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Managing Water Temperature TMDLs  
Under Economic and Environmental Uncertainty 

 

I. Introduction 

The US Environmental Protection Agency (EPA) is in the process of drafting Total Maximum 

Daily Load (TMDL) standards for waters designated as impaired under the Clean Water Act. As 

of 1998 the EPA listed over 300,000 miles of rivers and streams, and 5 million acres of lakes 

throughout the United States that are impaired by a number of pollutants (EPA 2003). A TMDL 

for a particular watershed defines the sum of the allowable load of a single pollutant from all 

contributing sources of pollution including a margin of safety to account for seasonal variation in 

water quality.  

 The specificity of any strategy to manage a TMDL will be limited by the degree of 

uncertainty about the environmental and economic activity within the impaired watershed and 

how they are interrelated. Further complicating the problem is the spatial heterogeneity among 

environmental and economic activity within the watershed. If the activities throughout the 

watershed are highly dispersed, a single uniformly adopted strategy for meeting TMDL 

objectives may be rendered ineffective. Needless to say, environmental agencies at the local, 

state, and federal levels face a daunting task of designing strategies to achieve TMDL objectives 

given uncertainty about the environmental processes within a watershed and the co-existing 

patchwork of environmental and economic activity within a watershed, which may be intricately 

interrelated.  

 If an environmental agent acquires information (thus reducing the uncertainty) about the 

environmental and economic characteristics of a watershed, then the agent can adapt the TMDL 

strategy to exploit the newly acquired information and perform more efficiently in achieving 



 2 

water quality goals than a strategy based on pre-existing knowledge. In addition, given the 

spatially-diverse activity within a watershed, the agent who designs and implements the strategy 

is often faced with a choice of how spatially specific a strategy to undertake. At one extreme the 

agent may specify alternative actions for each infinitely small area within the watershed, thereby 

exploiting the heterogeneity of the landscape, but requiring considerable information to 

implement. Conversely, the agent may design a strategy specifying a single set of actions for all 

areas within the watershed, ignoring the heterogeneity of the landscape, thus requiring little or no 

new information. With information acquisition the agent learns about the environmental 

processes and the heterogeneous landscape, and therefore may adapt the optimal strategy to 

exploit the estimated relationship between water quality and the spatially-diverse, environmental 

and economic activities.  

 Understanding how an environmental agency responds to uncertainty when making 

decisions to improve or protect environmental quality provides relevant analysis that will 

contribute to a growing literature on environmental agency decision-making under uncertainty. 

Kaplan, Howitt and Farzin (2003) were the first to empirically analyze information acquisition 

and adaptive management in an environmental agency problem. Other studies (Baerenklau; 

Horan, Shortle and Abler; Johansson) evaluating the design of environmental programs have not 

explicitly considered the role of information acquisition and learning that may allow for more 

effective targeting of agency resources and thus greater environmental protection or 

improvement. This paper contributes by adapting a state of the art statistical methodology for 

estimating water quality processes, agency uncertainty and information acquisition to a unique 

data set consisting of environmental and economic relationships within the Navarro River 
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watershed that will serve as a basis for evaluating optimal policy design when information is 

incomplete and costly. 

Estimating pollution relationships in complex environmental systems invariably faces 

obstacles due to limited data and ad hoc or arbitrary distributional assumptions about the model 

parameters. The sequential entropy filter (SEF) first presented by Kaplan and Howitt (2002) 

estimates distributions for the parameters of a watershed model when the data comes from a 

small sample with minimal assumptions about the distributional structure. To alleviate the small 

sample estimation problem and the imposition of arbitrary distributional assumptions about the 

estimated coefficients and errors we employ an adaptation of the SEF to estimate in-stream water 

temperature dynamics. The SEF also captures changes in model parameters over time and space, 

thereby facilitating the empirical analysis into whether the environmental and economic costs of 

less-informed strategies can be reduced through information acquisition and adaptive 

management.  

 This paper explores this information acquisition and adaptive management problem with 

an empirical application drawn from data collected from the Navarro River watershed, located in 

Mendocino County, California. The current TMDL for the Navarro River watershed limits in-

stream water temperature and sediment loading, both of which impair critical salmon habitat 

needed to maintain its population (EPA 2000). The goal of the analysis is to advance our 

understanding of optimal TMDL design by expanding the empirical tools needed to analyze 

environmental adaptive management problems in general, and the case of in-stream water 

temperature for the Navarro River watershed, in particular.  

