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Abstract

The evolution of renewable resources is characterized in many cases
by different time scales where some state variables such as biomass,
may evolve relatively faster than other state variables such as carry-
ing capacity. Ignoring this time scale separation means that a slowly
changing variable is treated as constant over time. Management rules
designed without accounting for time scale separation will result in
ineffi ciencies in resource management. We call this ineffi ciency time
scale externality and we analyze renewable resource harvesting when
carrying capacity evolves slowly, either in response to exogenous forc-
ing or in response to emissions generated by the industrial sector of the
economy. We study cooperative and non-cooperative solutions under
time scale separation. Using singular perturbation reduction methods
(Fenichel 1979), we examine the role of different time scales in envi-
ronmental management and the potential errors in optimal regulation
when time scale separation is ignored.
Keywords: optimal resource harvesting, fast slow dynamics, singu-

lar perturbation, regulation, open loop, closed loop..
JEL Classification: D81, Q20

1 Introduction

The study of fast and slow processes and slow/fast interactions is an integral
part of ecosystem analysis and an important factor in understanding ecosys-
tem dynamics and management (e.g., Carpenter et al. 2001, Gunderson and
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Pritchard 2002). To account for this time scale separation the dynamical
system which is used to model the ecosystem should include both slow and
fast evolving state variables. For example coevolutionary processes are an-
alyzed in separate time scales where population dynamics evolve rapidly
while evolution generally takes place more slowly. Similar time separation
appears in models of antagonistic species coevolution in which population
(or biomass) dynamics interact with mutation (or trait) dynamics leading
to the so-called Red Queen cycles. Modeling economic/ecological systems
as fast/slow systems has been associated with issues like biological resource
management, water management and pest control (e.g. Milik et al., 1996;
Brock and Xepapadeas, 2004; Grimsrud and Huffaker, 2006; Huffaker and
Hotchkiss, 2006; Crepin et al., 2011; Walker et al., 2012; Levin et al., 2013).

In terms of the mathematical approach, dynamical systems evolving in
a fast/slow time framework can be analyzed using singular perturbation
analysis (e.g., Wasow, 1965; Fenichel, 1979; Berglund, 1998; Berglund and
Gentz, 2003). Two cases are of main interest in problems with the state
variables evolving in different time scales, the case of an adiabatic system
and the case of a fast/slow system. Consider a dynamical system with
state variables characterized by different relaxation time to equilibrium (or
characteristic time) TS for a slow state variable and TF for a fast state with
TS >> TF . The so-called adiabatic system emerges when the evolution
of the slow state variable is imposed exogenously and acts on the fast state
variable as a slowly changing time-dependent parameter. On the other hand
a slow/fast system emerges when the slow variable evolves endogenously and
is coupled to and influenced by the fast state variable.

In environmental and resource economics there have been a few attempts
to study ecosystems in separate time scales. In particular Huffaker and
Hotchkiss (2006) apply singular equations of motion to accommodate the
separate time scale and analyze the economic dynamics of reservoir sedi-
mentation management using the hydrosuction-dredging sediment-removal
system. Grimsrud and Huffaker (2006) apply singular perturbation meth-
ods, in a bio-economic model, to investigate the optimal management of pest
resistance to pesticide crops, and Rinaldi and Scheffer (2000) use a range of
examples from natural and terrestrial ecosystems to study the effects of slow
and fast variables to ecosystems. Crepin (2007) presents a general frame-
work to handle systems with fast and slow variables, and illustrates the
method using a model of coral reefs subject to fishing pressure. Crepin et
al. (2011) explore how non-convexities and slow fast dynamics affect coupled
human nature systems, adopting a specific system where they link changes
in the number and diversity of birds to the abundance of a pest (insects)
that causes damages to goods and services. Milik et al., (1996) considers a
simple model of demographic, economic and environmental interactions to
illustrate the use of geometric singular perturbation theory in environmental
economics.
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When time scale separation exists with state variables evolving in differ-
ent time scales ignoring this separation and treating everything in one time
scale, the fast time scale, introduces an externality. This is because agents’
actions are taken by regarding a certain state variable, say carrying capacity
in a renewable resource problem, as fixed, which implies that the potential
impact of their actions on the evolution of this state variable is ignored.
These actions, however, will potentially affect the utility or the profits of
the same or other economic agents slowly without been internalized. This is
a source of externality which we will call time scale externality. If the under-
lying system is nonlinear, unregulated slowly changing state variables may
cause the system to cross thresholds or tipping points which may induce
transitions to non desirable basins of attraction. It should be noted that
even if the agents’actions generate a well defined externality, such as emis-
sions which is regulated by conventional policy instruments (e.g., emissions
taxes or tradable emission permits), but time scale separation is ignored
then regulation is ineffi cient because it does not internalize all the external
effects.

The contribution of the present paper is the analysis of externalities re-
lated to time scale separation, and the potential ineffi ciencies in regulation
when this separation is ignored. We analyze the problem by incorporating
fast and slow evolving variables in a one species renewable resource har-
vesting model. Initially we formulate a basic model under the assumption
that the carrying capacity is a slow variable which evolves adiabatically, in
response to exogenous forcing. This case may be realistic and might give
useful results in some cases of periodic changes in carrying capacity due to
climate forcing. We extend this model by allowing for the carrying capacity
to evolve endogenously in response to emissions generated by an industrial
sector of the economy.1 We analyze ecosystem management via the appli-
cation of singular perturbation reduction methods (Fenichel, 1979) and we
compare the solutions to those emerging from conventional models where the
carrying capacity is regarded as fixed. Since the analysis leads to quite com-
plex dynamical systems tractability makes necessary the use, after a certain
stage, of numerical simulations obtained by calibrating our models using
plausible parameters. It should be noted that ignoring a slowly evolving
state variable may affect the effi ciency of regulation. For example in coral
reefs, algae and fish populations often evolve more rapidly than the coral. If
coral dynamics change very slowly, they may appear constant, which could
cause mistakes in management. Slow coral dynamics also imply that it can
take a long time before all the impacts of a particular regulation take place
(Crépin, 2007). Our comparisons provide, therefore, insights into potential

1We use the term industrial sector to include both conventional industry and services,
such as tourism, and industrial agriculture. These sectors may influence the carrying
capacity of the renewable resource through their emissions.
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losses in terms of regulatory effi ciency when we ignore slow variables and
adjustments necessary so that a regulatory scheme such as landing tax, or
quota will internalize the time scale externality.

2 Resource harvesting with carrying capacity evolv-
ing slowly in response to exogenous forcing

We consider the case of one renewable resource growing according to:

x′ = f (x,K)− h, x′ = dx

dt

where x is the biomass of resource,K is carrying capacity and h is harvesting.
Harvesting could be undertaken by a finite number of agents j = 1, ..., J ,
thus

h =

J∑
j=1

hj , h = (h1, ..., hJ) .

The growth function f is assumed to be logistic, that is

f (x,K) = ρx
(

1− x

K

)
where ρ is the intrinsic growth rate and K is carrying capacity. Harvesting
can be expressed in terms of a generalized production function in terms of
biomass and effort, or

hj = qxαEβj , α > 0, 0 < β < 1, j = 1, ..J.

E = (E1, ..., EJ)

where q is the catchability coeffi cient and Ej is fishing effort. If p is the
exogenous price (e.g. a world price) of the harvested resource and w is cost
per unit effort then individual profits are defined as πj (x,Ej) = pqxαEβj −
wEj

We consider the case where biomass and carrying capacity evolve in two
distinct and separated time scales a fast time scale and a slow time scale.
The separation of time scales is measured by ε, an arbitrarily small positive
parameter, where the limit ε → 0 corresponds to infinite separation. We
denote fast time by (t) and slow time by (τ) so that

τ = εt ,
dτ

dt
= ε.

