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Using DEA and VEA to Evaluate Quality of Lifein the Mid-Atlantic States

Abstract: In this study we use data envelopment analysis (DEA), and an extension of DEA called
value efficiency analysis (VEA), to explore the “production’ of quality of life within courtiesin
the mid-Atlantic region and the extent to which production frontiers and efficiency differ
between rural and urban counties. These methods allow usto identify counties that areinefficient
in their quality of life production, and to rank those counties accordng to their distance from a
performance standard established by other observed counties (using DEA), or by asingleunit
designated as “most preferred” (using VEA) .
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Introduction

Speculation regarding the relationship between the attributes of a community and the
quality of life experienced by its residents has gained vigor in recent years. In contemporary
discussion, the issue arises most visibly in debate about the dispersed, auto-dependent
development patterns known as urban sprawl, and in burgeoning interest in such concepts as
smart growth and liveable or sustanable communities Additionally, observed changesin
migration patterns nationwide, together with increasing interest in the role that natural amenities
play in residential choice behavior, highlights the importance of understanding how residents
value the variousattributes associated with different types of communities. Giventhe abstract,
multi-dimensional nature of the underlying concept of quality of life, however, quantifying
relationships between community attributes and qudity of life poses significant challenges.

Efforts to measure quality of life confront two equally chdlenging tasks. Oneisto
identify aset of indicators that represent appropriate dimensions for measuring quality of life.
Such indicators are often selected to reflect economic, social, and environmental factors. The
second task is to aggregate such indicators into acomposite measure that can be used to
differentiate communities along a quality of life spectrum. One of the most commonly used
methods for evaluating quality of life has been the hedonic price method. This method is based
on theoretical work by Rosen (1979) and Roback (1982) suggesting that, at alabor- and land-
market equilibrium, the value of regional amenity and quality of life factors should be capitalized
into regional wages and rents (Deller, 2001). Differentials among regional wages and rents
should thereforereflect differencesin quality of life, and thesedifferentials can be used to
estimate the values attached to each amenity factor. Blomquist, Berger and Hoehn (1988) used
hedonic wage and rent models to estimate implicit amenity prices for a varety of regional
climatic, environmental and urban factors; these prices then served as weightsin a quality of life
index applied to urban counties. A morerecent application of thistechniqueis Gabriel et al.

(2003), whoe extend the hedonic equation system to include the price of locally traded goods



other than housing, and apply the analysis to pooled cross secti on and time series data on alarge
variety of amenity and quality of life variables. Thisallows them to not only estimate the implicit
price of amenity factors but also to construct a state-level quality of life index based on these
amenity weights.

Hedonic amenity weight estimates, and the quality of life indices that arise from them, are
sensitive to the specification of the functional form linking amenities with existing wage and
income differentials. Non-parametric quality of life indices avoid thisissue. In an effort to
eliminate completely the need for “ad hoc” sdection of quality of life indicators, Douglas et al.
(1993) appeal to the legacy of Tiebout (1956) in arguing that migration patterns should reflect
quality of life differentials, mobile residents will “vote with their feet” for those communities
with high quality of life. They therefore construct a quality of life index based on the
presumption that the probability of a resident moving from location A to B will depend on the
degree to which the quality of life in location B exceeds that of location A (Doudas, 1993). This
index allows them to rank locations in arelatively objective manner, but they do not atempt any
further examination of the specificfactors contributing to these qudity of life rankings.

In this study we use data envelopment analysis (DEA), and a recent extension of DEA
called value efficiency analysis (VEA), to explore the “production” of quality of lifewithin
counties in the mid-Atlantic region of the United States using counties as the units of analysis.
These methods allow a non-parametric approach to ranking communities and analyzing the
contributions of different factorsto quality of life production. DEA is a non-parametricfrontier
analysis method that was orignally devdoped to analyze the performance of organizaions whose
goals are not limited to profit maximization (Charnes et a., 1978). The methodology has been
applied to issues as diverse as fisheries management, health care provision, national defense, and
the socio-economic performance of nations (Bowlin, 1998; Golany et d., 1997; Walden &
Kirkley, 2000).

Using linear programming, DEA creates afrontier of efficient units that envelopes other,



relatively inefficient units. Various measures of inefficiency are available, based on different
methods for measuring the distance from a unit’s observed production point to the efficient
frontier. DEA isflexiblein that it does not require specification of an underlying production
relationship between inputs and output, it is able to incorporate inputs and outputs that are
measured in different units and at different scales, and it is able to accommodate multiple inputs
and multiple outputs with minimal value judgments placed on the relative “worth” or “cost” of
these inputs and outputs. The first and second features make DEA appealing for evaluating the
performance of communitiesin providing quality of life using varying measures of economic,
social, and environmental inputs and outputs. In using DEA for that purpose, the third feature
represents an imovative approach to the aggregation of quality of life indices. Essentially, it
provides an objedive procedure for weighting inputs and outputs that requires the andyst to
assume no more than that outputs should be maximized and inputs should be minimized. Since
value judgements about the relative worth of alternative community attributes create potential
minefields in quality of life assessment, thisthird feature is one that offers some appeal for
objective assessments.