 The paper proceeds as follows. Section II provides some background on the Navarro 

River watershed. The following section describes the empirical methodology. Section IV details 
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the empirical application where we estimate the in-stream water temperature daily cycle within 

the Navarro River watershed as a function of temporal and spatial environmental and economic 

activities. Section V presents the results from policy simulation. Section VI concludes.  

 

II. Background 

The Navarro River watershed is located in southern Mendocino County of California, USA. It is 

unique in that it is a moderately sized watershed (~800km2) that is both hydrologically contained 

(i.e., it flows directly into the Pacific Ocean) and heterogeneous in its land uses, which include 

timber production, animal grazing, and viticulture operations. Although the current human 

population is only 3500, Euro-Americans have inhabited the watershed for 150 years. Recent 

changes in land use such as expanding residential development and increasing viticulture is 

affecting aquatic resources through degrading water quality. This is most notable in the 

application of the federal Clean Water Act (Section 303(d)) to the degraded beneficial use of 

cold-water fisheries by elevated stream temperatures and excess stream sediment.  

Riparian forests of the Navarro River watershed include redwood (Sequoia 

sempervirens), Douglas fir (Pseudotsuga menziesii), and intermingled hardwoods (Acer spp., 

Lithocarpus sp., Quercus spp., etc.). Riparian vegetation in this watershed is a heterogeneous 

mix of both upland forests and true “riparian” forests. These riparian forests consist largely of 

willow (Salix spp.) and alder (Alnus spp.), as well as diagnostic understory species such as wild 

grape (Vitis californica) and berry (Rubus spp.). Although annual grasslands are found 

throughout the watershed, their proximity to streams and rivers is limited. Ecologically, it is the 

montane forests that drive terrestrial ecosystem productivity and provide allochthonous material, 

large woody debris, and shading to aquatic ecosystems. Thus intact riparian forests provide 
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significant microhabitat benefits to freshwater ecosystems (Malanson 1995, Naiman et al. 2000) 

and it is their diminishing cover within the watershed that may compromise water quality.  

Previous research in this watershed has shown that typical “riparian” species, such as willows 

(Salix spp.), contribute comparatively little to stream shading; although some localized shading 

does occur on smaller pools and riffles (Viers 2003). In the Navarro River watershed, it is 

primarily the canopy structure of large upland tree species (Sequoia sp. and Pseudotsuga sp.) 

within the riparian zone that influences the overall shading conditions of stream segments 

consisting of a series of pools, riffles, and runs (Viers et al. 2004). This has led to the 

development of various policies regarding the removal of large trees within a riparian buffer and 

is an active area of economic analysis. 

 

III. Empirical Methodology 

Modeling temperature control policies presents several interesting challenges when compared to 

many environmental policy models. First, the temperature in the river changes constantly by time 

of day, however, the fish only incur environmental damages when the temperature exceeds 

certain thresholds for given lengths of time. Thus the damage is based on the definite integral of 

a daily temperature cycle once it exceeds a certain level. The critical levels for salmon are at 18oc 

due to heat stress protein production, and above 24oc salmon experience acute respiration 

problems.  

This model is based on a single river, one watershed, and three reaches in the watershed. 

The basic temperature data is collected at 6-minute intervals, presenting a massive (50,000) 

observation data set for the 147 summer and fall days considered. Given that a critical exposure 

time for salmon is 2 hours above 24oc, we aggregated the 6-minute observations to 7,000, 30-
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minute observations for purposes of estimation and policy simulation. One advantage of 

temperature data is that the period of the daily cycle is fixed at 48 half hour intervals. However 

both the mean temperature and the amplitude of the daily fluctuations changes between the three 

reaches of the river and with the daily progression in any given reach. The daily temperature 

cycles are not stationary, and the estimates need to be able to systematically change as a function 

of time and exogenous variables. We use an adaptation of the SEF, a sequential cross entropy 

Bayes estimator, to explain the in-stream water temperature daily cycles as a function of daily 

stream flow in each reach, daily air temperature, and an annual reach specific shade index. The 

temperature control policy variables are flow and shade cross section variables that can only be 

changed slowly but influence the mean and amplitude of the rapid half hour temperature 

variables. It is this combination of fast time series dependent variables and slow cross section 

policy variables that create challenges for a conventional estimation approach. 

