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Abstract

This paper demonstrates that linear regression models with an AR(1) error structure
implicitly assume that yt does not Granger cause any of the exogenous variables in Xt.
An indirect test of the common factor restrictions based on this Granger non-causality
is proposed and shown to outperform existing tests.
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1 Introduction
The Linear Regression Model (LRM) first used by pioneers like Moore and Schultz,
has been the quintessential statistical model for econometric modeling since the early 20th
century; see Morgan (1990). Yule (1921, 1926) scared econometricians away from the
LRM for time series data by demonstrating that such regressions often lead to spurious
results. The first attempt to address this problem was by Cochrane and Orcutt (1949)
who proposed extending the LRM to include autocorrelated errors following a low order
ARMA(p,q) formulation. They also demonstrated by simulation that the Von Neuman ratio
test for autocorrelation was not very effective in detecting autocorrelated errors. Durbin
and Watson (1950, 1951) addressed this testing problem in the case of the linear regression
model:

(1) yt = β>xt + ut, t ∈ T,

where xt is a k × 1 vector, supplemented with an AR(1) error:

(2) ut = ρut−1 + εt, |ρ| < 1, t ∈ T,

by proposing the well known Durbin-Watson (D-W) test based on the hypotheses:

(3) H0 : ρ = 0 vs. H1 : ρ 6= 0.

The traditional econometrics literature has treated this extension of the LRM as providing
a way to test for the presence of error autocorrelation in the data, as well as a solution to
the misspecification problem if one rejects H0. Under this approach, error autocorrelation
is viewed as a problem of efficiency for the Ordinary Least Squares (OLS) estimatorbβOLS= (X>X)−1X>y. It is argued that in the presence of error autocorrelation:

E(uu> | X) = Ω 6= σ2IT ,

the OLS estimator maintains its unbiasedness and consistency, but it is no longer as efficient
as the Generalized Least Squares (GLS) estimator bβGLS= (X>Ω−1X)−1X>Ω−1y. The
traditional way to deal with the inefficiency of OLS is to adopt the Autocorrelation-
Corrected LRM (ACLRM):

(4) yt = β>xt + ρyt−1 − ρβ>xt−1 + εt, t ∈ T.

That is, when the D-W test rejects H0, the modeler adopts (4), estimated using GLS, as a
way to ‘correct’ for serial correlation (see inter alia, Judge et al, 1985, Greene, 2000).

The practice of adopting the alternative model when the data reject the no-
autocorrelation assumption is often inappropriate. The problem is that the presence of
residual autocorrelation is interpreted as evidence for the ACLRM. This is an example of
the classic fallacy of rejection: ‘evidence against the null is interpreted as evidence for
the alternative’. The ACLRM is presumed to be ‘the’ appropriate model, even though the
residual autocorrelation could have arisen in numerous alternative ways, one of which is that
the error follows an AR(1) process. It goes without saying that if the appropriate model is
not the ACLRM, the OLS estimator is no longer unbiased or consistent, and the ACLRM
simply constitutes another misspecified model; see Spanos (1986). Hence, adopting the
ACLRM does not usually improve the reliability of inference.
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Sargan (1964) was the first to view (4) as a restricted version of a more general statistical
model:

(5) yt = α1yt−1 + β>0 xt + β>1 xt−1 + εt, t ∈ T,

known as the Dynamic Linear Regression Model (DLRM), where the restrictions take
the form:

(6) H0 : β1 − β0α1 = 0.

He proposed a likelihood ratio test for these so-called Common Factor (CF) restrictions.
This test is valid under the presumption that the DLRM is statistically adequate; its
probabilistic assumptions are data-acceptable. Sargan’s proposal was further elaborated
upon by Hendry and Mizon (1978) and Sargan (1980) who suggested testing the CF
restrictions before imposing them. Despite additional warnings concerning the unrealistic
nature of the CF restrictions from Hoover (1988) and Mizon (1995), inter alia, the practice
of autocorrelation correction without testing the CF restrictions is still common. In fact,
its use may even be on the rise largely due to the increased use of spatial data which
exhibit dependencies (see Anselin, 2001), and ‘advances’ in techniques for autocorrelation
correcting systems of simultaneous equations and panel data models (see Greene, 2000).

In an attempt to demonstrate the restrictive nature of the ACLRM (4), Spanos (1988)
investigated the probabilistic structure of the vector stochastic process {Zt, t ∈ T},
Zt := (yt,x

>
t )
>, that would give rise to the CF restrictions (6). It was shown that the

CF restrictions arise naturally when {Zt, t ∈ T} is a Normal, Markov, and Stationary
process: µ

Zt
Zt−1

¶
v N

µµ
0
0

¶
,

µ
Σ(0) Σ(1)>

Σ(1) Σ(0)

¶¶
, t ∈ T,

with a temporal covariance structure of the form:

(7) Σ(1) = ρΣ(0).

The sufficient conditions in (7) are ‘highly unrealistic’ because, as shown in Spanos (1988),
they give rise to a very restrictive Vector AutoRegressive (VAR) model for {Zt, t ∈ T}:

Zt = A
>Zt−1 +Et, Et v N(0,Ω), t ∈ T,

A = ρIk+1, Ω = (Σ(0)− ρ2Σ(0)).

That is, they imply yt and Xt are mutually Granger non-causal and have “largely
identical temporal structure”. Mizon (1995), in a paper entitled “A Simple Message
to Autocorrelation Correctors: Don’t,” elaborated on these sufficient conditions and
recommended that the traditional way of ‘correcting for serial correlation’ is a bad idea.
Unfortunately, that advice is largely ignored by the recent applied econometrics literature.
As we will demonstrate, the consequences are very serious in terms of the reliability of
inference based on such models.

In this paper, we elaborate on Spanos (1988) and Mizon (1995) by deriving necessary
and sufficient conditions for the CF restrictions. Based on these conditions, we propose a
new, easy-to-implement test of the common factor restrictions in the context of the VAR
model. We then conduct Monte Carlo experiments to examine the relative performance of
the LRM, the ACLRM, and the (unrestricted) DLRM when the common factor restrictions
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do and do not hold. We also examine the performance of various popular misspecification
and common factor restriction tests under the different situations. Finally, we also briefly
investigate the performance of the Heteroskedastic and Autocorrelation Consistent standard
errors (HAC) proposed by Newey and West (1987) in dealing with the unreliability of
inference issue.

2 Revisiting the Common Factor Restrictions
In this section, we try to elucidate the constrictive nature of the CF restrictions by
examining the implicit restrictions imposed on the probabilistic structure of the observable
vector stochastic process {Zt, t ∈ T}, where Zt := (yt,x

>
t )
>. It is argued that by

modeling the error term one implicitly imposes restrictions on the probabilistic structure of
{Zt, t ∈ T}, which are both unrealistic and unnecessary. The argument is based on deriving
both necessary and sufficient conditions on the probabilistic structure of {Zt, t ∈ T}
giving rise to the CF restrictions (6). We first establish that if the ACLRM holds then
the implied parameterization φ∗ constitutes a restrictive form of φ of the joint distribution
D(Zt,Zt−1;φ)1. We then show that if φ∗ is assumed, the reduction:

D(Zt,Zt−1;φ∗) = D(Zt|Zt−1;ψ∗1) ·D(Zt−1;ψ∗2) =
= D(yt|Xt,Zt−1;θ∗1) ·D(Xt|Zt−1;θ∗2) ·D(Zt−1;ψ∗2),

gives rise to the ACLRM based onD(yt|Xt,Zt−1;θ∗1), θ∗1 := (ρ,β,σ2). It is then shown that
the parameterization of the Vector Autoregressive (VAR) model (ψ∗1), specified in terms of
D(Zt|Zt−1;ψ∗1), is particularly useful in elucidating the nature of the CF restrictions.

The ACLRM is specified by:

(8)

yt = β>xt + ut, ut = ρut−1 + εt, |ρ| < 1, t ∈ T,

[a1] E(εt) = 0, V ar(εt) = σ2, Cov(εt, εs) = 0, t 6= s,
[a2] Cov(Xt, us) = 0, ∀ (t, s) ∈ T.