Extensions of the DEA technique that retain the first two features noted above but that
allow for stronger value judgements to be imposed regarding therelative desirability of inputs
and outputs have been developed. Vdue efficiency analysis (VEA) is one such extension that is
appealing in tha it does not requirethose evaluating quality of life to explicitly assign weights
or relative weights, to inputs and outputs. Instead, evaluators need only to select a“reference
community” against which othe communities will bemeasured. The levels of inputs and outputs
of that reference community establish implicit constraints on the weghts that can beassigned to
inputs and outputs in the remaining communities.

In the following section we briefly explain the basic strudure of DEA and VEA. We then
describe the quality of life model, explaining the relevant dimensions and the data used in our

efficiency analysis, and present results. In doing so, we will explore the hypothesis that a



fundamentally different efficiency frontier exists for rural counties thanfor urban counties; if this
isthe case, a county’ s performance should be measured relative to only those counties that share

its rural/urban classification.

Data Envelopment Analysis and Vaue Efficiency Analysis

We envision counties as entities that make a collection of development dedsions that in
aggregate produce quality of life for its residents. Desirable outcomes that are created, such as
employment opportunities and high quality educational systems, may be accompanied by
undesirable outputs such as aime and pollution. In choosing a devel opment path to maximize
quality of lifefor its residents, counties would like to maximize the desirable outputs and
minimize the undesirable outputs. Counties that are relaively efficient at producing high quality
of lifewill produce relatively more desirable outputs per unit of undesirable output than counties

that are relatively ineffiaent.

Data Envelopment Analysis

DEA provides a uniquely flexible way to model the scenario described above.
Fundamental to our measurement of efficiency isthe proposition that different development
paths lead to communities with different combinations of attributes, and that overlying all of
these possible combinations is a community attribute frontier that represents maximum
achievable performance along the many dimensions making up quality of life. Efficient counties
lie along the frontier and produce a higher ration of desirable outputs to undesirable outputs than
the inefficient counties that lie within the frontier. Using these frontiers as a standard for judging
the relative performance of counties in producing quality of life requires few value judgments
about the relative worth of various desirable or undesirable community charecteristics. DEA
makes only the weak but reasonable assumption that communities prefer to have more of “good”

development outcomes (e.g. natural amenities, literacy, affordable living) and fewer of “bad’
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development outcomes (e.g. pollution and poverty).

Using terms borrowed from more traditional production relationships, in our analysis
entities to be minimized (undesirable outcomes) will be referred to as inputs, and entities to be
maximized (desirable outcomes) will be referred to as outputs. Of course, no direct production
relationship exists anong these fadors— inputs are nat literally consumed to produced outputs—
but DEA is a non-parametric methodology and requires no assumptions about the form of the
underlying relationship connecting inputs and outputs.

The most basic DEA formulation evaluates the relative efficiency of a production unit by

o _ weighted oufputs o
estimating for each unit a measure of , - (Cooper et al., 2000). A unit with an
weighted inputs

efficiency ratio of 1 is effiadent, while one tha uses relatively many inputs, or produces relaively
few outputs, will be found inefficient with aratio of lessthan 1. One fundamental innovation that
DEA offersis an objective method of determining what weights will be assigned to outputs and
inputs in determining this ratio. The procedure computes set of weights for each decision-making
unit (DMU) that maximizes its efficiency ratio, subject to the constrant that the effidency ratio
calculated at that set of weights does not exceed one for any DMU in the data set. Accordingly,
the assigned weights vary by DMU and are derived from the data such that each DMU is alowed
to be as efficient as possible relative to the other DM Us.

The original formulation for DEA can therefore be expressed as the following fractional

programming problem, which must be solved for all n DMUs in the data set:
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wherey, denotesthe level of output k for DMU j, x;;

denotes the level of input i for DMU j, u,
represents the weight assigned to output k for the base decision-making unit, v, represents the
weight assigned to input i for the base decision-making unit, and 6 is the efficiency measure.
Note that the base decision-making unit for each linear programming problem is denoted with the
subscript 0. The above problem can be easily reformulated as the equivalent linear programming

problem below:
max g =y, t gyt [2]
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DMUs with weights that yield an efficiency rating of 1 define an efficient production frontier.
Those with effidency ratios less than 1 fall some distance from the frontier. A measure of this
distance is ameasure of the inefficiency of the DMU in question. For this formulation, the
measure of distance is aradial measure indicating how the output/input ratio would have to
changein order for that DMU to be considered efficient (i.e. to occupy a position on the efficient
frontier).

To illustrate, suppose we have five DMUSs producing two outputs using one input. The
production possibilities frontier, assuming a constant input level equal to 1, isshown in figure 1.

DMUs one through four lie on the frontier, and are therefore efficient (i.e distance to the frontier



is zero). The solution for the above LP model would therefore yield and efficiency ratio of one
for each of these units. DMU 5, however, lies within the frontier. The solution of the LP problem

for DMU 5 yields an efficiency ratio of n=.527. In figure 1, this result is the ratio of distances

B
a , Where O refas to the origin, and points A and B are as indicated on the graph. The ratio

indicates that the output/input ratio for DMU 5 is52.7% of what it is required for technical

efficiency. Accordingly, to become effiaent, DMU 5 can either reduce inputs to 52.7% of their

current levels, or increase the level of each output produced to % (i=1,..., 5). Thelatter
adjustment, for instance, would move DMU 5 to the point marked A (1.89, 5.68) on the
efficiency frontier.