Thus if the time scale of biomass is months and the time scale of the carrying
capacity is decades, ε = 1

120 .
As a starting point we assume that the carrying capacity evolves slowly

in response to exogenous (e.g. climatic) forcing. This is a simplified case that
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may be realistic in some cases of periodic changes in climatic forcing. For
example oscillatory patterns of climate variability like El Nino or the Pacific-
Decadal Oscillation (PDO) have significant impacts on local ecosystems and
the fishing industry such as the Peruvian anchoveta (El Nino), or salmon
production in the northeast Pacific Ocean (PDO).2 In this case the carrying
capacity is an adiabatic variable, which could be specified as:

K (τ) = K0 (1 + α0τ + α1 cos (β0τ))

with α0, α1, β0 positive parameters.
The model in slow time can be written as

εx′ (τ) = ρx (τ)

(
1− x (τ)

K (τ)

)
−

J∑
j=1

hj (1)

K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) . (2)

At the adiabatic limit ε→ 0 and the model becomes in slow time

0 = ρx (τ)

(
1− x (τ)

K (τ)

)
− h (τ)

K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) .

In fast time, the slow variation of carrying capacity is described by a function
K (εt) and the dynamics are:

x′ (t) = ρx (t)

(
1− x (t)

K (εt)

)
−

J∑
j=1

hj (3)

K (εt) = K0 (1 + α0εt+ α1 cos (β0εt)) . (4)

It is clear that the model taken at the adiabatic limit (ε→ 0) in slow time
provides the long term fluctuations of the resource’s biomass, while in fast
time provides the short term evolution of biomass under the assumption that
carrying capacity is fixed since (4) implies that K (0) is fixed independent
of time. The large majority of resource management models correspond to
that case where carrying capacity is fixed over the long run. If this is not the
case however then management rules are derived from a misspecified model
and it will be worth examining the structure of management rules which are
derived from a properly specified model that takes into account separation
of time scales.

2See for example Trenberth (1997), Philander (1983), Hare and. Francis (1994), Man-
tua (2002).
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2.1 A Cooperative solution: Optimal regulation

Since harvesting which is the variable of interest, takes place in fast time it is
natural to study these problems in fast time and allow for the impact of the
slow variable through ε. Consider a regulator seeking to derive a harvesting
rule to maximize the sum of harvesters’profits by taking into account fast
and slow dynamics. The regulator’s problem is:

max
E

∫ ∞
0
e−rt

 J∑
j=1

πj (x,Ej)

 dt (5)

subject to (3), (4), x(0) = x0

with

πj (x,Ej) = pqxαEβj − wEj = π(x,E),

hj = qxαEβj , α > 0, 0 < β < 1, j = 1, ..J.

Defining the associated current value Hamiltonian H, as:

H = π(x,E) +mg(x,E),

g(x,E) = ρx (t)

(
1− x (t)

K (εt)

)
−

J∑
j=1

hj

with m = m(t) the associated costate variable we obtain, using the maxi-
mum principle, the following optimality conditions for problem3 (5):

HEj = 0, j = 1, ..J (6)

m
′

= rm−Hx

x
′

= g(x,E)

K (εt) = K0 (1 + α0εt+ α1 cos (β0εt)) .

From (6) the control E is a function of the state and the costate variable
and is given by the feedback rule:

Ej = (
p−m
w

qxαβ)
1

1−β , j = 1, ..J (7)

and thus :

m
′

= rm−mρ
(

1− 2x

K

)
− Jα(

β

w
)

β
1−β ((p−m)q)

1
1−β x

α+β−1
1−β (8)

x
′

= ρx
(

1− x

K

)
− J(

β

w
)

β
1−β (p−m)

β
1−β q

1
1−β x

α
1−β ,

K = K (εt) .

3Subscripts associated with a function indicate partial derivatives. Thus HEj =
∂H
∂Ej

.
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2.1.1 Numerical simulations

System (8) is nonlinear and nonautonomous so in order to obtain a clear
picture of the solution we resort to numerical simulations using the following
parametrization:4

β = α = 1/2, J = 2, p = 10, w = 5, q = 0.048, ρ = 0.45, r = 0.05 (9)

Thus system (8) can be written as:

m
′

= rm−mρ
(

1− 2x

K

)
− J 1

4w
((p−m)q)2 (10)

x
′

= ρx
(

1− x

K

)
− J 1

2w
(p−m)xq2,

K = K (εt) .

System (10) can be rewritten in slow time τ = εt as

εm
′

= rm−mρ
(

1− 2x

K (τ)

)
− J 1

4w
((p−m)q)2 = f1 (11)

εx
′

= ρx

(
1− x

K (τ)

)
− J 1

2w
(p−m)xq2 = f2,

K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) .

We define as an equilibrium branch for this system a pair of solutions
(m∗(K (τ)), x∗(K (τ))) such that (εm′(K (τ))), εx′(K (τ))) = (0, 0). As-
suming that such a branch exists then its structure can be characterized

by the Jacobian matrix A =

[
(f1)m (f1)x
(f2)m (f2)x

]
evaluated at any equilibrium

branch (m∗(K (τ)), x∗(K (τ))). If this matrix contains no eigenvalues with
zero real parts then an adiabatic solution, associated with any of the equi-
librium branches, which is the form (m̄(τ), x̄(τ) = (m∗(τ), x∗(τ) +©(ε),
exists.5

In particular system (10) has four pairs of solutions for m∗ and x∗ as
functions of K (τ) . Two solutions lead to resource extinction and two re-
sult in positive biomass along the equilibrium branch. We further study the
two solutions leading to positive biomass. One solution has a saddle point
structure, while the other has the structure of an unstable spiral. Since ma-
trix A contains no eigenvalues with zero real part all equilibrium branches
(m∗(K (τ)), x∗(K (τ))) of (11) admit an adiabatic solution (m(τ), x(τ)).We
concentrate on the saddle-point solution which is compatible with the opti-
mal control structure of the problem.

4The values of the parameters are similar to those used by Da-Rocha et al. (2014).
5For more details see Berglund (1998).chapters 4 and 5.

7



Following Berglund (1998) an adiabatic approximation of order one which
obtained as

(m(τ), x(τ))T = (m∗(τ), x∗(τ))T + εu(τ , ε) +©(ε2), (12)

u(τ , ε) = −A−1w(τ , ε), w(τ , ε) = −[((m∗(τ))′, (x∗(τ))′)T ],

is associated with this solution, where matrix A is evaluated at the saddle-
point solution. This adiabatic approximating solution (12) describes how
the stock of biomass evolves under optimal regulation given the slow evo-
lution of carrying capacity. Taking ε = 0.04, so that the fast time unit is
1/25 of the slow time unit, biomass dynamics and the corresponding path
for the biomass shadow value (i.e., the costate variable), at the regulators
equilibrium with the saddle point structure satisfy the following:

S4 : x̄(τ) = 0.989808K (τ)− 0.0888812K ′(τ) +©(ε2) (13)

S4 : m∗4(τ) = 0.0465056 + 0.00750913K ′(τ)/K(τ) +©(ε2) (14)

K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) (15)

K ′(τ) = K0 (1 + α0 − β0α1 sin (β0τ)) (16)

Using (7) we derive the corresponding adiabatic solutions for the optimal
effort E. In fast time the optimal paths for biomass and effort will be
determined as

x(t) = 0.989808K (εt)− 0.0888812K ′(εt) +©(ε2) (17)

Ē (t) = 0.00002304(10− m̄(t))2x̄(t), (18)

m̄(t) = 0.0465056 + 0.00750913K ′(εt)/K(εt) +©(ε2) (19)

where K(εt),K ′(εt), are determined by replacing into (15), (16) εt for
τ .