The fundamental equation that explains the half hour temperature in each reach of the 
river is: 
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Equation (1) shows that the daily temperature cycle is defined by the combination of linear and 

quadratic sine and cosine functions. The dependent variable Temptr is the in-stream water 

temperature for half-hour t for reach r for a given day. We suppress the day index since equation 

(1) is sequentially updated with each day. The daily mean water temperature for the lower reach 

is denoted as pi. The dummy variables dpimr and dpiur shift the mean temperature to captures 
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differences between the lower reach and the middle and upper reaches respectively. The shade 

index (sr) for a given reach also shifts the mean temperature through the sipi coefficient.  

The amplitude of the cycle in each reach is also influenced by the annual shade index in that 

reach (sr) through the amplitude coefficient parameter sishr. We also include two reach specific 

dummy variables pdur and pdmr to capture differences in amplitudes across reaches. The daily 

temperature cycle is a function of phivalt , which is the time of day expressed in radians and 

evaluated at the mid point of each half hour interval.  

 The time-varying coefficients par1jt … par4jt define the amplitude of the daily cycle as 

functions of the explanatory variables valj  where j denotes maximum, minimum and mean daily 

air temperature and daily in-stream flow. The dynamic nature of the estimator is defined by an 

equation of motion for the intercept coefficient (pi) and each of the sine and cosine coefficients,  

par1jt … par4jt. 

 Each of these coefficients is estimated with SEF, a generalized maximum entropy (GME) 

(Golan et al 1996) estimator, in which the objective function minimizes the probability distance, 

often termed the cross entropy, between the current probability distribution for each parameter 

and the prior probabilities. The sequential estimation procedure uses to derive the coefficient 

distributions in each half-hour are the prior distributions for estimating the coefficients in the 

following estimation period. Kaplan and Howitt (2002) show that the resulting estimator is an 

optimal Bayes estimate.  

 Given two sets of support values zvalsjp and zvals4jp spanning the discrete distribution for 

the various estimated coefficients, the jth equation of motion for the first linear sine function 

coefficient par1jt is written as:  
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Where qp1jp are the fixed prior probabilities for the parameter in question, the equation of 

motion coefficient is jp
p

jp zvalspday 4*1∑  and the error term on the equation of motion is 

jp
p

jp zvalsperrst 4*1∑ .  Note that the equation of motion defines the evolution of the time 

varying parameters in equation (1) since: 

(3) 1 1 *jt jp jp
p

par pshr zvals= ∑  

 

III. Empirical Application 

The empirical model developed in this analysis focuses on the relationship between in-

stream water temperature and the environmental and economic activities within one sub-

watershed of the Navarro River watershed. In the analysis, daily water temperature cycles in 

three reaches of Anderson Creek (lower, middle, and upper), located with the Navarro River 

watershed (Figure 1), are sequentially estimated for the period spanning June through October 

when in-stream water temperatures approach or exceed 18oc may exceed 24oc. Among the many 

environmental and economic factors contributing to the water temperature, the model captures 

previously identified factors such as air temperature, in-stream flow, and riparian shade. Data 

from 2000 on water temperature and these identified factors are used to estimate the mean and 

amplitude of the in-stream water temperature daily cycle. 

The data provides measures of maximum, minimum and average daily air temperature 

measured in Ukiah, CA, daily average in-stream flow, and a seasonal stream shade measure 
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derived from a spatially explicit Geographic Information System model developed by Viers, 

Quinn, and Johnson (2004) to account for riparian and topographic induced shade. As 

mentioned, the estimated amplitude and intercept for each day then serve as prior distributions 

for estimating subsequent amplitude and intercept of the daily temperature cycle.  

 

Figure 1.   Map of Anderson Creek sampling locations in the Navarro watershed. 

 
 
 The results from the empirical estimation are then used to evaluate alternative TMDL 

strategies. First we consider the affect on in-stream water temperature if the riparian shade is 

increased by 50 percent. Second we impose a flow restriction on withdrawals, presumably 

withdrawals taken by vineyards and rural residential dwellings within the Anderson Creek 

catchment area. Lastly we implement an integrated strategy that employs both a shade and flow 

strategy for reducing the duration of time at which the daily in-stream water temperature cycle 

exceeds 18oc and 24oc.  
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The sequential learning of the model over the first ten days of the estimation database is 

shown by the fit to the nonstationary dynamic temperature cycle. Figures 2-4 show the in sample 

fit of the model for all three reaches, and the differences of the temperature process over time 

and space. 