To assure validity of the results, it isimportant to measure the performance of DMUs
relative to an appropriate frontier. With our quality of life analysis, for instance, it may not be
appropriate to measure the distance of inefficient rural counties from afrontier partially formed
by efficient urban counties since the production relationship for urban and rural counties and
their efficient frontiers may be fundamentally different. To illustrate, consider figure 2, which
depicts three frontiers for two abstract outputs— environmental quality of life and economic
quality of life. The frontier for urban communities only implies that urban regions are capable of
producing very high economic quality output, but that their environmental quality output is
limited. The frontier for rural communities implies the opposite; rural regions are able to produce
high environmental quality, but it is not technicdly possible (according to observed data) to dso
produce high economic quality of life. The remaining frontier represents an overall frontier that
would be computed by combiningrural and urban communities.

To illustrate the problems inherent in using inappropriate frontiers for efficiency

measurement, consider point A, whidh represents an urban community. This community will



appear considerably more efficient as a produdion unit when measured relative to other urban
regions (as shown along the line from the origin to the urban frontier) than when measured
against rural regions or against a composite frontier. If it is the case that urban regions are
fundamentally incomparable to rural regionsin the provision of environmental amenities, then
the two groups should be used to generate different efficiency frontiers. In this study, we use our

efficiency results to explore whether there is evidence that such differential frontiers exist.

Value Efficiency Analysis

DEA eva uates DMUs with respect to therelatively weak criterion of technica effi ciency.
However, it can be useful to evaluate performance under stronger assumptions about the relative
value of inputs and outputs by imposing logical restrictions on the weghts allowed. These
restrictions reflect judgements that exist independent of the data and that impose restrictions on
efficiency measurements based on pre-existing perspedives about the relative importance of
individual inputs and outputs or prior views on what constitutes an efficient or an inefficient
DMU (Allen et al., 1997). We can then ask, how do communities perform contingent on a set of
judgements about the relative value of different community outcomes?

Several methods of imposing judgements via weight restrictions have been developed in
the literature, but in this study we will implement value efficiency analysis— a recent extension of
DEA that allows thedecision-maker (DM) to incorporate into the efficiency analysis some
information about preferences anong production outcomes. The task of assigning constraints to
weights or relaive weightsin DEA can be quite difficult and somewha arbitrary, and is
complicated in cases where the inputs and outputs are measured in different units. Rather than
requiring the decision-maker to s such constraints VEA simply requires the decision-maker to
designate one DMU as a“most preferred solution” (MPS), denoted u*, which will be used as the
standard against which other DM Us are measured. The decision-maker is assumed to have a

value function tha is pseudoconcave, strictly increasing in outputs and strictly decreasing in



inputs, and that reaches alocal maximum at the point u* on the efficient frontier (Halme et a.,
1999; Korhonen et al., 2001). That point u* is therefore assumed to lie aong a value contour that
is unknown but, given the above assumptions, can be linearly approximated by the hyperplane
tangent to the efficient production surface at u* (Halme et al., 1999). M easurements of value
efficiency evaluate how far aDMU lies from this approximated value contour, rather than from
the technical efficiency frontier itself.

VEA isillustrated in figure 3. Assume that from among the DMUs previously identified
as efficient (DMUs 1 through 4), DMU 3 has been identified as the most preferred solution. Itis
assumed that there is an underlying value function whose exact functional form is unknown; a
singleisovalue curveisillustrated on the figure passing through the most preferred point. A
value efficient measurement with full information would indicate how far each unit lies from the
isovalue contour itself. However, in VEA the exact functional form of the underlying value
function is unknown, as is the exact location of the isovalue contour. An approximation is used
instead. Given the above assumptions about the utility function, a plane formed parallel to an
adjacent facet on the efficient frontier will encompass that isovalue curve, and is thereforean
upper bound for the value efficiency measurement. Thedotted line indicated in figure 3
represents such an approximation, and alower bound for the inefficiency measurement can be
found using the distance of value-inefficient pointsto thisline. Note that DMU 1, which was
efficient according to DEA, would be found to be value-inefficient using VEA because its mix of
outputs, though technically efficient, is dissimilar to that of the most preferred solution—- DMU 3.
DMU 5, which was found to be DEA-inefficient, would be assigned an even smaller efficiency
measurement using VEA because efficiency is now measured relative to the approximated
isovalue curve, rather than the technical efficiency frontier. In this study, we will expand upon
the technical efficiency analysis provided by DEA to explore the value-efficiency of DMUs
relative to a“mog preferred solution” in the provigon of quality of life, aswell as the sensitivity

of those value-eficiency scores to selection of the MPS.



Model and Data
In this section we describe the quality of life indicators used in our analysis and describe
in detail the procedures used to edimate the effidency of quality of lifeprovision by countiesin

the mid-Atlantic states.

Quality of Life Indicators

Quality of life indicators are broadly categorized into three dimensions— social, environmental,
and economic— for which we wanted representation among our quality of life variables. There are
numerous possible variables within each of these categories. The final selection of the model
variables was based on several considerations and limitations: an extengve review of thequality
of lifeliterature, the availability of complete data at the county level, a desire to balance the
representation of the three quality of life dimensionsin the final model, and a tradeoff that the
DEA methodology generates between the number of inputs and outputs that can be included and
the discriminatory power of the model. As the number of inputs and outputs included in the
model increases, efficiency scores of all DMUs in the data se increase. It isimportant, therefore,
to ensure that relevant variables be included in the model but to take steps to eliminate variables
that contain duplicate or unrelated information.