Given the ACLRM (8) (including [a1]-[a2]), we can derive the implicit statistical parame-
terizations for the model parameters (β, ρ,σ2) in terms of the primary parameters φ of the
joint distribution D(Zt,Zt−1;φ). In presenting the results we use the following notation
for the variance-covariance of (yt, yt−1,Xt,Xt−1) :

(9) Cov(yt, yt−1,xt,xt−1) = Σ =


σ11(0) σ11(1) σ>21(0) σ>21(1)
σ11(1) σ11(0) σ>21(1) σ>21(0)
σ21(0) σ21(1) Σ22(0) Σ22(1)
σ21(1) σ21(0) Σ22(1) Σ22(0)


We adopt the simplifying assumption that all random variables have mean zero, without
any loss of generality.

Theorem 1. The mapping between the primary parameters Σ and the
parameters θ∗1 := (ρ,β,σ2) of the ACLRM (8) takes the form:

[1] V ar(u2t ) = σuu(0) =
σ2

1−ρ2 [4] Cov(xt, yt−1) = σ21(1) = Σ22(1)β

[2] Cov(utut−1) = σuu(1) =
ρσ2

1−ρ2 [5] V ar(yt) = σ11(0) = β>Σ22(0)β + σ2

1−ρ2
[3] Cov(xt, yt) = σ21(0) = Σ22(0)β [6] Cov(yt, yt−1) = σ11(1) = β>Σ22(1)β + ρσ2

1−ρ2 .

1The one lag restriction follows from the Markovness of the process.
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See Appendix A for the derivations.
Using [3]-[6] the variance-covariance matrix of (yt, yt−1,Xt,Xt−1) implied by the

ACLRM is:

(10) Σ∗ =


β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1)β + ρσ2

1−ρ2 β>Σ22(0) β>Σ22(1)
β>Σ22(1)β + ρσ2

1−ρ2 β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1) β>Σ22(0)
Σ22(0)β Σ22(1)

>β Σ22(0) Σ22(1)
Σ22(1)

>β Σ22(0)β Σ22(1) Σ22(0)


Note that the sufficient conditions in Spanos (1988), Σ(1) = ρΣ(0), follow from [3]-[6]

above:

(11)
β = Σ22(0)

−1σ21(0) = Σ22(1)
−1σ21(1).

σ2 =
£
σ11(0)− β>Σ22(0)β

¤
(1− ρ2) =

³
1
ρ

´ £
σ11(1)− β>Σ22(1)β

¤
(1− ρ2),

giving rise to:

(12) σ11(1)− ρσ11(0) = β> [Σ22(1)− ρΣ22(0)]β.

Hence, σ11(1) = ρσ11(0) iff Σ22(1) = ρΣ22(0).

In order to derive necessary and sufficient conditions for the common factor
restrictions we make use of Σ∗ in (10) and the following lemma from Spanos and McGuirk
(2002).

Lemma 1. Consider the Linear Regression Model:

yt = γ0 + γ>1 xt + ut, ut v IID(0,σ2u), t ∈ T,

where xt is a k × 1 vector. Under the assumptions E(ut|Xt) = 0 and
E(u2t |Xt) = σ2u, the model parameters (γ0,γ1,σ

2
u) are related to the primary

parameters of the stochastic process {Zt, t ∈ T} ,Zt ≡ (yt,X>t )> :

E(Zt) := µ =

µ
µy
µx

¶
, Cov(Zt) := Σ =

µ
σyy σ>xy
σxy Σxx

¶
,

assuming Σ > 0, via:

(13) γ0 = µy − γ>1 µx, γ1 = Σ
−1
xxσxy, σ2u = σyy − σ>xyΣ−1xxσxy.

The relationship between the model parameters θ1 := (α1,β0,β1,σ
2
ε) of the (unre-

stricted) DLRM model (5):

yt = α1yt−1 + β>0 xt + β>1 xt−1 + εt, εt v IID(0,σ2ε), t ∈ T,
and the primary parameters of the joint distribution (9) was derived in Spanos (1986).
Next we derive this relationship for the DLRM under the CF restrictions.
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Theorem 2. The statistical parameterization of the DLRM model parameters
(α1,β0,β1,σ

2
ε) implied by the restricted Σ

∗ in (10) is:
(14) α1

β0
β1

 =

 β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1) β>Σ22(0)
Σ22(1)

>β Σ22(0) Σ22(1)
Σ22(0)β Σ22(1) Σ22(0)


−1 β>Σ22(1)β + ρσ2

1−ρ2
Σ22(0)β
Σ22(1)β



=

 ρ
∆(Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1))β

−ρβ + (∆Σ22(1)−Σ22(0)−1Σ22(1)∆Σ22(0))β

 =

 ρ
β
−ρβ



σ2ε = β>Σ22(0)β+
σ2

1− ρ2
−
³
β>Σ22(1)β + ρσ2

1−ρ2 β>Σ22(0) β>Σ22(1)
´  α1

β0
β1

 = σ2.

giving rise to the ACLRM, i.e. a DLRM where the common factor (CF) restrictions (6)
hold. See Appendix A for the details.

Taken together, Theorems 1 and 2 indicate that (10) constitutes a set of necessary and
sufficient conditions for the common factor restrictions to hold. However, the restrictive
nature of these CF conditions is not completely evident from (10). To shed light on the
restrictiveness of these conditions in terms of the probabilistic structure of the vector process
{Zt, t ∈ T}, we use Σ∗ in (10) and Lemma 1 to derive the Vector Autoregressive (VAR)
model based on D(Zt|Zt−1;ψ∗1).

Theorem 3. The implicit statistical parameterization of the VAR model, based on
D(Zt|Zt−1;ψ∗1) :

(15) Zt = A
>Zt−1 +Et, Et v IID(0,Ω), t ∈ T.

implied by the restricted variance-covariance matrix Σ∗ in (10), takes the form:

A> =
µ

ρ (D− ρIk)β
0 D

¶
, Ω =

µ
σ2 + β>Λβ β>Λ
Λβ Λ

¶
where:

D =Σ22(0)
−1Σ22(1) Λ = Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1)

and Ik is a k × k identity matrix. See Appendix A for the proof.
Theorem 3 sheds ample light on just how unappetizing the necessary and sufficient

conditions for an ACLRM are in terms of the implied restrictions on the vector stochastic
process {Zt, t ∈ T} :

(a) yt does not Granger cause any of the regressors in Xt, and

(b) Cov(Xt, yt|Zt−1) = Cov(Xt|Xt−1)Cov(Xt)−1Cov(Xt, yt) = Λβ.

In addition, these results suggest that one can test the appropriateness of the CF
restrictions (6) by testing the implied Granger non-causality in the context of the
unrestricted VAR (15). The performance of this new test is considered in the Monte Carlo
experiments presented below.
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3 Monte Carlo Simulations
In an attempt to illustrate the restrictive nature of ‘correcting for serial correlation’ by
modeling the error, even in the unlikely event that the Common Factor (CF) restrictions
do hold, we consider a number of Monte Carlo experiments. All experimental results
reported are based on 10,000 replications of sample sizes T = 25, T = 50 and T = 100.
The experiments and results below use the following notation for the model parameters of
the DLRM:

(16) yt = α0 + β1x1t + β2x2t + α1yt−1 + β3x1t−1 + β4x2t−1 + εt, t ∈ T.
When the CF restrictions hold this model is rewritten as:

(17) yt = α∗0 + β1x1t + β2x2t + ut; ut = ρut−1 + εt, t ∈ T,
where ρ = α1, and α∗0 =

α0
1−ρ .

