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On Storage Behavior under Imperfect Competition 

Jean-Paul Chavas 

1. INTRODUCTION 
Much research has been conducted on the economics of commodity storage. Storage provides a 
means of smoothing anticipated market changes over time (e.g., Kaldor; Working, 1948, 1949; 
Brennan; Williams and Wright). In general, competitive storage activities contribute to 
stabilizing markets: they tend to stimulate demand in periods of low prices (by increasing stocks) 
and increase supply in periods of high prices (by decreasing stocks). When positive, optimal 
competitive stocks imply that the marginal cost of storage equals the discounted expected price 
change, thus providing an arbitrage relationship for commodity prices over time (e.g., Williams 
and Wright). But what if markets are not competitive? What are the implications of the exercise 
of market power for storage activities?  

The analysis of non-competitive storage has been investigated by Allaz, Arvan, Kirman and 
Sobel, Judd, Mitraille, Moellgaard et al., Newbery, Rotemberg and Saloner, Saloner, Vedenov 
and Miranda, and Williams and Wright. In general, non-competitive storage behavior can be 
complex. For example, in the context of a Cournot duopoly game, Arvan has shown that the 
Nash value functions can be ill-behaved, implying that equilibrium inventory strategies may not 
be symmetric and may not even exist. These complexities mean that stock-holding under 
imperfect competition remains poorly understood. First, to help deal with these complexities, 
researchers have often focused their analysis on simple two-period models (e.g., Allaz, Arvan, 
Mitraille, Moellgaard et al., Rotemberg and Saloner, and Saloner). This has helped provide 
insights into the strategic role of inventory in the exercise of market power (e.g., Rotemberg and 
Saloner, Mitraille). However, two-period models seem overly restrictive. Indeed, we show below 
that the effects of market power on storage activities depend in general on the anticipated path of 
future stocks. This means that having only two periods imposes strong restrictions on imperfectly 
competitive storage behavior. Second, to help deal with the complexities of economic dynamics, 
a number of papers have restricted their analysis to stationary decision rules. This has facilitated 
the investigation of storage decisions under a long planning horizon (e.g., Judd; Thille; Vedenov 
and Miranda; Williams and Wright). However, this neglects the role of inventory under changing 
market conditions (e.g., due to the business cycle or to seasonality). Third, a relevant issue is: 
how does the exercise of market power affect storage behavior? Previous research has not 
provided a clear answer to this question. The reason is that the findings are sensitive to market 
conditions and to the nature of strategic interactions. For example, Rotemberg and Saloner argue 
that duopolies have an incentive to hold higher inventories to help maintain collusion when 
demand is high (by allowing a stronger punishment of cheaters). But this contrasts with Mitraille 
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who finds that higher inventories are more likely to be used strategically in downturns (in the 
context of asymmetric strategies). In addition, Wright and Williams (chapter 11) and Newbery 
have shown that a monopoly would store less than a competitive firm under some scenarios but 
more under others. These findings do not make it clear how imperfect competition affects stock-
holding. These limitations of previous research mean the existence of a significant gap between 
storage models and our understanding of actual market dynamics. Finally, partly due the 
complexities of dynamic non-competitive models, the empirical investigation of imperfectly 
competitive stock-holding remains poorly developed. This suggests a need to refine our 
conceptual and empirical knowledge of storage activities under non-competitive behavior.  

This paper develops a model of economic behavior for storage activities. The analysis is 
presented under a general T-period planning horizon. The model allows for uncertainty and non-
stationarity. And it covers situations of perfect competition as well as imperfect competition 
under Cournot behavior. The analysis focuses on a structural model of decisions made by a firm, 
leading to the specification of behavioral rules for stock-holding. Note that this structural 
approach does not model explicitly the nature of strategic interactions in the market. But it has 
the advantage of remaining valid irrespective of these strategic interactions. This leads to the 
specification and estimation of a structural econometric model of storage decisions under 
alternative market structures. In this context, we propose a model specification that nests both 
competitive and Cournot storage behavior. This provides a convenient framework to investigate 
the empirical relevance of both competitive and Cournot decision rules for private stock-holding.  