The variables included in the model are shown in Table 1. Inputs to the model are
considered to be those devel opment outputs that counties would like to minimize— including
factors that might be characterized as negative “ side effects’ of development, such as cancer risk,
and factors that describe positive development outcomes, but for which smaller means better,
such as teacher/pupil ratios. Modd outputs are those outcomes that courties would like to
maximize, such as affordability or percentageof the population with a high school degree. Note
that the latter category could aso include factors that are not literally “produced” in the
development process, such as acres of natural areas— because no underlying production function

is assumed, the modd does not distinguish between desirable characteristics that are ectually
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produced, and those that merely survive the production process unscathed.

In many production scenaios, variables exist that affect production but are nevertheless
out of the control of the DMU, for example weather in agricultural production models. Such
variables are called “non-discretionary” or “fixed” variablesin the DEA literature. Weinclude a
single non-discretionary variable— the amenity index produced by the Economic Research
Service to describe aregion’s climate, topography, and water area. This variable has been found
to be significart in explaining rural migration patterns over the past couple of decades (ERS,
1999). The amenity index is assumed to influence quality of life, and therefore to influence how
counties rank with respect to efficiency, but it cannot be manipulated in order to improve an
efficiency rating. A county with high amenity value, for instance, may score quite high with
respect to quality of life, but an inefficient county with low amenity value cannot change that
value to increase efficiency; the remaining output variables may have to be improved by an even
greater amount to compensate for the fixed (and poor) amenity vdue.

The cancer risk index provides for each county a measureof the risk of cancer-related
health effectsresulting from exposure to air toxics. The data set is basad on 1996 emissions daa
collected through the EPA’ s National-Scale Air Toxics Assessment. The percent of land area
developed is calaulated from the 1992 National Land Cover Data. Thedata on teacher/pupil
ratios for the 2000-2001 school year is obtained from the National Center for Education
Statistics. The percent of residents below the poverty level and percent of residents 25 years and
older who hold a high school degree or equivalent are all obtained from 2000 census data. The
number of recreation and entertainment establishments per devel oped square mileis calculated
from 2001 County Business Pattern Data (NAIC code 71) combined with data on developed area
from the National Land Cover Data.

The affordability index is a variable constructed with information about both cost of
living and median household income. The Family Economic Self-Sufficiency Project has

generated for most states figures indicating the hourly or annual wage that would be necessary
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for families of various sizes to achieve self-sufficiency. These figures, called the “ self-sufficiency
standard”, incorporate information regarding the costs of housing, food, childcare, transportation,
healthcare, taxes, and miscellaneous other essential's such as clothing, household items, personal
hygiene, etc. The standards presented for each family size vary by county, city, or metropolitan
areawithin a state.

We selected as a representative household a two-parent household with one pre-school
child and one school-age child. In those cases in which the self-sufficiency standard for acity or
other high-cost area was calcul ated separately from the surrounding county, we created for the
county an aggregate sdf-sufficiency standard by taking a weighted average of the standards for
the county and the city or cities it encompasses, usingtotal number of householdsin each
geographical area as the weight. The result was a county-level index indicating what the annual
household wage would have to be for a representative household (as described above) to be self-
sufficient.

The affordability index was calculated as the ratio of median household income (from
Census 2000) to the self-sufficiency index described above. A ratio of greater than 1 indicates
that more than half of the households in a county have adequate income to be self-aufficient.
Such a county is considered more affordable than one in which the affordability index isless than
one, suggesting than more than half of the households do not earn enough income to be
considered self-sufficient. The affordability index therefore captures two different factors
affecting quality of life— the expenditures necessary to live in that county, and the availability of
economic opportunities to provide income to cover the cost of those expenditures. In theory, a
county could increase its affordability index in one of two ways- by lowering costs or by
Increasing incomes.

For all of the variables described above, data from Virginia s independent cities were
combined with surrounding countiesaccording to the guidelines presented in the 1989 ERS

County Typology Codes.
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DEA and VEA methods

The prior section provided a brief overview of the most fundamental DEA model. We use
severa extensions to this original model. The model described above, for instance, assumes an
underlying constant returnsto scale in the rdationship between inputs and outputs. We use aless
restrictive model that allows for the existence of variable returnsto scale in the production
relationship—the BCC model developed by Banke et a. (1984). The original modd also
assumes that all inputs and outputs can be controlled by the decision-maker and are therefore
ableto be adjusted in arriving at an efficient production point. To accommodate a non-
discretionary output, we used a further extension as described in Banker and Morey (1986). The

model that we use is therefore an output-oriented, customized BCC model, as shown below':

A
Minimize D vix, = D 4r0 4% (3]
i=1 Fere
Z Yy =1
Yen
A
subject to Z AV~ Z VX t Z A4V~ L0 i
Fan i=1 e
v, 20 i
420 W

where F denotes the non-discretionary output. The series of linear programming problems

'Note that the formulation originally discussed was an input-oriented formulation, which
selects weights to maximize output subject to afixed input level. The output-oriented
formulation shown here is an output-oriented formulation that sel ects weghts to minimize inputs
subject to afixed discretionary output level.
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described above was programmed in Excel. The linear programming problems desaribed above
could, like other linear programming problems, aternatively be formulated and computed using
the dual formulation. Because this alternative formulation is more commonly solved in the
literature, that formulation has become accepted as the primary DEA formulation, and the
formulation described in equations section [3] has become accepted as the dual. The primary
formulation is generally considered easier to solve computationally because it has far fewer
constraints; the dual described above has at least as many constraints as DMUs. However, the
primary formulation has far more decision variables (again, at least as many as there are DMUS),
and in this application the number of decision variables in the primary problem exceeded Excel’s
limitations on allowable problem size.