 

Figure 2.     Lower Reach Daily Temperature Cycle and Estimated Cycle (First Ten Days) 
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Figure 3.      Middle Reach Daily Temperature Cycle and Estimated Cycle(First Ten Days) 
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Figure 4. Upper Reach Daily Temperature Cycle  (First Ten Days) 
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Figures 2 – 4 show that the in-sample model fit for a ten day estimation sample is good, despite 

the changes in amplitude and mean, and the differences between the river reaches. The mean 

squared errors for the in-sample estimates are lower reach 0.447, middle reach 0.407, upper 

reach 1.508. 

 Out of sample forecasts are obtained by fixing the coefficient values at their tenth day 

value, and suppressing the equations of motion predictions for the ten days after the estimation 

sample. Essentially this forecast adopts an open loop approach to the problem, with the only 

change in variables coming from the j daily variables that measure the maximum, minimum, and 

mean daily air temperature and the daily flow in the river.  A closed loop forecasting approach 

will be assessed later using the information implicit in daily shifts over the season. Despite the 

open loop specification, the out of sample predictions shown in figures 5 - 7 are quite good, with 

the mean and amplitude of the temperature cycle responding to changed air temperature and flow 
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levels. The mean squared errors for the out-of-sample estimates are: lower reach 1.668, middle 

reach 1.674, upper reach 2.739.1  

 
Figure 5. Lower Reach Daily Temperature Cycle and Out of Sample Predictions 
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Figure 6. Middle Reach Daily Temperature Cycle and Out of Sample Predictions 
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1 We also ran a 50-day in-sample sequential estimation of daily temperature cycles with a ten-day out-of-sample 
open-loop prediction. The corresponding in-sample mean squared errors are 0.505, 0.420, and 1.873 for the lower 
middle and upper reaches, respectively. The out-of-sample mean squared errors are 1.288, 1.457, and 2.422 for the 
lower middle and upper reaches, respectively. 
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Figure 7. Upper Reach Daily Temperature Cycle and Out of Sample Predictions 
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IV. Policy Results 

The effect of changes in the two policy variables on the daily temperature cycle is examined by 

simulating the out of sample forecasts with changes in the variables. The two policy variables 

are: first, a 50% increase in riparian shade index, and second a 50% increase in flows in the river 

due to restrictions on groundwater pumping in the watershed. The payoff to the policy variables 

comes from reduction of the time that fish face temperatures above the stress level of 18oc or the 

critical exposure level of 24oc.  Note that given the structural model used to estimate in-stream 

water temperature, the policy goal of reducing in-stream water temperature can be achieved by 

either a reduction in the mean of the daily cycle or a reduction in its amplitude, or a combination 

of both effects. 

The shade increasing runs shown in figure 8 show that a 50% increase in shade decreases 

temperature by an average of approximately 2oc. This reduction in the mean temperature results 

in the critical 24oc threshold being avoided in the days simulated however there is still a six-hour 

period in which the stress temperature is exceeded.   
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 A 50% increase in the daily flow level causes a slight shift in the phase and a noticeable 

reduction in the amplitude of the temperature cycle. Note however, that unlike the shade policy, 

the mean does not shift. The shift in amplitude is sufficient to significantly reduce the hours of 

critical exposure above 24oc, but not eliminate exposure from the simulated sample. 

 
Figure 8. Out Of Sample Predicted Water Temperature Before and After Shade Policy 

Implementation 
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Figure 9. Out Of Sample Predicted Water Temperature Before and After Flow Policy 

Implementation 
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Figure 10. Out Of Sample Predicted Water Temperature Before and After Combined Shade and 

Flow Policy Implementation 
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Figure 10 shows a combined increased shade and flow policy that decreases the mean of the 

temperature cycle and reduces its amplitude. Under the combined policy scenario the maximum 

temperature never exceeds 24oc on the three days examined, and time when the temperature 

exceeds18oc is considerably reduced. 
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V. Conclusion 

The non stationary SEF model developed in this paper shows that fast moving time series 

variables can be combined with slowly changing cross section variables to produce a model that 

fits very well in sample, and produces reliable out of sample estimates. Preliminary results show 

that both the mean and amplitude of the temperature cycles respond to changes in the shade and 

flow parameters to the extent that a 50% change in both parameters modifies the cycle to avoid 

the critical 24oc threshold, and reduce exposure to temperatures above 18oc. Preliminary tests 

using a fifty-day, 2400 observation estimation period, and a similar out of sample period for 

forecasting show that the mean squared error measures for the estimation increased and for the 

forecasts decreased slightly. Further modeling work on extending the parame ter equations of 

motion to reflect daily time trends during the year will enable out of sample forecasts to use this 

information in an open loop estimate of future responses. 
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