3.1 Experiment 1 - Unrestricted DLRM vs. ACLRM (ρ = .588)
In Experiment 1 we generate data with two very similar implied Dynamic Linear
regression Models (1A-1B). They differ by the model parameters, (β3,β4), the coefficients
of (x1t−1, x2t−1) and, therefore, also by the intercept α0. All other model parameters are
the same.2

Experiment 1A - Primary parameters underlying DLRM
E(Yt) = 2, V ar(Yt) = 1.115, Cov(Yt,X1t) = −.269, Cov(Yt,X2t) = 0.5,
E(X1t) = 1, V ar(X1t) = 1, Cov(X1t,X1t−1) = 0.6, Cov(Yt, Yt−1) = 0.446,
E(X2t) = .5, V ar(X2t) = 1, Cov(X2t,X2t−1) = 0.54, Cov(Yt,X1t−1) = −.678,

Cov(X1t,X2t) = −.4, Cov(X1t,X2t−1) = −.32, Cov(Yt,X2t−1) = .42,

giving rise to an (unrestricted) DLRM:

(18)
yt = 0.946 + 0.749x1t + 0.215x2t + 0.589yt−1 − 0.936x1t−1 − 0.089x2t−1 + εt,

σ2ε = 0.349, <2 = 0.687.
The implied VAR parameters are:
(19)

a0 =

 2.102
1.519
0.081

 , A> =
 0.236 −0.596 0.045
−0.535 0.498 0.105
0.222 −0.156 0.262

 , Ω =
 0.586 0.263 0.186
0.263 0.372 −0.073
0.186 −.073 1.116

 .3

Consider the ACLRM experimental set-up:

Experiment 1B - Primary parameters underlying ACLRM
E(Yt) = 2, V ar(Yt) = 1.032, Cov(Yt,X1t) = .663, Cov(Yt,X2t) = 0.001,
E(X1t) = 1, V ar(X1t) = 1, Cov(X1t,X1t−1) = 0.6, Cov(Yt, Yt−1) = 0.574,
E(X2t) = .5, V ar(X2t) = 1.4, Cov(X2t,X2t−1) = 0.54, Cov(Yt,X1t−1) = .381,

Cov(X1t,X2t) = −.4, Cov(X1t,X2t−1) = −.32, Cov(Yt,X2t−1) = −.124,
2Experiments 1A and 1B not only have several model parameters in common, but they are also similar

in the sense that in both cases, det(Σ) = 0.163.
3The data in these experiments are all generated using the implied VAR. The initial values (y0, x10, x20)

for each run are drawn randomly from the joint distribution of (y0, x10, x20) implied by the experimental
setup.
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giving rise to the ACLRM:

(20)
yt = 1.143 + 0.749x1t + 0.251x2t + u, ut = 0.589ut−1 + εt,

= 0.470 + 0.749x1t + 0.215x2t + 0.589yt−1 − 0.441x1t−1 − 0.127x2t−1 + εt,
σ2ε = 0.349; <2 = 0.662.

That is, for experiment 1B, the common factor restrictions implicitly imposed by an error
AR(1) process hold. The implied VAR model parameters for this case are:
(21)

a0 =

 0.925
0.458
0.521

 , A> =
 0.589 −0.051 −0.104

0 0.574 −0.0645
0 −0.187 0.332

 , Ω =
 0.701 0.437 0.114
0.437 0.635 −0.181
0.114 −0.181 1.161

 .
We begin our simulation, as a typical modeler would and estimate the LRM:

yt = α0 + β1x1t + β2x2t + ut, t ∈ T,
We test for first-order autocorrelation using the Durbin-Watson (D-W) and related tests
based on the following auxiliary regressions:

(i) ût = ρ1ût−1 + v1t, (ii) ût = γ>0 xt + γ1ût−1 + v2t, (iii) ût = δ>0 xt + δ1yt−1 + δ>2 xt−1 + v3t,
H0 : ρ1 = 0, H0 : γ1 = 0, H0 : δ1 = 0, δ2 = 0.

The test based on (i) corresponds to the D-W test, the test based on (ii) was proposed
by Breusch (1978) and Godfrey (1978), and the test based on (iii) by Spanos (1986). The
last auxiliary regression arises when comparing the original regression with one based on
replacing the Independence assumption with Markov dependence leading to:

yt = γ0 + γ>xt + ut,
yt = α0 + β>xt + δ1yt−1 + δ>2 xt−1 + v3t,

ut = (α0 − γ0) + (β
> − γ>)xt + δ1yt−1 + δ>2 xt−1 + v3t,

where the last auxiliary regression is equivalent to:

(22) but = (α0 − γ̂0) + (β
> − γ̂>)xt + δ1yt−1 + δ>2 xt−1 + v3t.

These four autocorrelation misspecification tests cover the range of autocorrelation tests
usually implemented in applied work. The LRM simulation results for Experiments 1A
(DLRM) and 1B (ACLRM) are reported in Tables 1A-1B.

The results in table 1A suggest most clearly that the OLS estimator is biased and
inconsistent when the CF restrictions do not hold; the true model is not the ACLRM, but
a DLRM. In addition, any form of inference based on the estimated LRM is likely to be
unreliable; both the inconsistency and the unreliability are accentuated as T → ∞. The
t-test significance results reported are indicative of the extent of the unreliability; the actual
type I error rate is as large as 0.988 instead of the nominal 0.05. It is also interesting to note
that the use of Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors
with m = 2 (see Newey and West, 1987), does not improve the reliability of inference — see
the results in square brackets. Looking at the misspecification tests for temporal dependence
in the DLRM case, we observe that the test based on the most general auxiliary regression
(22) detects temporal dependence problems a large percentage of the time, even for small
T, and it substantially out-performs all the other tests.
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These DLRM results are in marked contrast to those of table 1B, where the CF
restrictions do hold. When the CF restrictions hold, the OLS estimators of the regression
coefficients seem both unbiased and consistent, even though the estimates of σ2 and <2
are still problematic. Notice also that the difference between the actual type I errors and
the nominal significance level is not as large as it was in table 1A, though there is still
some indication of unreliable inferences. Also the use of the HAC standard errors does not
significantly improve reliability. As expected, the D-W test and auxiliary regression-based
tests utilizing ût−1, (i)-(ii), do better than the test based on yt−1 and Xt−1, (iii), but the
difference in effectiveness disappears with increasing sample size. Given the unrealistic
nature of the CF restrictions and the dominance of (iii) in the DLRM case, sole reliance on
the D-W test is not recommended.

Suppose that on the basis of the misspecification tests in 1A and 1B, a modeler decides to
‘correct’ the apparent autocorrelation problem by adopting an ACLRM model. Tables 2A-
2B present simulation results for this ACLRM estimated using an iterative Cochrane-Orcutt
correction (GLS) estimation procedure; the results based on other iterative procedures
are very similar. In table 2A the true model is a DLRM and, as we can see, the
ACLRM estimators are both biased and inconsistent, giving rise to unreliable inferences;
the unreliability is as bad as estimating the LRM. Not surprisingly, when the true model is
the ACLRM, the ACLRM estimation results (table 2B) are quite reliable, particularly for
larger T .

Table 1A - True: DLRM // Estimated: LRM (OLS)∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂0 0.946 1.515 0.834 1.693 0.580 1.829 0.389
β̂1 0.749 0.346 0.358 0.157 0.289 0.020 0.219
β̂2 0.215 0.264 0.179 0.286 0.129 0.300 0.093
σ̂2 0.349 0.631 0.257 0.742 0.215 0.824 0.166
<2 0.687 0.271 0.165 0.201 0.115 0.176 0.089

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα0 =
α̂0−α0
σ̂α0

2.460
[2.749]

.577
[.609]

3.874
[4.003]

.731
[730]

5.996
[5.938]

0.907
[.898]

τβ1 =
β̂1−β1
σ̂β1

-1.857
[-2.197]

0.446
[.495]

-3.962
[-4.172]

0.823
[.815]

-7.015
[-6.895]

0.988
[.984]

τβ2 =
β̂2−β2
σ̂β2

0.318
[.378]

0.102
[.164]

0.625
[.677]

0.122
[.159]

1.025
[1.060]

0.198
[.214]

M-S (F-test) Statistic % R(.05) Statistic % R(.05) Statistic % R(.05)