Figure (1) depicts x̄(t), m̄ (t) , Ē (t) and Jh̄ (t) given by (17)-(19) for

K0 = 7000, α0 = 0.15, α1 = 0.4, β0 = 0.5, ε = 0.04, tε[0, 50π]

It should be noted that if the regulator ignores the slow variable, then

x̂ = 0.989808K and Ê = (p−mw qx̂αβ)
1

1−β = x̂(p−mw qβ)2 = (p−mw qβ)2 ∗
0.989808K = 0.0225936K, m = 0.0465056, for any given value of K as-
signed by the regulator. However, the actual long run evolution of the
system, when the misspecified model that ignores the slow variable is used
to determine the optimal effort, will be:

x′ (t) = ρx
(

1− x

K

)
− Jĥ , or (20)

= ρx
(

1− x

K

)
− 0.00453982K

K = K (εt) = K0 (1 + α0εt+ α1 cos (β0εt)) .
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Figure 1: Slowly fluctuating carrying capacity

The path for x(t) resulting from (20) is shown in Figure (2), with x(0) = 6500
and parameters as in (9), relative to the path x̄ (t) resulting from (17). The
comparison of the two biomass paths shows the deviation between them,
when the regulator ignores the slow variable. Note that ignoring the slow
variable for this specific parametrization implies that the regulator is more
conservative, since x(t) is above x̄ (t) for most of the time horizon. This
is due to the fact that by ignoring the slow variable the regulator ignores
the slow positive linear trend α0τ on the carrying capacity that allows for
more biomass. It is interesting to note that if the trend was negative then
ignoring the slow variable would have implied excessive use of the resource.
This is a potentially important observation because if climate change, for
example, results in a negative slow linear trend on the carrying capacity,
then ignoring the slow dynamics implies regulation leading to excess use of
the resource.
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Figure 2: Ignoring the slow variable

3 Non-cooperative solutions

We consider now non-cooperative harvesting where each agent maximizes
individual profits. We study, as usual, open loop and closed loop Nash
equilibrium solutions.

3.1 Open loop Nash equilibrium

Each agent takes the harvesting effort of his competitors as given and solves:

max
Ej(t)

∫ ∞
0
e−rt [πj (x,Ej)] dt, (21)

s.t.

x′ (t) = ρx (t)

(
1− x (t)

K (εt)

)
− hj (t)−

∑
l 6=j

hl (t)

K (εt) = K0 (1 + α0εt+ α1 cos (βεt)) , x(0) = x0.
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Defining the associated current value Hamiltonian H, for a specific j =
1, .., J , as:

H = πj(x,E) +mg(x,E),

g(x,E) = ρx (t)

(
1− x (t)

K (εt)

)
− hj (t)−

∑
l 6=j

hl (t)

with m = m(t) the costate variable, we obtain the following optimality
conditions for problem (21):

HEj = 0,

m
′

= rm−Hx

x
′

= g(x,E)

K (εt) = K0 (1 + α0εt+ α1 cos (βεt)) .

The open loop effort is obtained as:

Ej = (
p−m
w

qxαβ)
1

1−β , j = 1, .., J.

By symmetry the Hamiltonian system describing the open loop Nash equi-
librium is:

m
′

=
rm−mρ

(
1− 2x

K

)
− α( βw )

β
1−β ((p−m)q)

1
1−β x

α+β−1
1−β

+m(J − 1)α( βw )
β

1−β (p−m)
β

1−β
q

1
1−β x

α+β−1
1−β

x
′

= ρx
(

1− x

K

)
− J(

β

w
)

β
1−β (p−m)

β
1−β q

1
1−β x

α
1−β

K = K (εt) (22)

Numerical simulations Substituting, as before, β = α = 1/2 in (22)
and rescaling in slow time, we obtain:

εm
′

= rm−mρ
(

1− 2x

K

)
− 1

4w
((p−m)q)2 +m(J − 1)

1

4w
(p−m)q2

εx
′

= ρx
(

1− x

K

)
− J

2w
(p−m)xq2. (23)

K = K (εt) = K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) .

The system of equation (23) can be regarded as a Hamiltonian system sim-
ilar to system (11) in the previous section. For a more specific analysis,
we adopt the parameter setting of the cooperative solution with two play-
ers. Concentrating on the equilibrium branch with positive biomass and
saddle point structure, we derive as in the previous section the adiabatic ap-
proximations for the biomass and its shadow value, and the corresponding
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optimal effort for the open loop Nash equilibrium. In fast time the optimal
paths for biomass, its shadow value, and effort will be determined as

xOL(t) = 0.989784K (εt)−−0.088885K ′(εt) +©(ε2) (24)

ĒOL (t) = 0.00002304(10−m(t))2x(t),

mOL(t) = 0.0233078 + 0.00377246K ′(εt)/K(εt) +©(ε2)

K (εt) = K0 (1 + α0τ + α1 cos (β0εt)) (25)

K ′(εt) = K0 (1 + α0 − β0α1 sin (β0εt)) . (26)

Comparing with the cooperative case, the above solution is similar to the
solution (17)-(19).

For the same parameter setting used for the cooperative solution, that
is,

K0 = 7000, α0 = 0.15, α1 = 0.4, β0 = 0.5, ε = 0.04, t ∈ [0, 50π],

the solution corresponding to the open loop Nash equilibrium is shown in
Figure 3 below. It is close to the cooperative solution but, as expected, cor-
responds to relatively higher harvesting and resource use and lower shadow
value for the biomass.

3.1.1 Feedback Nash Equilibrium

A strong time consistent feedback Nash equilibrium (FBNE) is obtained by
assuming that each agent conditions his/her effort on existing biomass x (t) .
Assuming time stationary symmetric feedback strategies Ei (t) = e (x (t)) ,
each agent solves the problem:

max
Ej(t)

∫ ∞
0
e−rt [πj (x,Ej , e (x (t)))] dt, (27)

s.t.

x′ (t) = ρx (t)

(
1− x (t)

K (εt)

)
− hj (t)−

∑
l 6=j

hl (t)

K (εt) = K0 (1 + α0εt+ α1 cos (βεt)) , x(0) = x0.

The Hamilton-Jacobi-Bellman (HJB) equation associated with this problem
can be written for j = 1, ..J as

rV (x) = max
Ej
{pqxαEβj − wEj + V

′
(x)[ρx (t) (1− x (t)

K (εt)
)− (28)

qxαEβj − (J − 1)qxαe(x)β]}
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Figure 3: Open loop Nash equilibrium with a slowly changing variable.

where V (x) is the value function for the problem. The optimality condition
becomes:

V
′
(x) = p− w

qxαβEβ−1j

. (29)

Taking into account that in equilibrium Ej = e(x), assuming that the value
function is differentiable, using the envelope condition to take the derivative
in (28) and then using (29), we obtain after some manipulations that the
equilibrium feedback rule e = e(x) satisfies the nonlinear ordinary differen-
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tial equation:

e′{pq2β2(J − 1)e2β−1x2α+1 + eβxα+1(wqβ(1− J) + Jq(β − 1))

+ρx2
(

1− x

K

)
(1− β)}

= (1− J)pq2βαe2βx2α + wex(αρ
(

1− x

K

)
+ r − ρ

(
1− 2x

K

)
)

+(ρ

(
1− 2x

K

)
− r)pqβeβxα+1

K = K0(1 + α0εt+ α1 cos (β0εt)) (30)

with boundary condition

ne (xf ) = ρxf

(
1− xf

K (εt)

)
(31)

where xf corresponds to an equilibrium branch. Since xf is not known a
priori (30) and (31) indicate the well known multiplicity of feedback equi-
librium strategies at the FBNE.