The value effidency andysisinvolves only asmall change in model formulation and is
computationally comparable to the DEA. The dual VEA formulation that we used is shown

below:

M
Minimize ;L,.xm - Zauryr() +U, [4]

reyr

Subject to: Zﬂy .y
rSr0 T

r€/p

M
Zluryrj _;;}ixij +2:uryrj —uy <0 7]

r€/p reyr

M
Zluryrk _;;}ixik +2/Uryrk —tty =0

r<Yp reyr

v, 20 7
H, =20 g

The computational modification of DEA to form VEA simply involves an additional constraint
ensuring that the reference unit, indexed above by k, remans efficient at all sets of weights used
by other countiesin calculating their value efficiency measurements. In other words, under VEA,

no county may use a set of weightsin determining their efficiency score that would render the
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reference unit itself inefficient. Such arestriction can considerably restrict the weights that non-

reference counties can adopt.

DEA Results:

To determine whether to combine or separate urban and rural counties when measuring relative
efficiency, we first test whether the frontiers for these groups differ in a significant and
systematic way. Counties are classified as urban or rural according to their Beale codes. Counties
with a Beale code of 0-3 are considered urban, while those with a Beale code of 4-9 are
considered rural.

To test for differencesin the efficiency frontiers, we first use DEA to construct efficient
frontiers for each group. Next the results of the DEA analysis are used to project those units that
are inefficient onto the efficient frontier, creating new sets of data that consist of both currently
efficient units and formerly inefficient unitsthat have been adjusted to efficiency. When run only
within itsrural or urban category, every unit in the new datasets would now be rated efficient.
We then pool the new data sets back into one large data set and perform a combined DEA. The
resul ts of the DEA on the combi ned data are then ranked according to their efficiency ratings. If
there are no significant differencesin the two frontiers, there should be no significant difference
in how urban and rural counties are ranked in the combined model. As suggested in Cooper et al.
(2000), we then use the Wilcoxon-Mann-Whitney test to test for significant differencesin the
rankings of rural and urban counties.

The T statistic for that test is:

mim+ n+ 1)
2 [5]

\/mn(m+ i+ 1)
12

T:

where S denotes the sum of the rankings of the urban units, m denotes the number of urban units,
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and n denotes the number of rural units. The T value that we derive in testing the hypothesis of
no significant difference between urban and rural rankingsis T=-10.64. For atwo-tailed test the
critical level associated with «=.051s T ,.=1.96. We therefore reject the hypothesis of no
significant difference in efficiency frontiers. Because there is evidence that the production
frontier differs between rural and urban counties, the appropriate efficiency measures are those
that we origindly estimated in calculatingthe DEA model separately for the two groups.

The implication of the differencein frontiersis tha rural and urban counties use
sgnificantly dif ferent production technologiesin generating qudity of life for their resdents. In
general, thismay be because the frontiers intersect (as shown in the graph above), or because one
of the frontiersis completely enclosed within the other. If thelatter scenario were the case,
however, one would expect to find that, when the model is run on all of the data together, all of
the members of one group are found to be inefficient relative to the other group. Thisis not what
we observe. When the full model is run on the projected data (as described above), the resulting
frontier is predominantly urban, but also contans a small number of rural counties; this suggests
that although most of the rural frontier is enclosed within the urban frontier, the frontiers
intersect along one or more dimensions. Nevertheless, in general, even when all units are
operating efficiently according to their respective technol ogies, urban counties will tendto
dominate over rural countiesin the provision of quality of life.

Given the adjustments for return to scale, and the multiple dimensions involved, it is not
possible to illustrate the actual frontiers. However, aggregate data differences between the two
groups may provide additional clues about their relative “ productivity’. Average input and output
values for the two groups are shown in table 2. Not surprisingly, rural counties gppear to
outperform urban counties with respect to the environmental quality inputs, while urban counties
outperform rura counties a ong the soci oeconomic dimens ons of af fordability, poverty,
percentage with a high school degree, and access to arts, reareation, and entertainment facilities.

Although these averages areuseful for highlighting the relative strengthsof the different groups,
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it isimportant to recall that the frontiers themselves are not generated by average performance—
the frontier is composed of reference extremes from either group.