D-W 1.518 0.272 1.590 0.398 1.685 0.413
(i) ût−1 1.025 0.157 1.346 0.282 1.509 0.341
(ii) ût−1,xt 2.718 0.209 4.225 0.371 5.290 0.441
(iii) yt−1,xt−1,xt 8.257 0.829 19.922 0.998 46.255 1.00
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level and numbers in
square brackets refer to the t-test using the Newey West HAC standard errors with m=2.
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Table 1B- True: ACLRM // Estimated: LRM (OLS)∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂∗0 1.143 1.138 0.383 1.137 0.269 1.142 0.190
β̂1 0.749 0.752 0.220 0.751 0.154 0.750 0.109
β̂2 0.215 0.214 0.159 0.216 0.111 0.216 0.079
σ̂2 0.349 0.451 0.184 0.488 0.142 0.512 0.105
<2 0.662 0.527 0.173 0.506 0.131 0.493 0.097

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τ
α∗0
=

α̂∗0−α∗0
σ̂α∗0

0.018
[.015]

0.226
[.260]

-.036
[-.027]

0.220
[.207]

-.012
[-.008]

0.217
[.178]

τβ1 =
β̂1−β1
σ̂β1

0.011
[.011]

0.151
[.205]

0.019
[.017]

0.152
[.159]

0.005
[.002]

0.151
[.131]

τβ2 =
β̂2−β2
σ̂β2

-0.010
[-.016]

0.106
[.167]

0.006
[.004]

0.101
[.122]

0.014
[.014]

0.101
[.100]

M-S Tests Statistic % R(.05) Statistic % R(.05) Statistic % R(.05)

D-W 1.174 0.652 1.004 0.967 0.912 1.0
(i) ût−1 2.130 0.535 3.991 0.938 6.447 0.999
(ii) ût−1,xt 6.318 0.504 17.997 0.935 43.86 1.0
(iii) yt−1,xt−1,xt 3.637 0.451 7.548 0.885 16.275 0.998
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level and numbers in
square brackets refer to the t-test using the Newey West HAC standard errors with m=2.

Table 2A- True: DLRM // Estimated: ACLRM∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂0 0.946 1.045 1.352 1.025 1.300 1.017 1.236
β̂1 0.749 0.837 0.458 0.864 0.451 0.873 0.454
β̂2 0.215 0.215 0.143 0.213 0.097 0.212 0.074
ρ̂ 0.586 0.421 0.705 0.365 0.755 0.345
σ̂2 0.349 0.414 0.167 0.452 0.175 0.473 0.182

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα0 =
α̂0−α0
σ̂α0

0.826 0.366 0.767 0.318 0.9603 0.270

τβ1 =
β̂1−β1
σ̂β1

0.622 0.453 1.143 0.682 1.785 0.917

τβ2 =
β̂2−β2
σ̂β2

-0.034 0.098 -0.091 0.082 -0.148 0.095

τρ =
ρ̂
σ̂ρ

6.103 0.839 11.774 0.926 19.218 0.934

CF Test Statist. % R(.05) Statistic % R(.05) Statistic % R(.05)

D-M F 10.289 0.764 (0.381) 19.204 0.945 (0.753) 39.11 0.997 (0.980)
LR 3.719 0.169 (0.381) 6.592 0.389 (0.753) 12.853 0.812 (0.980)
G-C VAR 15.184 0.787 (0.595) 30.982 0.987 (0.974) 66.36 1.0 (1.0)
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level and other
numbers in parentheses refer to size-corrected power.
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Tables 2A-2B also report the results a modeler would likely obtain if the common factor
restrictions (CF), implicitly imposed by the ACLRM, are tested. The first test (D-M F) is
the approximate F-test recommended in Davidson and MacKinnon (1993) and the second
is the traditional Likelihood ratio (LR) test (see Spanos, 1986). The last test (G-C VAR)
is an F-type test of the assumption that yt does not Granger Cause Xt in the context of
(15). In conducting this test, the VAR is estimated using Iterative Seemingly Unrelated
Regression (SUR).

The test results in table 2B (where the CF restrictions hold) indicate that the actual
sizes of the D-M F and the LR tests differ from the nominal systematically; the former
overestimates and the latter underestimates the nominal size. Although the actual size of
the G-C VAR F-type test is high for small T, it approaches the nominal size as T increases.

Given these size problems, table 2A reports both the actual and size corrected percent
rejected for the various CF tests. The results indicate that while all three of the CF tests
have reasonably good size adjusted power, the proposed Granger non-causality test is the
most probative for all sample sizes, including small T .

Table 2B- True: ACLRM // Estimated: ACLRM∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂∗0 1.143 1.138 0.372 1.137 0.244 1.141 0.169
β̂1 0.749 0.751 0.178 0.752 0.114 0.750 0.078
β̂2 0.215 0.211 0.126 0.216 0.081 0.216 0.055
ρ̂ 0.589 0.456 0.224 0.528 0.133 0.561 0.088
σ̂2 0.349 0.331 0.105 0.341 0.073 0.346 0.050

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα0 =
α̂0−α∗0
σ̂α0

-0.015 0.116 -0.027 0.083 -0.012 0.064

τβ1 =
β̂1−β1
σ̂β1

0.017 0.093 0.025 0.061 0.009 0.054

τβ2 =
β̂2−β2
σ̂β2

-0.001 0.081 0.006 0.059 0.016 0.052

τρ =
ρ̂−ρ
σ̂ρ

-0.567 0.132 -0.398 0.078 -0.264 0.063

CF Test Statistic % R(.05) Statistic % R(.05) Statistic % R(.05)

D-M F 3.111 0.320 2.454 0.265 2.252 0.253
LR 1.360 0.008 1.080 0.003 0.986 0.002
G-C VAR 3.222 0.151 2.523 0.096 2.219 0.071
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level.

Tables 3A-3B summarize the implications of estimating the DLRM with and without
the Common Factor restrictions. These tables indicate that estimation is generally accurate
and the usual t-tests reliable (particularly for large T ), whether or not the CF restrictions
hold. That is, even in the ACLRM case, estimating the DLRM would give rise to very
reliable inferences. In fact, a comparison of the GLS results with these unrestricted DLRM
results for the ACLRM case suggests no advantage to using GLS even when the restrictions
hold, except maybe for very small T . Given the unrealistic nature of the common factor
restrictions, and the potential for biased and inconsistent estimators when the restrictions
do not hold, the adoption of the ACLRM is not recommended.
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Table 3A- True: DLRM // Estimated: DLRM (OLS)
T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂0 0.946 1.026 0.772 0.987 0.361 0.970 0.233
β̂1 0.749 0.772 0.228 0.758 0.149 0.752 0.102
β̂2 0.215 0.212 0.134 0.215 0.086 0.216 0.058
α̂1 0.589 0.458 0.206 0.522 0.131 0.556 0.087
β̂3 -0.936 -0.788 0.229 -0.861 0.137 -0.900 0.089
β̂4 -0.09 -0.068 0.140 -0.078 0.091 -0.084 0.062
σ̂2 0.349 0.339 0.111 0.345 0.074 0.348 0.051
<2 0.687 0.642 0.120 0.637 0.095 0.653 0.076

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)
τα0 =

α̂0−α0
σ̂α0

0.137 0.087 0.109 0.067 0.096 0.056

τβ1 =
β̂1−β1
σ̂β1

0.104 0.063 0.062 0.053 0.023 0.054

τβ2 =
β̂2−β2
σ̂β2

-0.023 0.066 0.004 0.057 0.015 0.048

τα1 =
α̂1−α1
σ̂α1

-0.633 0.09 -0.498 0.079 -0.369 0.065

τβ3 =
β̂3−β3
σ̂β3

0.664 0.111 0.541 0.089 0.395 0.069

τβ4 =
β̂4−β4
σ̂β4

0.175 0.064 0.134 0.055 0.096 0.054

Table 3B- True: ACLRM // Estimated: DLRM (OLS)
T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂0 0.470 0.648 0.399 0.557 0.243 0.512 0.158
β̂1 0.749 0.752 0.181 0.751 0.116 0.750 0.080
β̂2 0.215 0.215 0.135 0.216 0.087 0.216 0.058
α̂1 0.589 0.432 0.210 0.511 0.131 0.551 0.088
β̂3 -0.441 -0.326 0.239 -0.384 0.152 -0.413 0.103
β̂4 -0.127 -0.095 0.140 -0.110 0.090 -0.119 0.061
σ̂2 0.349 0.343 0.113 0.347 0.075 0.349 0.051
<2 0.662 0.681 0.122 0.665 0.091 0.662 0.066