A numerical approximation Using β = α = 1/2 in (30) the feedback
rule satisfies

e′{1

4
pq2(J − 1)x2 +

1

2
e1/2x3/2(wq(1− J)− Jq) +

1

2
ρx2

(
1− x

K

)
} =

1

4
(1− J)pq2ex+

1

2
wex(ρ

(
3x

K
− 1

)
+ 2r) +

1

2
(ρ

(
1− 2x

K

)
− r)pqe1/2x3/2

K = K0(1 + α0εt+ α1 cos (βεt))

where Ej = e (x) = e, e′ = e′ (x) to ease notation. After rearranging we
obtain:

e′{(pq2(J − 1) + 2ρ)x2 + 2e1/2x3/2(wq(1− J)− Jq)− 2ρx3

K
} (32)

= ((1− J)pq2 + 4rw)ex+ 2wexρ

(
3x

K
− 1

)
+ 2(ρ

(
1− 2x

K

)
− r)pqe1/2x3/2

and

e′{0, 00576x2 − 0, 168e1/2x+ 0, 225x2
(

1− x

K

)
} = −0, 00576ex (33)

+5ex(0.05− 0, 225

(
1− 2x

K

)
) + (0.45

(
1− 2x

K

)
− 0, 05)0.24e1/2x3/2,

for the parametrization

J = 2, p = 10, w = 5, q = 0.048, ρ = 0.45, r = 0.05,

α0 = 0.15, α1 = 0.4, β0 = 0.5, ε = 0.04
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with boundary conditions (31). A unique FBNE, in the sense of an equi-
librium which is the best for all agents, can be obtained by following the
numerical method proposed by Kossioris et al. (2008, 2011). Although the
full characterization of the FBNE is beyond the scope of the present paper,
our results suggest that both the OLNE and FBNE can be analyzed in the
context of adiabatic dynamical systems.

3.1.2 Regulation and time-scale externality

Comparison of the cooperative solution with the open loop solution will
provide the basis for regulation. For example deviations m̄ (t) − m̄OL (t),
or h̄ (t)− h̄OL (t) , between the adiabatic approximation at the cooperative
and the open loop solution can provide the basis for price or quantity regu-
lation, under the assumption that non-cooperative agents follow open loop
strategies but take into account the slow evolution of carrying capacity.

If agents do not take into account slow dynamics, then a fixed-carrying-
capacity open loop Nash equilibrium can be easily obtained. Let m̂OL (t) , ĥOL (t)
denote the biomass shadow value and harvesting at the open loop Nash equi-
librium when K (τ) = K fixed. In this case, the basis for designing price or
quantity regulation will be the deviations m̄ (t)−m̂OL (t) and h̄ (t)−ĥOL (t) .
Since the regulator takes into account slow dynamics, this regulation will
internalize the time scale externality.

A similar type of approach, although much more complex, applies when
non-cooperating agents follow feedback strategies. In this case, the shadow
value of the biomass, mOL, should be replaced by V ′ (x) , the derivative of
the value function associated with feedback Nash equilibrium, and the open
loop harvesting rule hOL should be replaced by the corresponding feedback
rule hFB. Since the regulator accounts for slow dynamics, the time-scale
externality is again internalized.

4 Optimal regulation when emissions cause a slowly
varying carrying capacity

At this point we introduce a link between emissions in the industrial sector
of the economy and the evolution of carrying capacity by assuming that
the industrial sector of the economy generates emissions through produc-
tion processes. Emissions are generated by a finite number of homogeneous
agents i = 1, ..I, and generate benefits according to a strictly concave benefit
function

Bi (si) , B
′
i ≥ 0, B′′i < 0
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with aggregate emissions defined by

s =
I∑
i=1

si.

Emissions accumulate in the ambient environment to form a stock, according
to:

S′ = ϕs− lS, ϕ > 0, l > 0, S (0) = S0 > 0, S (t) ≥ 0.

Carrying capacity depends on the emissions’stock. Thus the stock of emis-
sions may change the carrying capacity according to:

K (t) = ω (S (t)) = A− εS (t) , ε > 0,K (t) ≥ 0 (34)

K ′ = −εS′ = −ε (ϕs− lS) . (35)

Assuming that ε is small, we are considering a situation in which the evo-
lution of the pollutant’s stock in the ambient environment induces a slow
evolution of the carrying capacity K. In this case we have time-scale sep-
aration between the fast resource and pollution dynamics, and the slow
dynamics of carrying capacity. If ε = 0, then carrying capacity is fixed and
does not respond to changes in pollution stock. If ε is small but is ignored,
that is we take ε → 0, the carrying capacity is treated as fixed, while in
reality it is slowly changing in response to changes in the pollution stock.
This is the source of the time-scale externality.

Using (34) to solve for S and replacing in (35), we obtain

K ′ = −ε
(
ϕs− l

(
A−K
ε

))
.

Defining γ so that l = γε, we obtain

K ′ = ε

(
γ (A−K)− ϕ

I∑
i=1

si

)
.

In this case the dynamical system can written in slow time as:

εx′(τ) = ρx (τ)

(
1− x (τ)

K (τ)

)
−

J∑
j=1

hj (τ) (36)

K ′ (τ) = γ (A−K (τ))− ϕ
I∑
i=1

si (τ) , γ =
l

ε
> 0, (37)

K (0) = A− εS (0) = K0 > 0 (38)
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or in fast time as:

x′ (t) = ρx (t)

(
1− x (t)

K (t)

)
−

J∑
j=1

hj (t) (39)

K ′ (t) = ε

(
γ (A−K (t))− ϕ

I∑
i=1

si (t)

)
. (40)

Given the dynamics (36)-(37), we can define the regulator’s problem in slow
time6 as the problem of choosing harvesting effort and emission paths to
maximize discounted aggregate benefits from harvesting and emissions net
of environmental damages associated with the ambient pollutant stock, or

max
E,s

∫ ∞
0
e−δτ

 J∑
j=1

πj (x,Ej) +

I∑
i=1

Bi (si)−D
(

I∑
i=1

si

) dτ (41)

subject to (36)− (37)

where D (·) , D′ > 0, D′′ ≥ 0 is a damage function related to emissions. The
current value Hamiltonian for this problem is defined as:

H = π + λ1f1 + λ2f2

π = π(K,x,E, s) =
J∑
j=1

πj (x,Ej) +
I∑
i=1

Bi (si)−D
(

I∑
i=1

si

)

f1 = f1(K,x,E, s) = ρx
(

1− x

K

)
−

J∑
j=1

hj

f2 = f2(K,x,E, s) = γ (A−K)− ϕ
I∑
i=1

si

where λ1(τ), λ2(τ) are the associated costate variables. Using the results of
Appendix 3 the optimality conditions resulting from the application of the
maximum principle to problem (41) are:

HE = 0,E= (E1, ..., EJ) , Hs = 0, s =(s1,..,sI) (42)

ε
(
λ′1 − δλ1

)
= −Hx

λ′2 − δλ2 = −HK

εx′ = f1(K,x,E, s)

K ′ = f2(K,x,E, s) (43)

along with Benveniste -Scheinkman transversality conditions at infinity. Cal-
culating the derivatives in (42)-(43) we obtain the following fast/slow system
of equations characterizing the optimal solution:

6We denote with δ the discount rate in slow time, i.e., the ten year discount rate.
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pβqxαEj
β−1 − w − λ1βqxαEjβ−1 = 0, j = 1.., J (44)

B
′
i (si)−D′

(
I∑
i=1

si

)
− λ2ϕ = 0, i = 1.., I (45)

ε
(
λ′1 − δλ1

)
+ (p− λ1)αqxα−1

J∑
j=1

Ej
β + λ1ρ(1− 2

x

K
) = 0

λ′2 − δλ2 + λ1ρ
x2

K2
− γλ2 = 0

εx′ = ρ
(

1− x

K

)
−

J∑
j=1

hj

K ′ = γ (A−K)− ϕ
I∑
i=1

si.