It is also interesting to explore the averages o the projected values that are used to
generate the rural/urban frontiers for testing—i.e. average performance within a group assuming
that all units are performing efficiently. These averages are shown in table 2 as well. Note that
units are projected onto an efficiency frontier taking inputs, and non-discretionary outputs, as
fixed, so that only the values of the discretionary outputs change. Although the frontier reduces
the gap in performance that exists along some of the dimensions, for the most part average
relative differences between the groups have been maintained. Together with the frontier test
above, thisfinding implies that in calculating their efficiency measures, rural counties tend to be
measured relative to a higher standard than urban counties along the environmentd dimensions,
but relative to alower standard along the socioeconomic dimensions.

The actual efficiency values calculated for the counties in the mid-Atlantic region are
shown in figure 5. Recall that these are relative efficiency measures, and, as explained above,
they are not measured relative to all other counties but only to other urban or rural counties, as
appropriate. Thisfigure suggests that the counties with highest efficiency are scattered
throughout the mid-Atlantic region, with the areas of lowest technical efficiency concentrated in
West Virginiaand Virginia. These counties tend to paform poorly along a number of indicators—

poverty level, percent high school graduates, and affordability, in particular.

VEA Results

In measuring technical efficiency via DEA, we have made no value judgements regarding
the importance that should be given to the vari ous dimensions of quality of lifein determining a
county’ s performance; in determining their most advantageous set of weights counties may
specialize in producing certain outputs, or in economizing on certain inputs, and each input and

output is given equal importance. A county may, for instance, be considered efficient because it
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has a high affordability index— this county specializes in producing income opportunities or in
keeping the cost of living low. Another county may earn an efficiency score of one because it has
an extremely low pupil/teacher ratio— this county specializes in providing a high-quality
education. Both counties earn the highest efficiency rating possible, and no further distinction
between them is made based on the original DEA model.

Although people likely consider severdl, or al, of these “products’ when evaluating a
county basad on quality of life considerations, is it reasonable to assume that they are all equally
important, and interchangeable, in that decision? If not, weight restrictions of some kind must be
added to the model to impose additional structure on the performance measure. In this study, we
incorporate additional information on preferences for different qual ity of life dimensions through
the use of value efficiency analysis, as described above. The literature contains some references
addressing the selection of the “most preferred solution” (MPS) through analysis of the data itsdf
(Korhonen et al., 1998). Our preference, however, was to use external data to provide additional
information about quality of life comparisons among the candidate counties.

By assumption, the most preferred solution must lie on the production frontier, and
therefore are efficient according to the original DEA measurements. We therefore restrict our
consideration of possible MPSs to those counties that belong to the original DEA-efficient sasin
their respective groups. We then used aggregate net migration rates to derive conclusions about
migrants judgments regarding reldive levd of quality of life among those efficient counties. We
combined 1995-2000 inter-county migration data from the census with census estimates of the
1995 population to derive net migration rates for all of the urban and rural efficient counties. The
county in each set with the highest net migration rate was seleded as that data set’s most
preferred solution.

For the rural data, Worcester County, Maryland, emerged as the county with the highest
net migration rate. Worcester County is the eastern-most county in Maryland; it is located on the

Atlantic Ocean and runs from the Delaware border on the north to the Virginia border on the
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south. Ocean City, Maryland, is part of Worcester County, as is the Assateague Island National
Seashore, and much of Chincoteague Bay. Itsland areais 456 square miles, almost 3% of which
isin urban or suburban land use, and according to Census 2000 is home to 46,543 people.
Despite Worcester County’ s coastal location, it’s amenity index is only slightly above average.
Relative to other rural counties, however, the county scores quite high for concentraion of arts
and entertainment establishments.

Among the urban efficient counties, Loudoun County, Virgniaemerged as the county
with the highest net migration rate. Loudoun County is located in the Washington DC
metropolitan area. Although Loudoun County is currently relatively unpopul ated— about 220,000
residents share 517 square miles— it has been growing rapidly, particularly in the eastern portion
of the county. Fairfax County, which lies to the east between Loudoun County and Washington,
DC, isthe most populated county in Virginia, with slightly more than a million people squeezed
onto 395 square miles. Loudoun County outperforms the average urban county along every
dimension except the amenity index; it performs particularly well with respect to percent of
residents below the poverty level and percent of residents with a high school degree or
equivalent.

Relative to the DEA scores, VEA scores can only stay the same or drop; it is not possible
to be rated as more efficient when a reference community is used than when the frontier itself is
used as the performance standard.. The value efficiency measures for the mid-Atlantic region are
calculated using Worcester County as the MPS among rural counties and Loudoun as the MPS
among urban. Figure 6 illustrates the extent of the drop in efficiency ratings when VEA rather
than DEA is used. The efficiency scores of rural counties are only slightly influenced by the use
of Worcester County as a reference county, but the efficiency scores of certain urban counties
drop significantly when held against Loudoun as a reference.

In the VEA analysis, counties are restricted to a set of input/output weights which, when

applied to the reference county, would alow the reference county to maintain an efficiency score
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at, but not above, alevel of 1. In genera, therefore, the counties with the highest value efficiency
scores are those whose combinations of inputs and outputs are most similar to those of the
counties identified as the most preferred among urban and rural counties. The response of the
VEA analysisto selection of an MPS therefore depends on the extent to which all the other
counties are able to perform well under various combination that are favorable to the reference
county.