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα0 =
α̂0−α0
σ̂α0

0.427 0.091 0.315 0.072 0.222 0.059

τβ1 =
β̂1−β1
σ̂β1

0.013 0.068 0.016 0.054 0.006 0.053

τβ2 =
β̂2−β2
σ̂β2

-0.003 0.066 0.012 0.060 0.019 0.050

τα1 =
α̂1−α1
σ̂α1

-0.698 0.107 -0.532 0.075 -0.377 0.064

τβ3 =
β̂3−β3
σ̂β3

0.491 0.090 0.367 0.072 0.266 0.063

τβ4 =
β̂4−β4
σ̂β4

0.245 0.071 0.186 0.055 0.126 0.050
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3.2 Experiment 2 - Unrestricted DLRM vs. ACLRM (ρ = .2)
The main purpose of Experiment 2 is to examine the extent to which the previous
experimental results change when the parameter on yt−1 (the degree of autocorrelation
in the ACLRM) is reduced. To reduce this model parameter, we made only two changes to
the moments of the joint distribution (primary parameters) of Experiment 1A. First, the
Cov(yt, yt−1) is reduced from 0.446 to 0.185. This decreased the coefficient of yt−1 (to .20
from .60), but also reduced the overall fit of the DLRM. In order to maintain a model fit
close to that in Experiment 1A, we also reduced V ar(yt) from 1.115 to 0.85.

Experiment 2B differs from Experiment 2A, in the same way as Experiment 1B differs
from 1A. That is, the two DLRMs differ by the model parameters, (β3,β4), the coefficients
of (x1t−1, x2t−1), and, therefore, also by the intercept α0. All other model parameters remain
the same.4

Experiment 2A - Primary parameters underlying DLRM
E(Yt) = 2, V ar(Yt) = .85, Cov(Yt,X1t) = −.269, Cov(Yt,X2t) = 0.5,
E(X1t) = 1, V ar(X1t) = 1, Cov(X1t,X1t−1) = 0.6, Cov(Yt, Yt−1) = 0.185,
E(X2t) = .5, V ar(X2t) = 1, Cov(X2t,X2t−1) = 0.54, Cov(Yt,X1t−1) = −.678,

Cov(X1t,X2t) = −.4, Cov(X1t,X2t−1) = −.32, Cov(Yt,X2t−1) = .42,

giving rise to the DLRM:

(23)
yt = 1.842 + 0.455x1t + 0.237x2t + 0.200yt−1 − 0.818x1t−1 + 0.0076x2t−1 + εt,

σ2ε = 0.259, <2 = 0.695
The implied VAR parameters are:

(24)

a0 =

 2.705
1.950
−0.097

 , A> =
 −0.068 −0.640 0.142
−0.752 0.46712 0.173
0.311 −0.143 0.234

 ,Ω =
 0.369 0.114 0.247
0.114 0.265 −0.028
0.247 −0.028 1.097

 .
For the ACLRM, the experimental set-up is as follows:

Experiment 2B - Primary parameters underlying ACLRM
E(Yt) = 2, V ar(Yt) = .469, Cov(Yt,X1t) = .360, Cov(Yt,X2t) = 0.150,
E(X1t) = 1, V ar(X1t) = 1, Cov(X1t,X1t−1) = 0.6, Cov(Yt, Yt−1) = 0.139,
E(X2t) = .5, V ar(X2t) = 1.4, Cov(X2t,X2t−1) = 0.54, Cov(Yt,X1t−1) = .197,

Cov(X1t,X2t) = −.4, Cov(X1t,X2t−1) = −.32, Cov(Yt,X2t−1) = −.017,
giving rise to the ACLRM:

(25)
yt = 1.427 + 0.455x1t + 0.237x2t + ut, ut = 0.200ut−1 + εt

= 1.142 + 0.455x1t + 0.237x2t + 0.200yt−1 − 0.091x1t−1 + 0.047x2t−1 + εt,
σ2ε = 0.259; <2 = 0.448,

The implied VAR parameters for this case are:
(26)

a0 =

 1.473
0.458
0.521

 , A> =
 0.200 0.126 0.002

0 0.574 −0.064
0 −0.187 0.332

 , Ω =
 0.416 0.246 0.193
0.246 0.635 −0.181
0.193 −0.181 1.161

 .
4Experiments 2A and 2B are also similar in the sense that in both cases, Det(Σ) = 0.061.
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The main conclusions from tables 4A and 4B are basically confirmed in tables 1A
and 1B. Not surprisingly, the smaller autocorrelation coefficient reduces (slightly) both
the bias and the inconsistency in the LRM estimators. However, inference based on the
t-tests remains unreliable and the use of HAC standard errors does not seem to improve
the reliability. The most significant difference in these new results is the reduced power of
the misspecification tests. When the common factor restrictions hold, the power of all four
misspecification tests is drastically reduced. However, in the case of the DLRM, there is
only a significant drop in the power of the ût−1 based tests, including the D-W. Interestingly
the auxiliary regression test based on yt−1 and xt−1 drastically outperforms the other tests
for all T and its ability to pick up departures from independence is even higher than in
Experiment 1A (table 1A). Another surprising observation regarding the misspecification
test results in table 4A concerns the changes in power as T increases. While the power of
all the ût−1based tests is very low for T = 25, we only see an increase in power with T for
the auxiliary regression based tests; the power of the D-W test actually decreases with T.
Taken altogether, this new evidence confirms the earlier observation that sole reliance on
the usual D-W test is not recommended.

Tables 5A-5B report the simulation results obtained when an ACLRM is estimated
under the two different scenarios: no common factors (DLRM) and common factors
(ACLRM). The main findings of experiment 1 (tables 2A-2B) are simply corroborated
in experiment 2. What is surprising is the increased effectiveness of all the CF tests in
the DLRM case (experiment 2A). As in experiment 1, however, the G-C VAR-based F test
clearly outperforms the other two tests in terms of both size and power.

Table 4A - True: DLRM // Estimated: LRM (OLS)∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂0 1.842 1.601 0.682 1.755 0.457 1.864 0.298
β̂1 0.455 0.256 0.331 0.094 0.253 -0.017 0.182
β̂2 0.237 0.273 0.149 0.292 0.104 0.304 0.073
σ̂2 0.259 0.491 0.194 0.558 0.158 0.605 0.120
<2 0.695 0.282 0.157 0.233 0.117 0.219 0.096

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα0 =
α̂0−α0
σ̂α0

-0.433
[-.466]

0.393
[.456]

-0.086
[.004]

0.364
[.399]

0.436
[.571]

0.364
[.384]

τβ1 =
β̂1−β1
σ̂β1

-1.095
[-1.346]

0.342
[.397]

-2.856
[-3.115]

0.652
[.644]

-5.356
[-5.446]

0.920
[.903]

τβ2 =
β̂2−β2
σ̂β2

0.265
[.330]

0.082
[.151]

0.558
[.629]

0.095
[.141]

0.935
1.011]

0.155
[.193]

M-S (F-test) Statistic % R(.05) Statistic % R(.05) Statistic % R(.05)

D-W 2.011 0.025 2.195 0.011 2.351 0.002
ût−1 -0.276 0.045 -0.884 0.171 -1.932 0.485
ût−1,xt 1.56 0.089 3.426 0.291 8.869 0.638
yt−1,xt−1,xt 8.952 0.865 20.352 0.999 45.477 1.0
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level and numbers in
square brackets refer to the t-test using the Newey West HAC standard errors with m=2.
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Table 4B- True: ACLRM // Estimated: LRM (OLS)∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂∗0 1.142 1.424 0.214 1.423 0.145 1.426 0.100
β̂1 0.455 0.457 0.140 0.457 0.093 0.455 0.064
β̂2 0.237 0.237 0.110 0.238 0.074 0.238 0.051
σ̂2 0.259 0.260 0.081 0.265 0.057 0.267 0.040
<2 0.448 0.449 0.156 0.437 0.114 0.430 0.083

