year if sex==1, exposure(population)

Iteration 0: log likelihood = -17478.96
Iteration 1: log likelihood = -4186.2951
Iteration 2: log likelihood = -2774.7726
Iteration 3: log likelihood = -2537.9356
Iteration 4: log likelihood = -2487.4614
Iteration 5: log likelihood = -2480.3359
Iteration 6: log likelihood = -2480.2576
Iteration 7: log likelihood = -2480.2575

Poisson regression Number of obs = 594
LR chi2(16) = 1317571.33
Prob > chi2 = 0.0000

Log likelihood = -2480.2575 Pseudo R2 = 0.9962

_Icases Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1319719 .0014587 90.47 0.000 .1291129 .1348309
_IA1 .0005676 .0001326 4.28 0.000 .0003078 .0008274
_IA2 -.0002905 .0000956 -3.04 0.002 -.000478 -.0001031
_IA3 -.0000439 .0000351 -1.25 0.211 -.0001127 .0000248
_IA4 .000068 .0000159 4.27 0.000 .0000367 .0000992
_IA5 -.0000578 8.90e-06 -6.50 0.000 -.0000753 -.0000404
_IA6 .0001032 5.15e-06 20.04 0.000 .0000931 .0001133

_Idrift .007759 .0001797 43.17 0.000 .0074067 .0081113
_IP1 -1.24e-06 .0000814 -0.02 0.988 -.0001607 .0001582
_IP2 .0000872 .0001064 0.82 0.413 -.0001214 .0002958
_IP3 -.0002902 .0001045 -2.78 0.006 -.0004951 -.0000853
_IP4 .0004373 .0000975 4.49 0.000 .0002462 .0006284
_IP5 -.0002914 .0000703 -4.14 0.000 -.0004292 -.0001536
_IC1 -.000019 3.83e-06 -4.96 0.000 -.0000265 -.0000115
_IC2 -.000013 5.38e-06 -2.42 0.015 -.0000236 -2.48e-06
_IC3 .0000353 3.69e-06 9.56 0.000 .000028 .0000425
_cons -14.81817 .0841413 -176.11 0.000 -14.98309 -14.65326

ln(popula~n) 1 (exposure)

. predict fit2
(option n assumed; predicted number of events)

. predict f_age, age

. predict f_cog, cohort
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For comparison, we also use the apcfit command (also see figure 1).

. apcfit if sex==1 & case!=., cases(cases) period(year) age(age)
> poprisktime(population) cohort(cohort)

Iteration 0: log likelihood = -36749.643
Iteration 1: log likelihood = -7098.7844
Iteration 2: log likelihood = -3332.0452
Iteration 3: log likelihood = -2680.2755
Iteration 4: log likelihood = -2555.3381
Iteration 5: log likelihood = -2545.0924
Iteration 6: log likelihood = -2544.9979
Iteration 7: log likelihood = -2544.9978

Generalized linear models No. of obs = 594
Optimization : ML Residual df = 579

Scale parameter = 1
Deviance = 1259.785394 (1/df) Deviance = 2.175795
Pearson = 1291.749674 (1/df) Pearson = 2.231001

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 8.619521
Log likelihood = -2544.997846 BIC = -2438.218

OIM
cases Coef. Std. Err. z P>|z| [95% Conf. Interval]

_spA1_intct -9.682514 .0369489 -262.05 0.000 -9.754932 -9.610095
_spA2 3.750127 .0524424 71.51 0.000 3.647341 3.852912
_spA3 .8812742 .0499142 17.66 0.000 .7834442 .9791042
_spA4 -.00575 .0276824 -0.21 0.835 -.0600065 .0485066
_spA5 .1027369 .0051401 19.99 0.000 .0926624 .1128113
_spA6 .0472322 .0014886 31.73 0.000 .0443146 .0501498
_spP1 .022857 .0015183 15.05 0.000 .0198812 .0258328
_spP2 -.0025955 .0013071 -1.99 0.047 -.0051573 -.0000337
_spP3 .0094303 .0014652 6.44 0.000 .0065586 .012302
_spP4 .0084488 .001389 6.08 0.000 .0057263 .0111712

_spC1_ldrft .0071056 .0001531 46.42 0.000 .0068056 .0074057
_spC2 -.1573066 .0260045 -6.05 0.000 -.2082744 -.1063388
_spC3 -.1485572 .0170126 -8.73 0.000 -.1819014 -.1152131
_spC4 -.1204548 .017805 -6.77 0.000 -.155352 -.0855577
_spC5 -.0614808 .0115918 -5.30 0.000 -.0842003 -.0387614

ln(popula~n) 1 (exposure)

. predict fitapc
(option mu assumed; predicted mean cases)
(1422 missing values generated)

Note that the fitted values from apcfit are only available for the observations that
were used in the model fitting, whereas predict after apcspline provides estimated
mean numbers for all observations. The fitted values that are provided by both com-
mands are extremely similar.

. summarize fi* if case<. & sex==1

Variable Obs Mean Std. Dev. Min Max

fit2 594 886.3923 1057.698 .0264056 3572.244
fitapc 594 886.3923 1057 .0457746 3532.978
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The estimated risks as a function of age are also very similar, but the cohort relative
risks are quite different.

1
2

4
6

8

1900 1950 2000
Year of birth

RR: apcfit RR: apcspline
0

.0
02

.0
04

.0
06

0 20 40 60 80
age

Risk: apcfit Risk: apcspline

Figure 1. Comparison of the default output from apcspline with that from apcfit.
The left-hand plot shows the estimated cohort effects, which are very different. In
particular, in the apcspline model fit, the relative risk is always close to 1, whereas
the apcfit gives an estimate that rises rapidly to beyond 5 for those born at the end
of the twentieth century. It should be noted that the constraints imposed by the two
programs are different: one could remove the drift from the apcfit cohort effect, but its
tail behavior would still be quite different from the apcspline effect. The right-hand
plot compares the age curve from both models. They are seen to be very similar.