To illustrate a scenario where that is not the case, consider Amelia County, Virgnia.
Amelia County islocated only 35 miles from Richmond, VA, and its proximity to that urban
center earnsit a Beale code thet classifiesit asurban. However, relative to other urban counties,
Ameliais unpopulated and undevel oped. In fact, its mix of inputs and outputs is more comparable
to the rural counties than to the urban ones. It outperforms the urban average on only the four
input dimensions; its performance aong the four output dimensions isnot impressive. In
achieving its DEA-efficient rating, Amelia very heavily weights both the poverty levd input and
the % developed land areainput. It is unable to retain that rating under the VEA analysis,
however, as the comparison to Loudoun County requiresiit to lower the weight placed on those
inputs, and, because its performance along the output dimensionsis poor, it is unable to
compensate by more heavily weighting its output dimensions as Loudoun County does.

The VEA-€fficiency landscape would look much different if Amelia County were used as
the urban reference county rather than Loudoun County. Amelia County comes in second among
the urban efficient counties in terms of net migration rate, so it might have been considered a
reasonable candidate for the reference community. In order to illustrate the sensitivity of the VEA
results to the choice of the most preferred solution, consider what the efficiency loss figures
would look like if the counties that came in as runner-ups in the net migration criteria were used
rather than the winners. Figure7 illustrates the eficiency figures if Amelia County, Virginia, is
used as the urban reference county and FH oyd County, Virginia, is the rurd reference county.

These are not efficiency loss figures, they are the actual efficiency scores; clealy the efficiency of
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the urban counties plummet, many of them to closeto 0. Floyd County has a less dramatic, but
still noticeable, efect on the efficiency soores of rural counties.

Asfigure 7 indicates the VEA results are highly sensitive to choiceof the most preferred
solution within each group. One way to anticipate the response of the VEA analysis to a particular
MPS isto characterize the candidate MPS counties on a continuum from “generalist” to “niche”
performance. Generalist counties are counties that earned their DEA-efficient rating by
performing above average on alarge number of dimensions, while niche counties are able to earn
a DEA-efficient rating by specializing their performance along a smaller number of input or
output dimensions. Loudoun County is an example of a generalist county; it performs above
average along 7 of the 8 dimengons. In contrast, Ameliais moreof aniche county; it only
outperforms the average along 4 of the 8 dimensions? Generalist counties represent a more
flexible standard, because they are able to remain effident along a much wider range of
input/output weight combinations. Niche counties, on the other hand, are extremely restrictive as
reference counti es; they remai n effi cient for avery limited range of weight combinations. In
general, one would expect the scores of other counties to drop more significantly when a more
limited number of weight combinationsis available for their efficiency cdculation; we observe an
extreme case of thiswhen Amelia County is used as the urban reference county. In fact, the
excessive impact of using Amelia County as the reference county indicatesa problem with
selection of that county as MPS; one could argue that, though it is rated urban, Amelia County has
little in common with the other urban counties and that using it as an urban standard is like
comparing apples against oranges.

The “niche/generalist” characterization provides arough guideline about the impact that a

particular MPS will have on the remaining efficiency landscape but a great deal of variation can

2Very few counties could occupy a position even more toward the “niche” side of the
continuum- i.e. outperform the average along only two dimensions— and still be found to be
DEA efficient.
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occur within each point along that continuum. The rural counties, Worcester, MD, and Floyd, VA,
both outperform the average along 6 of the 8 dimensions, and are therefore moderate generaligs
in their performance. However, Floyd County clearly has a much more significant impact on the
value efficiency ratios of the other counties than does Worcester, MD. Another characterization of
counties is useful in explaining this difference.

Counties can be cons dered “ super -achievers’ if they experi ence an extraordinarily high
level of performance along one or more input or output dimensions. Such counties also present
problems for the other counties when they are used as the reference community. This again leads
such counties to place a high weight along those dimensions at which they excel, making them in
essence niche counties along those dimensions. It is not surprising for niche countiesto also be
“super-achievers’—it isin fact that super-achievement along only afew dimensions that enables
them to be DEA-efficient. Amelia County is again a case in point; with only .30% of itsland area
developed, the remaining urban counties, with an average of 12.6% land area devel oped, simply
cannot stack up.

Generalist counties can also be super-achievers, and as that causes them to place a heavy
weight on only afew of their above-average dimensions, they in effect turn into niche counties
along those few dimensions. Floyd county is an example of such a county. As mentioned earlier,
Floyd County is above average on several dimensions, but its concentration of arts and
entertainment establishmentsis a particularly impressive 5.26 establishments per square mile of
developed area. The other rural counties, with an average of 1.54 establishments per developed
square mile, are at a great disadvantage when this variable is identified as an important component
in the output mix. Similarly, its percentage of devdoped area, at .10%, significantly outperforms

the rural average of 1.96%.

Conclusions and Policy Implications

Our results suggest that there are significant differences between rural and urban counties
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in the generation of quality of life. The set of most efficient rural counties defines afrontier that is
significantly different from that formed by the set of most efficient urban counties. The efficient
frontier appears to be a dynamic entity that changes as counties develop, with ability to perform
along the different dimensions dependent upon the devel opment history of the county. Not
surprisingly, rural counties that are projected onto their efficient frontiersoutperform similaly
projected urban counties along the environmental dimensions. Urban counties, on the other hand,
generally outperform rural counties along dl of the socioeconomic dimensions considered,
including the index of affordability. This suggests that there has been acertain amount of tradeoff
in community development patterns, with counties advancing al ong the socioeconomic
dimensions at the expense of the environmental dimensions.