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα∗0 =
α̂∗0−α∗0
σ̂α∗0

0.014
[-.074]

0.091
[.146]

-.030
[-.032]

0.091
[.111]

-.014
[-.012]

0.085
[.85]

τβ1 =
β̂1−β1
σ̂β1

0.014
[.015]

0.084
[.044]

0.024
[.024]

0.081
[.107]

0.009
[.008]

0.079
[.085]

τβ2 =
β̂2−β2
σ̂β2

-0.005
[.009]

0.076
[.140]

0.014
[.014]

0.070
[.100]

0.018
[.017]

0.065
[.075]

M-S Tests Statistic % R(.05) Statistic % R(.05) Statistic % R(.05)

D-W 1.759 0.110 1.686 0.259 1.644 0.483
ût−1 0.418 0.069 0.997 0.163 1.723 0.403
ût−1,xt 1.190 0.056 2.020 0.153 4.033 0.402
yt−1,xt−1,xt 1.304 0.077 1.460 0.121 2.107 0.278
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level

Table 5A- True: DLRM // Estimated: ACLRM∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂0 1.842 1.607 0.975 1.877 0.721 2.124 0.399
β̂1 0.455 0.261 0.649 -0.017 0.583 -0.272 0.361
β̂2 0.237 0.258 0.136 0.280 0.093 0.298 0.061
ρ̂ -0.051 0.611 -0.245 0.542 -0.455 0.335
σ̂2 0.259 0.366 0.130 0.428 0.108 0.473 0.080

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)
τα0 =

α̂0−α0
σ̂α0

0.243 0.502 1.593 0.648 3.921 0.863

τβ1 =
β̂1−β1
σ̂β1

-1.616 0.871 -5.531 0.987 -12.233 1.0

τβ2 =
β̂2−β2
σ̂β2

0.204 0.130 0.599 0.161 1.205 0.265

τρ =
ρ̂
σ̂ρ

0.272 0.817 -1.587 0.962 -5.257 0.998

CF Test Statist. % R(.05) Statistic % R(.05) Statistic % R(.05)

D-M: F 16.669 0.939 (0.722) 38.111 0.999 (0.993) 88.007 1.0 (1.0)
LR 5.646 0.401 (0.722) 12.367 0.920 (0.993) 27.516 1.0 (1.0)
G-C - VAR 29.452 0.952(0.896) 62.257 0.999 (0.999) 133.05 1.0 (1.0)
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level and numbers
in parentheses refer to size-corrected power.
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Table 5B- True: ACLRM // Estimated: ACLRM∗

T=25 T=50 T=100

True Mean Std Mean Std Mean Std

α̂∗0 1.427 1.424 0.222 1.423 0.145 1.425 0.099
β̂1 0.455 0.457 0.147 0.457 0.093 0.455 0.063
β̂2 0.237 0.237 0.114 0.238 0.073 0.238 0.050
ρ̂ 0.200 0.099 0.229 0.151 0.151 0.176 0.103
σ̂2 0.259 0.245 0.078 0.253 0.054 0.256 0.038

t-statistics Mean % R(.05) Mean % R(.05) Mean % R(.05)

τα0 =
α̂0−α∗0
σ̂α0

-0.0122 0.091 -0.029 0.071 -0.015 0.056

τβ1 =
β̂1−β1
σ̂β1

0.013 0.096 0.0234 0.071 0.011 0.060

τβ2 =
β̂2−β2
σ̂β2

-0.008 0.094 0.0115 0.069 0.017 0.056

τρ =
ρ̂−ρ
σ̂ρ

-0.454 0.108 -0.318 0.077 -0.219 0.063

CF Test Statistic % R(.05) Statistic % R(.05) Statistic % R(.05)

D-M: F-test 2.813 0.274 2.320 0.242 2.181 0.239
LR test 1.241 0.004 1.024 0.002 0.956 0.002
G-C - VAR 2.886 0.127 2.394 0.085 2.155 0.060
∗’% R(.05)’ denotes the percentage of actual rejections at .05 significance level.

3.3 Summary of Monte Carlo results
The above Monte Carlo results demonstrate most clearly that when the common factor
(CF) restrictions do not hold:

(a) the Linear Regression Model (LRM) OLS estimators are both biased and
inconsistent and inference based on them highly unreliable,

(b) the ‘autocorrelation correction’ GLS estimators, based on the Autocorrelation
Corrected LRM (ACLRM), do not improve the situation; they gives rise to different but
equally misleading inferences, and

(c) utilizing heteroskedastic and autocorrelation consistent standard errors does not
ameliorate the reliability of inference.

When the common factor (CF) restrictions do hold, our Monte Carlo results demon-
strate that:

(d) the Dynamic Linear Regression Model (DLRM) OLS estimators are equally reliable
as the ACLRM GLS estimators with hardly any loss of efficiency, particularly for T = 50;
the same is true for the VAR estimators.

Taking (a)-(d) together, the main conclusion is that, in view of the misleading results
from the ACLRM when the CF restrictions do not hold, the adoption of the ACLRM when
residual autocorrelation is detected in practice is not a good idea.

The Monte Carlo experiments in this paper also call into question the usual practice
of relying solely on the Durbin-Watson test (D-W) to assess the independence assumption.
Not surprisingly, we find that the power of the D-W is much higher when the common factor
restrictions do hold than when they do not. However, a more general test of autocorrelation
is shown to perform almost as well as the D-W when the common factor restrictions do hold
and significantly better than the D-W when the restrictions do not hold. Given that the
CF restrictions may be unlikely for most data applications anyway, sole reliance on D-W
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test seems problematic. Our Monte Carlo results recommend the use of the test based on
the auxiliary regression:

(27) but = (α0 − γ̂0) + (β
> − γ̂>)xt + δ1yt−1 + δ>2 xt−1 + v3t.

The most important advise for practitioners is that they should test the common factor
restrictions before imposing them, irrespective of the test of autocorrelation used to detect
residual autocorrelation. The Monte Carlo results suggest that the simple (approximate)
F-test suggested by Davidson and MacKinnon (1993) as well as a Likelihood Ratio test
suffer from size problems. A more probative test for the CF restrictions, based on the
Granger non-causality of yt on Xt, is proposed.

As mentioned in the introduction, however, these CF restriction tests are based on the
presumption that the DLRM is statistically adequate for data (y,X). This is the issue we
address next.

4 ‘Autocorrelation Correction’ as a modeling strategy
The question of whether or not autocorrelation correcting is appropriate raises several
methodological issues that have not been addressed adequately in the literature. For
instance, ‘why is it problematic to adopt the alternative hypothesis in the case of a D-
W test?’ It is generally accepted that there is no problem when one adopts the alternative
in the case of a t-test for the hypotheses:

(28) H0 : β1 = 0 vs. H1 : β1 6= 0.

The purpose of this section is to address briefly these methodological issues in the context
of the Probabilistic Reduction framework; see Spanos (1986,1995).

Despite the apparent similarity between a t-test (28) and the D-W test based on:

(29) H0 : ρ = 0 vs. H1 : ρ 6= 0,

in terms of the hypotheses being tested, they are very different in nature. As argued in
Spanos (1999), the D-W test is a misspecification test, but the t-test is a proper Neyman-
Pearson test. The crucial difference between them is that the D-W is probing beyond the
boundaries of the original model, the LRM (see table A):

Table A - The Linear Regression Model (LRM)

yt = β0 + β>1 xt + ut, t ∈ T,
[1] Normality: D(yt | xt;θ), is Normal
[2] Linearity: E(yt | xt) = β0 + β>1 xt,
[3] Homoskedasticity: V ar(yt | xt) = σ2, free of xt,
[4] t-homogeneity: θ :=(β0,β1,σ

2) are t-invariant ∀t ∈ T,
[5] Independence: {(yt | xt−1), t ∈ T} - independent process.