4.0.3 Numerical simulations

In order to obtain tractable results we consider, without loss of generality
that, Bi (si) =

√
si, I = 2 and that D (·) = (·)2 is a quadratic damage

function. Furthermore we assume that α = β = 1/2 and ϕ = 1. System
(44) consists of six equations. The first two of them are algebraic equations
from which we can solve for the control variables of our problem. Thus we
obtain:

Ej = (
(p− λ1)βqxα

w
)

1
1−β , Eβj =

(p− λ1)βqxα
w

(46)

1/(2
√
si)− 2

I∑
i=1

si − λ2ϕ = 0.

The system of the remaining four equations is a system with fast and slowly
evolving variables. In particular we obtain the following set of equations
which characterizes the evolution along an optimal path of biomass and
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pollution stock and their corresponding shadow values in slow time τ .

ε
(
λ′1 − δλ1

)
+ (p− λ1)αqxα−1

J∑
j=1

Ej
β + λ1ρ(1− 2

x

K
) = 0 (47)

λ′2 − δλ2 + λ1ρ
x2

K2
− γλ2 = 0

εx′ = ρ
(

1− x

K

)
−

J∑
j=1

hj

K ′ = γ (A−K)− ϕ
I∑
i=1

si.

The above system is called "the slow system" while rescaling, as τ = εt, we
obtain the so called "fast system"(

λ′1 − εδλ1
)

+ (p− λ1)αqxα−1
J∑
j=1

Ej
β + λ1ρ(1− 2

x

K
) = 0 (48)

λ′2 + ε{−δλ2 + λ1ρ
x2

K2
− γλ2} = 0

x′ = ρx
(

1− x

K

)
−

J∑
j=1

hj

K ′ = ε{γ (A−K)− ϕ
I∑
i=1

si}

where in the case of the fast system the derivatives are evaluated with respect
to fast evolving time t.

The above systems (47)-(48) can be rewritten in a matrix notation as:

Fast
dX/dt = F (X,K,ε)
dK/dt = εG(X,K,ε)

, Slow
εdX/dτ = F (X,K,ε)
dK/dτ = G(X,K,ε)

(49)

with X = (λ1, x)T ,K =(λ2,K)T the vectors of fast and slow variables
respectively. Furthermore, let F = (F1,F2)

T and G = (G1, G2)
T with

F1 = εδλ1 − (p− λ1)αqxα−1
J∑
j=1

Ej
β − λ1ρ(1− 2

x

K
)

F2 = ρx
(

1− x

K

)
−

J∑
j=1

hj

G1 = δλ2 − λ1ρ
x2

K2
+ γλ2

G2 = γ (A−K)− ϕ
I∑
i=1

si,
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with Eβj and s defined through (46) Setting ε = 0, in the fast system we
define the layer problem, in which the carrying capacity is fixed independent
of the pollution stock. Setting ε = 0 in the slow system we define the reduced
problem, in which the fast variable is treated as a variable which has relaxed
to its steady-state value.

The steady-state value of the relaxed fast variable evolves slowly, as
the slow variable moves towards its own steady-state value. This movement
takes place along the so-called slow manifold. To approximate the slow man-
ifolds which characterize the solution of our problem, Fenichel’s invariant
manifold theorem can be applied (Fenichel 1979). The application of this
theorem requires three conditions. (i) The functions F,G should be continu-
ous. (ii) The second condition is related to the reduced problem and requires
the existence of functions of the form X = Ho(K) = [Ho

1(K), Ho
2(K)] such

that F (Ho(K),K,ε = 0) = 0, that is the fast evolving variables should be
solved as functions of the slow variables. In particular taking into account
relationship (46) which gives the effort rate and manipulating we obtain
that:

x = K
(p− λ1)α+ λ1
(p− λ1)α+ 2λ1

with λ1 being the solution of

(p− λ1)2q2αβJw−1 + λ1ρ
−(p− λ1)α

(p− λ1)α+ 2λ1
= 0.

Adopting the specific parameter setting:

J = 2, p = 10, w = 5, q = 0.048, ρ = 0.45, δ = 0.05,

we derive the following solutions for the fast variables as functions of the
slow variables:7

(x, λ1)1 = (0.33318K,−14460.9)

(x, λ1)2 = (
K

2
, 10)

(x, λ1)3 = (0.999539K, 0.00230506).

These solutions are candidates for the slow manifold and indicate that the
stock of the renewable resource depends on the slow varying carrying capac-
ity that responds to changes in the stock of pollution. A regulator ignoring
the slow dynamics of carrying capacity would have regarded x as being inde-
pendent of S. (iii) Finally, accordingly to the third condition, the real parts
of the eigenvalues of the Jacobian matrix J = ∂F

∂X(Ho(K),K,ε = 0) should
be nonzero. Negative real parts induce an attracting slow manifold, while if

7We used Mathematica for some of the calculations at the current section.
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there is at least one positive real part, the manifold is repelling. In our case
the matrix J is given by

J =
∂F

∂X
=

[
∂F1
∂λ1

∂F1
∂x

∂F2
∂λ1

∂F2
∂x

]
=

[
−J11 J12

0 J22

]
J11 = J22 = ρ(1− 2

(p− λ1)α+ λ1
(p− λ1)α+ 2λ1

)− (p− λ1)jq2αβ/w

J12 = − 1

K

(p− λ1)α+ 2λ1
w{(p− λ1)α+ λ1}

jαβ(α− 1)(p− λ1)2q2 + 2λ1ρ
1

K
,

while the eigenvalues of this matrix are given by

eig1,2 = ±{(p− λ1)jq2αβ/w − ρ(1− 2
(p− λ1)α+ λ1
(p− λ1)α+ 2λ1

)}.

For the solution (x, λ1)2 = (K2 , 10) the eigenvalues are equal to zero so
Fenichel’s theorem has no application. From the two remaining cases the
solution, (x, λ1)1 is rejected on economic grounds because it is associated
with a negative shadow value for the renewable resource, while the solu-
tion (x, λ1)3 = (0.999539K, 0.00230506) is acceptable with real eigenvalues:
(eigen3 = ±9.99308) .

Fenichel’s theorem extends then the analysis to an arbitrary small para-
meter ε and provides the characterization of the optimal slow manifold Mε.
Let Mε = {(X,K) ∈ R4 : X = (H

ε
(K),K,ε)} such that :

dK/dτ = G(H
ε
(K),K,ε), (50)

where the vector H
ε
(K) = H0(K) + εH(1)(K) + ... as ε→ 0, with

H0(K) = H0(K) (51)

H(1)(K)=[
∂F

∂X
]−1[

∂H0

∂K
G− ∂F

∂ε
]

∂F

∂ε
= [

∂F1
∂ε

,
∂F2
∂ε

]T = [δλ1, 0]T

∂H0

∂K
=

[
∂Ho

1 (K)
∂λ2

∂Ho
1 (K)
∂K

∂Ho
2 (K)
∂λ2

∂Ho
2 (K)
∂K

]
.

Then the dynamical system (50) characterizes optimal paths of the slow
variable and its shadow value, when controls are chosen optimally and the
interaction between the slow and the fast variables are accounted for on the
slow manifold Mε.

4.1 The optimal slow manifold and regulation

The slow manifold (x, λ1)3 = (0.999539K, 0.00230506) implies that the stock
of biomass is proportional to the carrying capacity, while carrying capacity
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evolves slowly in response to the evolution of the pollution stock, according
to (50). To solve (50) we need to characterize, according to (51), the vector
H

ε
(K) using our parametrization. This leads to the dynamical system:[

dλ2/dτ
dK/dτ

]
=

[
δλ2 − λε1ρ(0.999539)2 + γλ2
γ (A−K)− ϕ

∑I
i=1 si,

]
(52)

with steady state (λ∗2,K
∗) = (0.00010291, 24.9) which is a saddle point.8 To

determine the stable manifold we assume an initial value K(0) = 15 and we
apply a multiple shooting method, which for an initial state (0.009, 15) the
system converges to the steady state (0.00010291, 24.9) for τ = 1.25.