Thisanalysisis unable to determine whether such tradeoffs are an inevitable result of
development, or merely acommon, historical result. Our efficiency measurements are based upon
observed performances rather than upon an underlying judgment of what production levels, and
input/output mixes, are theoretically possible. Among the Mid-Atlantic counties, however, there
are no examples of counties that have successfully achieved relatively high levels of performance
along severa dimensions of their socio-economic quality of life without compromisng some
performance along the environmental dimensions. This result may change over time as an
increased awareness of the environmental impacts of development decisions, as well as the role of
the environment in residents’ judgment of quality of life, influences the manner in which
development occurs and the types of development decisions made.

The economics/environment tradeoff results are not as bleak as they initially appear,
however. Further analysis of the results regarding technical efficiency indicate that most of the
rural frontier is encompassed by the urban frontier; when ajoint frontier is run for the projected
data, that frontier is predominantly composed of urban units, and all but nine rural counties
become ineffident. Those rurd counties that remain efficient are generally counties with

exceptional environmental performance. One interpretation of thisresult isthat, in general, rural
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counties are not as efficient as urban counties in producing quality of life; i.e. urban counties are
generally able to produce more output per unit of input than do rural counties. In just two
dimensions, such a situation might appear as shown in figure 2, but with only a small portion of
the rural frontier jutting out beyond the urban frontier along the environmental dimension. An
alternative way to interpret this figure, however, is that for many levels of environmental quality
urban counties are able to achieve greater socio-economic devdopment at the same level of
environmental degradation as rural counties.

Together, these results suggest that “ pristing” environmental conditions— as measured by
extremely high performance dong the environrmental dimensions—may not be consistent with
urbanization and socio-economic development, but that this required tradeoff only holds for very
high levels of environmental quality. Below those environmental quality levels, urban counties are
able to achieve higher socioeconomic performance than rural counties without further sacrificein
environmental quality. This suggests that the process of urbanization shifts and rotates the
efficient frontier in such away that, below a certain, relatively “pristing”’ level of environmental
quality, urban counties can perform better along the socio-economics dimension while performing
at least aswell asthe rura counties along the environmental dimensions.

DEA can therefore provide a great deal of information about the technicd efficiency of
rural and urban counties and about the production frontiers that emerge from observed data When
acounty is found to be technically inefficient, information from the DEA andysis can beused to
identify the shortest route to the efficient frontier. However, this efficiency anaysistells us
nothing about the relative desirability of that point on the frontier compared to other points along
the efficient frontier. Vaue efficiency andysis provides added depth to the results by identifying
desirable combinations of outputs and using that standard to further distinguish among bath
efficient and inefficient units.

The results of the value efficiency analysisillustrate rankings for the mid-Atlantic counties

based on their “value-efficiency,” which measures how much the unit’ s outputs must be expanded
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to reach beyond the efficiency frontier to the isovalue curve associated with the most preferred
solution. Thisanalysis considers that even those counties on or near the technical efficiency
frontier may not be producing a mix of outputs that is socially desirable and ranks counties
accordingly. In our study, the VEA analysisyielded a broad range of value efficiencies among
mid-Atlantic counties in the production of quality of life. Thisrange of efficiendesis highly
sensitive to the county that is selected as the reference county. If the reference county has a mix of
inputs and outputs and performance levels that are similar to the remaining counties, the value
efficiency scores will remain relatively closer to the technical efficiency scores received through
DEA. However, if the county chosen as the reference county is in some ways unique or
unrepresentative of the other caunties, the value eficiency scores of the remaining countieswill
fall far below their corresponding DEA scores.

DEA and VEA therefore represent flexible methodol ogies for integrating environmental
and socioeconomic variablesin ananalysis of regional differencesin quality of life. These
methods provide a great deal of information about rdative production performance while
requiring few ex ante assumptions about functional rdationships or spedfic input/output weghts.
The uncommon flexibility of DEA alows plenty of room for innovation in application, with the
traditional view of “productivity” expanded to encompass other abstract multidimensional
concepts such as quality of life or standard of living. In this study we find the methodol ogies very
useful in providinginsight about the distinctions between and among rurd and urban countiesin
generating quality of life, and we believe there is ample opportunity for creative application of

such techniques in interdisciplinary research.
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Table 1: Variables included in Quality of Life model

Environmental EPA’s cance risk index (input)
dimension % of land area devel oped (input)

Socia dimension Teacher/pupl ratio (input)

% of population 25 and older who are
high school gaduates (ouput)

# of arts, recreation, and entertainment
establishments per devel oped square mile

(output)
Economic Median househdd income (autput)
dimension % of populati on below poverty level
(input)

Non-discretionary Amenity index (output)

amenity variables
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Figure 3: Value efficiency analysis of decision-making
units.
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Figure 4: Rural/urban distinctions are determined by Beale codes.
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Figure 6: Change in efficiency scorewhen value efficiency
analysisis used to comparecounties to reference
communities rather than data envelopment analysis.
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Figure 9: Value efficiency scores when
Amelia County, VA, isused as the reference
county for urban counties and Floyd County,
VA, isused @ the ref@ence county among the
rural counties.