The t-test, on the other hand, is probing within those boundaries. In a Neyman-Pearson
test there are only two types of errors (reject the null when true and accept the null when
false) because one assumes that the prespecified statistical model (LRM) is valid. This
ensures that the estimated model contains the ‘true’ model. Hence, rejection of the null
leaves only one choice—the alternative—as the union of the null and the alternative span the
original model. In the case of a misspecification test, one is probing beyond the boundaries
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of the prespecified model by extending it in specific directions; the D-W test extends the
LRM by attaching an AR(1) error. A rejection of the null in a misspecification test does
not entitle the modeler to infer that the extended model is true; only that the original
model is misspecified. In order to infer the validity of the alternative model one needs to
test its own assumptions. More formally, the alternative hypothesis in (29) has not passed
a severe test ; see Mayo (1996), Mayo and Spanos (2004).

In the case of the D-W test, if the null is rejected one can only infer that the LRM is
misspecified since the data exhibit some kind of dependence over the dimension of the index
t = 1, 2, ..., T . However, the type of dependence present in the data can only be established
by thorough misspecification testing of alternative statistical models which allow for such
dependence.5 The alternative model involved in a D-W test (4) is only one of an infinite
number of potential models that could have given rise to data (y,X) ; the DLRM (5) is
another such model. The advantage of the latter is that it nests the former and thus, if
(5) is misspecified, so is (4). In terms of respecifying the LRM to allow for dependence,
the DLRM (5) is considerably more general than (4) because it allows for a much less
restrictive form of dependence. This suggests that if one wanted to consider the ACLRM
as a respecification of the original LRM, one has to establish two things. To begin with,
one should estimate the DLRM (5) and ensure its statistical adequacy by testing and not
rejecting the assumptions [1]-[5] in table B. That will provide the framework to ensure the
statistical validity of the CF restrictions test itself. If these restrictions are tested and not
rejected, the ACLRM model will provide a reliable framework for any inference concerning
the model parameters θ. If either of these conditions is not met, the inference is likely to
be unreliable.

Table B - The Dynamic Linear Regression (DLR) Model

yt = β0 + β>1 xt + γ1yt−1 + β>2 xt−1 + ut, t ∈ T,
[1] Normality: D(yt | xt,Zt−1;θ), Zt = (yt,xt), is Normal
[2] Linearity: E(yt | xt,Zt−1) = β0 + β>1 xt + γ1yt−1 + β>2 xt−1,
[3] Homoskedasticity: V ar(yt | xt,Zt−1) = σ20, free of (xt,Zt−1) ,
[4] t-homogeneity: θ :=(β0,β1,γ1,β2,σ

2
0) are t-invariant ∀t ∈ T,

[5] Markovness: {(Zt | Z0t−1), t ∈ T} - Markov process,
where Z0t−1 := (Zt−1,Zt−2, ...,Z0).

5 Conclusion
The primary aim of this paper is to demonstrate that the restrictions implicitly imposed on
the dependence structure of yt and Xt when an AR(1) error formulation is adopted seem
unreasonably restrictive for most real applications. We derive necessary and sufficient
conditions on the probabilistic structure of the vector stochastic process {Zt, t ∈ T},
Zt := (yt,x

>
t )
> for the common factor restrictions (CF) to hold. These restrictions, in

the context of the VAR model, amount to:

(a) yt does not Granger cause any of the regressors in Xt, and

(b) Cov(Xt, yt|Zt−1) = Cov(Xt|Xt−1)Cov(Xt)−1Cov(Xt, yt) = Λβ.
5By thorough misspecification testing, we mean that all the testable assumptions underlying the DLRM

are tested (see Spanos, 1986 or 1999).
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Condition (a) seems most unrealistic, but it is a testable hypothesis. A new test of the
CF restrictions is proposed based on Granger non-causality, and the results of our Monte
Carlo experiments suggest that the proposed test outperforms, in terms of correct size and
high power, the approximate F-test suggested by Davidson and MacKinnon (1993) as well
as a Likelihood Ratio test first proposed by Sargan (1964).

The Monte Carlo evidence also suggests that testing for dependence using only the
D-W test is not an effective strategy because its power is considerably reduced when the
CF restrictions do not hold. In contrast, the misspecification test based on the DLRM (see
(27)) is most probative in general.

The main conclusion of this paper, based on both the theoretical as well as extensive
Monte Carlo results, is that adopting the ACLRM as an alternative to the LRM when
residual autocorrelation is detected is a bad modeling strategy; echoing the main message
in Hendry and Mizon (1978), Hoover (1988), Spanos (1988) and Mizon (1995). In
general, we do not recommend the modeling of the error term when misspecifications are
detected. This is because the modeling of the error imposes implicit assumptions on the
probabilistic structure of the observable vector processes, which are often both unrealistic
and unnecessary.

Although we have only considered the implications of error ‘correcting’ under the very
simple AR(1) scenario, typically implemented using time series data, similar unrealistic
restrictions are implicitly imposed when researchers use spatial data and model errors as a
function of ‘near-by’ errors. Similarly, it is also clear, that more complicated error structures
(i.e. higher order AR or ARMA models) will impose more complicated and unrealistic
restrictions. In general, before any kind of ‘correcting’ for misspecifications by modeling
the error takes place, it seems prudent to make explicit, and then test, the restrictions being
implicitly imposed on the probabilistic structure of the data.
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6 Appendix A
The ACLRM is specified as follows:

(30)

yt = β>xt + ut, ut = ρut−1 + εt, |ρ| < 1, t ∈ T,

[a1] E(εt) = 0, V ar(εt) = σ2, Cov(εt, εs) = 0, t 6= s,
[a2] Cov(Xt, us) = 0, ∀ (t, s) ∈ T.

Theorem 1. The mapping between the primary parameters Σ and the parameters
θ∗1 := (α1,β0,σ2) of the ACLRM (8) takes the form [1]-[6].

[1] V ar(u2t ) = σuu(0) =
σ2

1−ρ2 .

V ar(u2t ) = E(u2t ) = E [(ρut−1 + εt)(ρut−1 + εt)] = ρ2E(u2t−1) + E(ε2t ) =

ρ2E(u2t ) +E(ε
2
t ), from [a1]. Given |ρ| < 1, E(u2t ) = σuu(0) =

σ2

1−ρ2 .

[2] Cov(utut−1) = σuu(1) =
ρσ2

1−ρ2 .

Cov(utut−1) = E(utut−1) = E [(ρut−1 + εt)ut−1] = ρE(u2t−1) = ρσuu(0) =
ρσ2

1−ρ2
from [a1] and [1].

[3] σ21(0) = Σ22(0)β.

σ21(0) = E(xtyt) = E
h
xt
¡
β>xt + ut

¢0i
= E [xtx

0
t]β = Σ22(0)β from [a2].

Thus, σ21(0) = Σ22(0)β or β = Σ
−1
22 (0)σ21(0).

[4] σ21(1) = Σ22(1)β.

σ21(1) = E(xtyt−1) = E
h
xt
¡
β>xt−1 + ut−1

¢0i
= E

£
xtx

0
t−1
¤
β = Σ22(1)β from

[a2]. Thus, σ21(1) = Σ22(1)β or β = Σ
−1
22 (1)σ21(1).

[5] σ11(0) = β>Σ22(0)β + σ2

1−ρ2 .

σ11(0) = E(ytyt) = E
h¡
β>xt + ut

¢ ¡
β>xt + ut

¢>i
= E

£¡
β>xtx>t β + u2t

¢¤
using [a2]. Using E(u2t ) =

σ2

1−ρ2 from [1], σ11(0) = β>Σ22(0)β + σ2

1−ρ2 .

[6] σ11(1) = β>Σ22(1)β + ρσ2

1−ρ2 .