The apcspline command can also be used to generate the bases for the splines,
which can then be combined with other covariates or multiplied to produce interactions
within a Poisson or glm model. For instance, if we wanted to have the same basic age
curve for both sexes but with different period and cohort effects, we might use

. apcspline cases age year, exposure(population)

(output omitted )

. poisson cases i.sex _IA* i.sex#c._IC1 i.sex#c._IC2 i.sex#c._IC3
> i.sex#c._Idrift i.sex#c._IP1 i.sex#c._IP2 i.sex#c._IP3 i.sex#c._IP4
> i.sex#c._IP5

(output omitted )
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10 Plotting rates

The command grmean allows for plotting of the observed and fitted rates against another
variable with separate lines and symbols for different groups. Uniquely, this command
has both the option by() and the option over(). The by() option allows different plots
for separate subgroups within the same graph. The over() option allows plotting of
rates for different subgroups within the same axes. The options by() and over() can
be used simultaneously to allow rates for different subgroups on the same axes as well
as different axes for a further subgroup.

grmean can be used for data that are not rates. The nomean option allows for plotting
of the actual data rather than weighted mean values. This can be useful if we wish to
use the over() option (see figure 2).

. sysuse auto, clear
(1978 Automobile Data)

. lowess mpg weight, by(foreign) nograph gen(smooth)

. grmean mpg weight, over(foreign) nomean ti("grmean mpg weight,over(foreign)")
> sav(mpg1, replace)
(file mpg1.gph saved)

. grmean mpg smooth weight, over(foreign) nomean
> ti("grmean mpg smooth weight, over(foreign)") sav(mpg2, replace)
(file mpg2.gph saved)

. gr combine mpg1.gph mpg2.gph
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Figure 2. Illustration of the over() option of grmean (together with the nomean option)
using auto.dta. Foreign and domestic cars are plotted using different symbols on the
same axes.
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The main application of grmean is for calculating and plotting directly standardized
rates. The following commands were used to generate fitted rates from APC models.

apcspline case age year if sex==1, exposure(pop)
predict fit
apcspline case age year if sex==2, exposure(pop)
predict fit2
replace fit=fit2 if sex==2
generate rate_fit=1e5*fit/population

apcspline case age year if sex==1 & age>15, exposure(pop) link(power .2)
predict fitp
apcspline case age year if sex==2 & age>15, exposure(pop) link(power .2)
predict fitp2
replace fitp=fitp2 if sex==2
generate rate_fitp=1e5*fitp/population

Note that we could also use the ir option of predict to estimate the fitted rates
directly:

. predict rate_fitp, rate(1e5) ir

. grmean rate rate_fit year, by(sex) over(Age_gp) standard(stpop)
> xlab(1975(10)2025)

The above commands would yield figure 3. Here the rates are age-standardized within
age group. The observed data are plotted as dots, and the fitted data are joined as
lines.

0
50

0

1975 1985 1995 2005 2015 2025 1975 1985 1995 2005 2015 2025

male female

Age_gp: 10−24 Age_gp: 25−49
Age_gp: 50−64 Age_gp: 65−74

Age_gp: 75+

year

Graphs by sex

Figure 3. Trends in rates of colorectal cancer. The figure shows trends separately
in males and females in different age bands. Within each age band, the rates are
age-standardized, but the use of 15-year bands means that they convey information
regarding age-specific rates.
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The general syntax of grmean is

grmean yvar 0
[
yvars

]
xvar

[
if
] [

in
] [

, standard(var) nomean

over(varname
[
, total

]
) by(varlist

[
, byopts

]
) addplot(plot)

twoway options
]

Note that we can use more than one model fit, as shown in figure 4:

. grmean rate rate_fit rate_fitp year if sex==1, by(age)

0
20

0
40

0
60

0
0

20
0

40
0

60
0

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040

50 55 60 65

70 75 80 85

Observed rate Projected rate Projected rate

year

Graphs by age

Figure 4. Observed and projected rates by 5-year age group. Both the projections based
upon the logarithmic link (solid line) and the projections based on the power 0.2 link
(dashed line) are shown. They are almost identical.
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We can also do cohort plots (see figure 5):

. grmean rate rate_fit cohort if sex==1 & age>40, over(age) legend(row(3))

. grmean rate rate_fit age if sex==1 & age>40 & cohort>=1900 & cohort<1960,
> over(coh_g) legend(row(2)) xlab(45(10)85)
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coh_g: 1939 coh_g: 1949 coh_g: 1959

Figure 5. Cohort plots. In the left-hand panel, age-specific rates are plotted against
year of birth. In the right-hand panel, rates plotted against age and fitted values
corresponding to different 10-year birth cohorts are joined together.

As well as creating purely age-standardized plots, you can do

. grmean rate rate_fit year, by(sex) over(country) standard(stpop)

However, the command uses directly standardized rates, so

. grmean rate rate_fit cohort if sex==1, standard(stpop)

may not give the desired results if the age range is cohort dependent. Also the different
ages available for the later cohorts for the fitted rates compared with the observed rates
will mean that fit may appear to be poor in the above plot even though it is not.

Including the suboption total after over() allows an overall standardized rate to
be plotted (within each level of by()).

. grmean rate rate_fit year, by(sex) standard(stpop) over(Age_gp, total)
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