The economic interpretation of this result is the following. Let the initial
value for the carrying capacity be K(0) = 15, then if the regulator imputes
a shadow value in the carrying capacity with initial value 0.009 the optimal
paths in slow time for the carrying capacity K(τ), its shadow cost, the
emission flow s (τ) and the harvesting effort E (τ) are depicted in Figure 4,
with the system being on the stable manifold for the slow variables. The
trajectories can be transformed to fast time by appropriate rescaling.

In terms of policy design the fact that carrying capacity has a shadow
value λ2 implies that the emission tax should internalize two externalities,
the straightforward pollution externality captured by the damage function
D (·) and the most subtle time-scale externality captured by the shadow
value if carrying capacity. From (45) the optimal emission tax can be defined
as:

T ∗ (t) = D′

(
I∑
i=1

s∗i (t)

)
+ λ∗2 (t)ϕ (53)

where the term D′
(∑I

i=1 s
∗
i (t)

)
internalizes the emission externality, the

term λ∗2 (t)ϕ internalizes the time scale externality, and s∗i (t) , λ∗2 (t) are the
optimal paths depicted in Figure 4. Alternatively the path s∗i (t) can be
used as the basis for quantity regulation. The path E∗ (t) can be used as a
basis for quantity regulation for the renewable resource.

Using the optimal slow manifold (x, λ1)3 = (0.999539K, 0.00230506) and
the optimal steady state (λ∗2,K

∗) = (0.00010291, 24.9) for the slow variables,
it follows that the optimal steady state for the biomass and its shadow value,
when the carrying capacity has relaxed to its long-run optimal steady state,
will be (x∗, λ∗1) = (0.999539 ∗ 24.9, 0.00230506) = (24.888, 0.00230506) .

5 Ignoring the time scale externality

An idea of the possible cost, in terms of effi cient regulation, from ignoring
the time scale separation can be obtained by solving again the regulator’s

8Detailed calculations are presented in Appendix 4.
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Figure 4: Evolution of the slow system

problem assuming a constant carrying capacity. In this case the regulators
problem will be:

max
E

∫ ∞
0
e−rt

 J∑
j=1

πj (x,Ej) = π(x,E)

 dt (54)

s.t., x′ (t) = ρx (t)

(
1− x (t)

K̄

)
−

J∑
j=1

hj , x(0) = x0.

We run our simulations again assuming that K̄ = A = 25, where A was
defined in (34).9 In this case we derive the following steady states for the
renewable resource:

X1 = (x,m)1 = (24.7452, 0.0465056), X2 = (x,m)2 = (6.39496,−716.759)

X3 = (x,m)3 = (0,−1716.05), X4 = (x,m)4 = (0,−0.0582733)

9The full solution is presented in Appendix 5.
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where, X1 X3, X4, are saddle points, and X2 is an unstable focus.10 Dis-
regarding the extinction solutions X3, X4 and the unstable focus X2 we
observe that for the acceptable solution X1 the steady state for the biomass
x = 24.7452 is close to the optimal steady state when the time scale ex-
ternality is accounted for x∗ = 24.888. Thus in this case, (i.e., where the
fixed carrying capacity is in the neighborhood of the optimal steady state
carrying capacity when the slowly evolving carrying capacity is taken into
account) regulating by ignoring the time scale separation leads to steady
states which are very close to regulation when time scale separation is ac-
counted for. On the other hand if the fixed carrying capacity deviates a lot
from the optimal steady state then the resulting path and steady state for
the renewable resource will deviate from the corresponding optimal path.

If the regulator assumes a fixed carrying capacity K̄ = 30, then the
acceptable steady state for the renewable resource will be X1 = (x,m)1 =
(29, 6942, 0.0465056), while a fixed carrying capacity of K̄ = 15 results in
an acceptable steady state X1 = (x,m)1 = (14.8471, 0.0465056).11 Thus the
fixed-carrying-capacity paths deviate from the optimal paths. This deviation
can be clearly seen if we consider the impact from the industrial sector
on the carrying capacity, which exists but is not taken into account when
the regulator assumes a fixed K. Assume that the regulator chooses and
implements optimal emissions (ŝ1, ŝ2) by solving the static problem

max
si

I∑
i=1

Bi (si)−D
(

I∑
i=1

si

)
. (57)

Then pollution will accumulate according to S′ (t) = ϕ (ŝ1 + ŝ2) − lS (t) ,
S (0) = S0. Let Ŝ (t) be the resulting path of accumulated pollution. Then
the carrying capacity will evolve slowly according to:

K (t) = A− εŜ (t) ,K (0) = A− εS0. (58)

If, for example, we use our parametrization with ϕ = 2, l = 0.4, ε =
0.04, S0 = 1, and A = 30, then Ŝ (t) = 2.5 − 1.5e−0.4t and K (t) = 30 −
0.04Ŝ (t) . Thus carrying capacity is slowly reducing. Since our numerical

10 It is likely that, a Skiba point exists for initial values of x in the neighborhood of X2

with branches converging either to X1 with positive biomass at the steady state, or to
resource extinction. However this is beyond the scope of the present paper.
11The full solutions are

X1 = (x,m)1 = (29, 6942, 0.0465056), X2 = (x,m)2 = (7.67395,−716.759)
X3 = (x,m)3 = (0,−1716.05), X4 = (x,m)4 = (0,−0.0582733), (55)

X1 = (x,m)1 = (14.8471, 0.0465056), X2 = (x,m)2 = (3.83697,−716.759)
X3 = (x,m)3 = (0,−1716.05), X4 = (x,m)4 = (0,−0.0582733) (56)

X2 is unstable focus and all the rest are saddle points.
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results indicate that the optimal steady-state biomass is declining along
with carrying capacity, treating the carrying capacity as fixed by ignoring
the time scale externality, implies that the regulatory scheme will induce
excess harvesting.

6 Concluding Remarks

In the present paper we identify a time scale externality related to the com-
mon characteristic of ecosystems to contain state variables which evolve in
different time scales, fast or slow. If economic agents take decisions that
affect these state variables by ignoring time scale separation then a time
scale externality is introduced. To study the time scale externality we ana-
lyzed a renewable resource management problem when carrying capacity is
evolving slowly, either in response to an exogenous forcing, or in response to
pollution accumulating in the industrial sector of the economy. Using sin-
gular perturbation methods we analyze the problem of a regulator seeking
to internalize the time scale externality and we derive the optimal paths for
the fast and the slow variables along with the optimal regulatory scheme
that includes the adjustment induced by time scale separation. We also
show, mainly through numerical simulations, that ignoring the time scale
externality could lead to ineffi cient regulation.

Areas for further research include the introduction of nonconvexities in
ecosystems dynamics. In particular if pollution dynamics, which induce a
slow variation of the carrying capacity, are characterized by non convexities
then the slow manifold might contain more than one feasible branches. In
this case an additional task of optimal regulation would be to identify the
optimal slow branch and steer the fast system towards this branch.

Uncertainty is also another open issue, in particular the case where the
evolution of the fast variable might be characterized by risk, or measurable
uncertainty, and the evolution of the slow variable might be characterized by
ambiguity. The application of robust control methods when the structure of
uncertainty differs according to the time scale, could be an interesting area
for further research.
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7 Appendix

7.1 Appendix 1: Adiabatic system: Cooperative solution

System (10) has the following pairs of solutions, where m∗ and x∗ are de-
termined as functions of K (τ) .12

S1 = (m∗(K (τ)), x∗(K (τ))1 = (−1716.05, 0) (59)

S2 = (m∗(K (τ)), x∗(K (τ))2 = (−0.0582733, 0)

S3 = (m∗(K (τ)), x∗(K (τ))3 = (−716.759, 0.255798K)

S4 = (m∗(K (τ)), x∗(K (τ))4 = (0.0465056, 0.989808K)

with matrix A defined as:

A =

[
r − ρ

(
1− 2x

K

)
+ J 1

2w (p−m)q2 2mρ/K
J 1
2wxq

2 ρ
(
1− 2x

K

)
− J 1

2w (p−m)q2

]
,

A =

[
0, 05 + T 0, 9mK

0.0004608x −T

]
, T = 0.0004608(10−m)− 0, 45

(
1− 2x

K

)
.