σ11(1) = E(ytyt−1) = E
h¡
β>xt + ut

¢ ¡
β>xt−1 + ut−1

¢>i
=

E
£¡
β>xtx>t−1β + utut−1

¢¤
using [a2]. From [2], σ11(1) = β>Σ22(1)β + ρσ2

1−ρ2 .
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Theorem 2. The implicit statistical parameterization for (α1,β0,β1,σ2ε) implied by
the variance-covariance matrix Σ∗ in (10) is:
(31) α1

β0
β1

 =

 β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1) β>Σ22(0)
Σ22(1)

>β Σ22(0) Σ22(1)
Σ22(0)β Σ22(1) Σ22(0)


−1 β>Σ22(1)β + ρσ2

1−ρ2
Σ22(0)β
Σ22(1)β



σ2ε = β>Σ22(0)β+
σ2

1− ρ2
−

³
β>Σ22(1)β + ρσ2

1−ρ2 β>Σ22(0) β>Σ22(1)
´  α1

β0
β1

 .
Using the partitioned matrix inverse result in Searle (1982):

(32)·
A B
B> C

¸−1
=

" ¡
A−BC−1B>¢−1 − ¡A−BC−1B>¢−1BC−1

−C−1B> ¡A−BC−1B>¢−1 C−1 +C−1B>
¡
A−BC−1B>¢−1BC−1

#

we proceed to derive the inverse of the matrix:
β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1) β>Σ22(0)
Σ22(1)β Σ22(0) Σ22(1)
Σ22(0)β Σ22(1) Σ22(0)



where we define A =

"
β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1)
Σ22(1)β Σ22(0)

#
, B =

·
β>Σ22(0)
Σ22(1)

¸
, and

C = Σ22(0), to find:


β>Σ22(0)β + σ2

1−ρ2 β>Σ22(1) β>Σ22(0)
Σ22(1)β Σ22(0) Σ22(1)
Σ22(0)β Σ22(1) Σ22(0)


−1

=

=


(1−ρ2)
σ2

0(1xk) − (1−ρ2)
σ2

β>

0(kx1) ∆ −∆Σ22(1)Σ22(0)−1³
− (1−ρ2)

σ2
β>
´ ¡−Σ22(0)−1Σ22(1)∆¢ ³

Ψ+ ββ> (1−ρ
2)

σ2

´


where:
Ψ = Σ22(0)

−1 +Σ22(0)−1Σ22(1)∆Σ22(1)Σ22(0)−1,

∆ =
£
Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1)

¤−1
.

Noting that:
∆ =Ψ

(see Henderson and Searle, 1981, p. 53), the inverse simplifies to: (1−ρ2)
σ2

0(1xk) − (1−ρ2)
σ2

β>

0(kx1) ∆ −∆Σ22(1)Σ22(0)−1
− (1−ρ2)

σ2
β> −Σ22(0)−1Σ22(1)∆ ∆+ ββ> (1−ρ

2)
σ2

 .
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Thus,
(33) α1

β0
β1

 =

 (1−ρ2)
σ2

0(1xk) − (1−ρ2)
σ2

β>

0(kx1) ∆ −∆Σ22(1)Σ22(0)−1
− (1−ρ2)

σ2
β> −Σ22(0)−1Σ22(1)∆ ∆+ ββ> (1−ρ

2)
σ2


 β>Σ22(1)β +

ρσ2

1−ρ2
Σ22(0)β
Σ22(1)β


Multiplying and simplifying the right-hand-side yields: (1−ρ2)

σ2
β>Σ22(1)β+ρ− (1−ρ2)

σ2
β>Σ22(1)β

∆Σ22(0)β −∆Σ22(1)Σ22(0)−1Σ22(1)β
− (1−ρ2)

σ2
ββ>Σ22(1)β − ρβ −Σ22(0)−1Σ22(1)∆Σ22(0)β +∆Σ22(1)β + (1−ρ2)

σ2
β>β>Σ22(1)β

 ,
thus,  α1

β0
β1

 =

 ρ
∆(Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1))β

−ρβ + (∆Σ22(1)−Σ22(0)−1Σ22(1)∆Σ22(0))β

 =

 ρ
β
−ρβ


since Σ22(0) − Σ22(1)Σ22(0)−1Σ22(1) = ∆−1 and ∆Σ22(1) = Σ22(0)−1Σ22(1)∆Σ22(0).
This follows from:

(D − V A−1U)−1V A−1 = D−1V (A− UD−1V )−1,
(see Henderson and Searle, 1981, p.56) by letting A = D = Σ22(0) and U = V = Σ22(1).

Substituting this result into the expression for σ2ε :

σ2ε = β>Σ22(0)β+
σ2

1− ρ2
−
³
β>Σ22(1)β + ρσ2

1−ρ2 β>Σ22(0) β>Σ22(1)
´  ρ

β
−ρβ

 = σ2,

confirming that the variance-covariance matrix (10) leads to a dynamic linear regression
model where the common factor restrictions hold.

Theorem 3. The implicit statistical parameterization of the VAR model, based
on D(Zt|Zt−1;ψ) :
(34) Zt = A

>Zt−1 +Et, Et v IID(0,Ω), t ∈ T.
implied by the restricted variance-covariance matrix Σ∗ in (10), takes the form:

A> =
µ

ρ (D− ρIk)β
0 D

¶
, Ω =

µ
σ2 + β>Λβ β>Λ
Λβ Λ

¶
where:

D =Σ22(0)
−1Σ22(1) Λ = Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1)

and Ik is a k × k identity matrix. From Lemma 1:

A =

Ã
β>Σ22(0)β + σ2

1−ρ2 β>Σ22(0)
Σ22(0)β Σ22(0)

!−1Ã
β>Σ22(1)β + ρσ2

1−ρ2 β>Σ22(1)
Σ22(1)β Σ22(1)

!
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and

Ω =

Ã
β>Σ22(0)β + σ2

1−ρ2 β>Σ22(0)
Σ22(0)β Σ22(0)

!
−
Ã
β>Σ22(1)β + ρσ2

1−ρ2 Σ22(1)β
Σ22(1)β Σ22(1)

!
A.

Using (32) to find the inverse of:Ã
β>Σ22(0)β + σ2

1−ρ2 β>Σ22(0)
Σ22(0)β Σ22(0)

!

yields:  ³
1−ρ2
σ2

´
−
³
1−ρ2
σ2

´
β>

−
³
1−ρ2
σ2

´
β

³
Σ22(0)

−1 +
³
1−ρ2
σ2

´
ββ>

´  .
Thus,

A =

 ³
1−ρ2
σ2

´
−
³
1−ρ2
σ2

´
β>

−
³
1−ρ2
σ2

´
β

³
Σ22(0)

−1 +
³
1−ρ2
σ2

´
ββ>

´ Ã ³
β>Σ22(1)β + ρσ2

1−ρ2
´

β>Σ22(1)
Σ22(1)β Σ22(1)

!

A =

µ
ρ 0

Σ22(0)
−1Σ22(1)β − ρβ Σ22(0)

−1Σ22(1)

¶
.

Substituting this result for A into the expression for Ω and multiplying yields:Ã
β>Σ22(0)β + σ2

1−ρ2 β>Σ22(0)
Σ22(0)β Σ22(0)

!
−
Ã
β>Σ22(1)Σ22(0)

−1Σ22(1)β + ρ2σ2

1−ρ2 β>Σ22(1)Σ22(0)−1Σ22(1)
Σ22(1)Σ22(0)

−1Σ22(1)β Σ22(1)Σ22(0)
−1Σ22(1)

!
.

Simplifying further we obtain:

Ω =

µ
σ2 + β>(Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1))β β>(Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1))

(Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1))β Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1)
¶
.

Using Lemma 1, to obtain the parameterization of the VAR model for Xt based on
D(Xt | Xt−1;θ) :

(35) Xt = D
>Xt−1 +Vt,Vt v IID(0,Λ),

we obtain:
D =Σ22(0)

−1Σ22(1) Λ = Σ22(0)−Σ22(1)Σ22(0)−1Σ22(1).
Thus, we can rewrite the above expressions for the VAR parameters (A,Ω), based on
D(Zt|Zt−1;ψ) as follows:

A =

µ
ρ 0

(D− ρIk)β D

¶
, Ω =

µ
σ2 + β>Λβ β>Λ
Λβ Λ

¶
,

where Ik is a k × k identity matrix.