Note that solutions S1 and S2 lead to extinction, while solutions S3 and S4
lead to positive biomass along the equilibrium branch. The corresponding
eigenvalues are shown below:

S1 : {0.395364,−0.345364}, S2 : {0.445365,−0.395365} (60)

S3 : {0.025 + 0.237501i, 0.025− 0.237501i}, S4 : {0.495434,−0.445434}

We calculate the eigenvalues by using the values given in (9) while
for x,K we use the four pairs given by (59). Thus S3 is unstable while
all others solutions are saddle points which is a result compatible with the
optimal control structure of the problem.

Therefore all equilibrium branches (m∗(K (τ)), x∗(K (τ))) of (11) admit
an adiabatic solution (m(τ), x(τ)). With any of these solutions we can asso-
ciate an adiabatic approximation of order one which is obtained as (Berglund
1998):

(m(τ), x(τ))T = (m∗(τ), x∗(τ))T + εu(τ , ε) +©(ε2) (61)

u(τ , ε) = −A−1i w(τ , ε), w(τ , ε) = −[((m∗(τ))′, (x∗(τ))′)T ], i = 1, .., 4.

The adiabatic approximating solution (12) describes how the stock of bio-
mass evolves under optimal regulation given the slow evolution of carrying

12We used the Mathematica package for the calculations in the current section.
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capacity. Taking ε = 0.04, so that the fast time unit is 1/25 of the slow time
unit, biomass dynamics at the regulators equilibrium satisfy:

S1 : x(τ) = 0 +©(ε2) , S2 : x(τ) = 0 +©(ε2) (62)

S3 : x(τ) = 0.255798K (τ) + 0.0296219K ′(τ) +©(ε2) (63)

S4 : x(τ) = 0.989808K (τ)− 0.0888812K ′(τ) +©(ε2) (64)

K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) (65)

K ′(τ) = K0 (1 + α0 − β0α1 sin (β0τ)) (66)

As described in the main text we study S4.

7.2 Appendix 2: Adiabatic system: Open loop Nash Equi-
librium

Using the parameter setting of the cooperative solution with two players

J = 2, p = 10, w = 5, q = 0, 048, ρ = 0.45, r = 0, 05,

we obtain the equilibrium branches (m∗(K (τ)), x∗(K (τ))) by setting(εm′(K (τ)), εx′(K (τ))) =
(0, 0):

S1 = (m∗(K (τ)), x∗(K (τ))1 = (−1721.08, 0)

S2 = (m∗(K (τ)), x∗(K (τ))2 = (−0.0290515, 0)

S3 = (m∗(K (τ)), x∗(K (τ))3 = (−715.07, 0.257529K)

S4 = (m∗(K (τ)), x∗(K (τ))4 = (0.0233078, 0.989784K)

Matrix A in the OLNE case takes the form

A =

[
T1 2mρ/K

J 1
2wxq

2 ρ
(
1− 2x

K

)
− J

2w (p−m)q2

]
,

T1 = r − ρ
(

1− 2x

K

)
+

1

2w
(p−m)q2 + (J − 1)

1

4w
(p− 2m)q2

Note that as in the cooperative case there are two solutions, S1 and S2 which
lead to extinction, while solutions S3 and S4 lead to positive biomass along
the equilibrium branch. The associated eigenvalues are shown below

S1 : {0.39653,−0.347682}, S2 : {0.445379,−0.396531}
S3 : {0.024424 + 0.238083i, 0.024424− 0.238083i}, S4 : {0.494261,−0.445413}

Thus S3 is unstable while all others solutions are saddle points which is a
result compatible with the optimal control structure of the problem.
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As in the cooperative case we can associate an adiabatic approximation
based on:

(m(τ), x(τ))T = (m∗(τ), x∗(τ))T + εu(τ , ε) +©(ε2), where (67)

u(τ , ε) = −A−1i w(τ , ε), w(τ , ε) = −(m∗(τ), x∗(τ))T ′, i = 1, .., 4

Taking ε = 0.04, biomass dynamics at the OLNE satisfy:

S1 : x(τ) = 0 +©(ε2) , S2 : x(τ) = 0 +©(ε2) (68)

S3 : x(τ) = 0.257529K (τ) + 0.0296259K ′(τ) +©(ε2) (69)

S4 : x(t) = 0.989784K (εt)−−0.088885K ′(εt) +©(ε2) (70)

K (τ) = K0 (1 + α0τ + α1 cos (β0τ)) (71)

K ′(τ) = K0 (1 + α0 − β0α1 sin (β0τ)) (72)

Focussing on S4 which is characterized by saddle point stability and positive
biomass we derive the corresponding adiabatic solutions for the optimal
effort E. In fast time the optimal paths for biomass and effort are as shown
in the main text.

7.3 Appendix 3: The maximum principle in fast/slow time

Consider the following problem in slow time τ .

max
u

∫ ∞
0

e−δτU (x1, x2, u) dτ (73)

s.t. εẋ1 = f1 (x1, x2, u)

ẋ2 = f2(x1, x2,u)

where x1 is the fast variable, x2 is the slow variable and the control u =
(u1, u2) affects both variables. 13

Writing:

∫ ∞
0

e−δτU (x1, x2, u) dτ =

∫ ∞
0

e−δτobjdτ (74)

obj = U (x1, x2, u) + λ1 (τ) [f1 (x1, x2, u)− εẋ1] + λ2 (τ) [f2(x1, x2,u)− ẋ2]

Integrate by parts the terms e−δτλ1 (τ) εẋ1, e−δτλ2 (τ) ẋ2, with λ1 (τ) , λ2 (τ)
the associated Lagrange multipliers, to obtain these two terms:∫ ∞
0

e−δτλ1 (τ) εẋ1dτ = −
∫ ∞
0

e−δτεx1
(
λ̇1 − δλ1

)
dτ + e−δτεx1 (τ)λ1 (τ)

∣∣∣∞
0∫ ∞

0
e−δτλ2 (τ) ẋ2dτ = −

∫ ∞
0

e−δτx2
(
λ̇2 − δλ2

)
dτ + e−δτx2 (τ)λ2 (τ)

∣∣∣∞
0

13Note that δ is the discount rate in slow time.
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Substitute the above two relationships into (74) we obtain:

∫ ∞
0

e−δτU (x1, x2, u) dτ = (75)∫ ∞
0

e−δτ{U (x1, x2, u) + λ1 (τ) f1 (x1, x2, u) + λ2 (τ) f2(x1, x2,u)}dτ+∫ ∞
0

e−δτεx1
(
λ̇1 − δλ1

)
dτ + εx1 (0)λ1 (0) +∫ ∞

0
e−δτx2

(
λ̇2 − δλ2

)
dτ + x2 (0)λ2 (0) .

Taking the comparison control u∗ (τ) + αh (τ) = (u∗1 (τ) + αh1 (τ) , u∗2 (τ) +
αh2 (τ)) where u∗ (τ) is the optimal control, and considering the correspond-
ing state variable generated by the comparison control (y1 (τ , α) , y2 (τ , α)) =
(x1(τ), x2(τ)) the value of the above integral is a function of the parameter
α so we can define:

J (α) =

∫ ∞
0

e−δτU (y1 (τ , α) , y2 (τ , α) , u∗ (τ) + αh (τ)) dτ (76)

=

∫ ∞
0

e−δτ{U (y1 (τ , α) , y2 (τ , α) , u∗ (τ) + αh (τ)) +

λ1 (τ) f1(y1 (τ , α) , y2 (τ , α) , u∗ (τ) + αh (τ)) +

λ2 (τ) f2(y1 (τ , α) , y2 (τ , α) , u∗ (τ) + αh (τ))}dτ =∫ ∞
0

e−δτεy1 (τ , α)
(
λ̇1 − δλ1

)
dτ + εy1 (0, α)λ1 (0) +∫ ∞

0
e−δτy2 (τ , α)

(
λ̇2 − δλ2

)
dτ + y2 (0, α)λ2 (0) .

Evaluate the derivative J ′ (α) and since u∗(τ) is the optimal control the
following must be satisfied

J
′
(0) = 0, where (77)

J
′
(a) =

∫ ∞
0

e−δτUa (y1 (τ , α) , y2 (τ , α) , u∗ (τ) + αh (τ)) dτ.

Manipulating we obtain the maximum principle as:

Uu1 + λ1f1u1 + λ2f2u1 = 0 (78)

Uu2 + λ1f1u2 + λ2f2u2 = 0

ε
(
λ̇1 − δλ1

)
+ Ux1 + λ1f1x1 + λ2f2x1 = 0(

λ̇2 − δλ2 + Ux2 + λ1f1x2 + λ2f2x2

)
= 0.

Defining the Hamiltonian H as:

H = U (x1, x2, u) + λ1(τ)f1 (x1, x2, u) + λ2(τ)f2 (x1, x2, u)
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the optimality conditions regarding our initial problem (74) become:

Hu1 = 0

Hu2 = 0

ε
(
λ̇1 − δλ1

)
= −Hx1

λ̇2 − δλ2 = −Hx2

or our systems takes the following form:

Uu1 + λ1f1u1 + λ2f2u1 = 0 (79)

Uu2 + λ1f1u2 + λ2f2u2 = 0

ε
(
λ̇1 − δλ1

)
+ Ux1 + λ1f1x1 + λ2f2x1 = 0

λ̇2 − δλ2 + Ux2 + λ1f1x2 + λ2f2x2 = 0

εẋ1 = f1 (x1, x2, u)

ẋ2 = f2 (x1, x2, u) .

Setting ε = 0 and solving on the slow manifold, we obtain the system:

Uu1 + λ1f1u1 + λ2f2u1 = 0 (80)

Uu2 + λ1f1u2 + λ2f2u2 = 0

Ux1 + λ1f1x1 + λ2f2x1 = 0

λ̇2 − δλ2 + Ux2 + λ1f1x2 + λ2f2x2 = 0

0 = f1 (x1, x2, u)

ẋ2 = f2 (x1, x2, u) .

So we need to solve for u, x1, λ1 in terms of x2, λ2 and substitute into the
differential equations for x2, λ2.We can draw phase diagrams. Then we can
simulate the full model.

7.4 Appendix 4: The Slow Manifold

H0(K) = H0(K)

H(1)(K)=[
∂F

∂X
]−1[

∂H0

∂K
G− ∂F

∂ε
]

∂F

∂ε
= [δλ1, 0]T

∂H0

∂k
=

[
0 −0.999539
0 0

]
[
∂F

∂X
]−1 =

1

D

[
−eig −J12

0 eig

]
,

D = −eig2, eig = −ρ(1− 2
(p− λ1)α+ λ1
(p− λ1)α+ 2λ1

) + (p− λ1)jq2αβ/w.
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With ε = 0.04, the optimal trajectories of the fast variables Xε as func-
tions of the slow variables on the slow manifold are given by:

Xε = (λε1, x
ε)T =

[
0.00230506
0.999539K

]
+ 0.04

[
0.04( 1

eigG2 − δ(0.00230506))

0

]
(81)

=

[
0.00400277G2 + 0.00230045

0.999539K

]
Then the dynamics of the slow variables on Mε are given by:[

dλ2/dτ
dK/dτ

]
=

[
δλ2 − λε1ρ

(xε)2

K2 + γλ2
γ (A−K)− ϕ

∑I
i=1 si

]
. (82)

Taking into account that 1/(2
√
si)− 2

∑I
i=1 si − λ2ϕ = 0 and adopting the

following parameterization

D (·) = (·)2, δ = 0.05, ϕ = 2, A = 25, ε = 0.04, l = 0.4, γ = l/ε = 10, I = 2

we obtain the dynamical system characterizing the slow variables as:[
dλ2/dτ
dK/dτ

]
=

[
δλ2 − λε1ρ(0.999539)2 + γλ2
γ (A−K)− ϕ

∑I
i=1 si,

]
. (83)

The steady states of the above system give the full system equilibria and
their derivatives, with respect to K, determine stability properties when
evaluated at a specific steady state. Manipulating and taking into account
(81), (82) and the condition for si, we obtain for the steady state (λ2,K):[

0
K

]
=

[
δλ2 − 0.00230045 ρ(0.999539)2 + γλ2

ϕ
γ

∑I
i=1 si −A

]
, or (84)

[
λ2
K

]
=

[
0.00230045ρ(0.999539)2/(δ + γ)

ϕ
γ

∑I
i=1 si −A

]
=

[
0.00010291

24.9

]
, (85)

si = 0.249966. (86)

The stability matrix for system (83) is

J =

[
(δ + γ) 0

(A− ϕ
γ

∑I
i=1 si)λ2 −γ

]

with associated determinant equal to −(γ + δ)γ < 0, and trace δ > 0. Thus
the steady state (λ∗2,K

∗) = (0.00010291, 24.9) is a saddle point.
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7.5 Appendix 5: Renewable resource management with fixed
carrying capacity

Assuming that harvesting which is the variable of interest takes place in
fast time it is natural to study the cooperative solution for the following
regulator’s problem.

max
E

∫ ∞
0
e−rt

 J∑
j=1

πj (x,Ej) = π(x,E)

 dt (87)

s.t., x′ (t) = ρx (t)

(
1− x (t)

K̄

)
−

J∑
j=1

hj , x(0) = x0

with functions and parameters being as in previous sections.

hj = qxαEβj , α > 0, 0 < β < 1, j = 1, ..J.

E = (E1, ..., EJ) .

Defining the current value Hamiltonian H as:

H(x,Ej ,m) = π(x,E) +m(ρx
(

1− x

K̄

)
−

J∑
j=1

hj) (88)

with πj (x,Ej) = pqxαEβj − wEj , hj = qxαEβj we obtain the following opti-
mality conditions:

HEj (x,Ej ,m) = pqxαβEβ−1j − w − βmqxαEβ−1j = 0, j = 1, ..J. (89)

HEjEj = (p−m)(β − 1)qxαβEβ−2j < 0,

m
′

= rm−Hx(x,Ej ,m) =

rm− αpqxα−1
J∑
j=1

Eβj −m{ρ
(

1− 2x

K̄

)
− αqxα−1

J∑
j=1

Eβj }

x′ (t) = ρx (t)

(
1− x (t)

K̄

)
−

J∑
j=1

hj .

Solving for Ej ,we obtain

Ej = (
p−m
w

qxαβ)
1

1−β , , j = 1, ..J

and thus the (89) becomes:

m
′

= rm−mρ
(

1− 2x

K̄

)
− Jα(

β

w
)

β
1−β ((p−m)q)

1
1−β x

α+β−1
1−β (90)

x′ = ρx
(

1− x

K̄

)
− J(

β

w
)

β
1−β (p−m)

β
1−β q

1
1−β x

α
1−β
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We study the nature of the steady states of our system by adopting the
usual parameter values. In particular for β = α = 1/2 , with

J = 2, p = 10, w = 5, q = 0, 048, ρ = 0.45, r = 0, 05, K̄ = {25, 30, 15}

we obtain the results of section 5.
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