The approach is applied to the determination of commercial stocks for American cheese in the 
US since 1993. The choice of American cheese is motivated by previous evidence of market 
power in the American cheese market (e.g., Mueller et al.; Muller and Marion). First, the US 
American cheese market is highly concentrated. Second, Mueller et al. and Muller and Marion 
found evidence that a few large American cheese processors have been in a position to affect 
market prices and exercise market power. This raises the possibility that private stock-holding 
may have been used in a non-competitive way. If so, the decision rule used to choose private 
American cheese stocks would not be the competitive decision rule. Our empirical investigation 
provides statistical evidence of non-competitive storage behavior in the US American cheese 
market. It also shows that the exercise of market power contributes to reduced stock fluctuations 
and increased price instability.  

The paper is organized as follows. A conceptual model of storage activities is presented in 
section 2. The implications of the model for storage decisions are examined under competition in 
section 3. Section 4 extends the analysis to imperfect competition under Cournot behavior. 
Section 5 makes use of our conceptual results to specify a structural econometric model of 
storage activities under alternative market structures. The approach is then applied to the 
empirical investigation of storage activities in the US American cheese market. After presenting 
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the data in section 6, section 7 reports the econometric results. Economic implications are 
discussed in section 8. Finally, section 9 concludes.  

2. THE MODEL 
Consider a firm involved in storage activities for a given commodity. Let St ∈ R+ the quantity 
stored by the firm at time t. Denote by Ct(St) the cost of storage at time t. Throughout, we assume 
that the cost function Ct(St) is convex in St and satisfies Ct” = ∂2Ct(St)/∂St

2 > 0.1 The commodity 
depreciates at a rate δt ∈ [0, 1) from time t to time (t+1). It follows that the net quantity sold by 
the storage firm at time t is [(1-δt-1) St-1 – St], with [(1-δt-1) St-1 – St] > 0 (< 0) corresponding to a 
sale (a purchase). Denoting by pt the market price of the commodity at time t, the firm profit 
from storage activities at time t is  

πt = pt ⋅ [(1-δt-1) St-1 – St] – Ct(St).  (1a) 

The firm is managed by an owner-manager with a T-period planning horizon, where t = 1 is the 
current time and T ≥ 2. The owner-manager receives the stream of profits {πt: t = 1, …, T} 
which can be either consumed or invested. The owner-manager’s budget constraint at time t is 

qt xt ≤ πt – It + (1 + it-1) It-1 + Nt, (1b) 

where xt is consumption at time t, qt > 0 is the price of xt, It denotes investment made at time t 
into a riskless asset yielding [(1 + it) It] at time (t+1), it > 0 is the one-period interest rate at time 
t, and Nt denotes “other income” at time t. Note that Nt represents the income from other 
activities undertaken by the firm. This is relevant in the case where the firm is involved both in 
production and storage activities (in which case Nt includes the firm profit made from production 
activities at time t). This is an important point: while we focus our attention on storage decisions, 
the analysis presented below would remain valid if the firm manager also makes production and 
other investment decisions.  

Decisions are made under uncertainty. Future prices are not known for certainty and are treated 
as random variables with a given subjective probability distribution. Under the expected utility 
hypothesis, the owner-manager’s preferences are given by E1U(x), where E1 is the expectation 
operator based on the information available at time t = 1, U(x) is a von Neumann-Morgenstern 
utility function representing risk preferences, and x = (x1, …, xT) denotes the consumption path 
over the planning horizon. Throughout, we assume that Ut’ = ∂U(x)/∂xt > 0, and ∂U2(x)/∂x2 is a 

                                                 
1 Note that we do not impose a priori restrictions on the sign of the marginal cost of storage Ct’ = 
∂Ct(St)/∂St. This means that, following Kaldor and Working (1948, 1949), we allow for a “convenience 
yield” where the Ct’ can become negative for low inventory levels.  
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negative semi-definite matrix. This allows for risk neutrality (when ∂U2(x)/∂x2 = 0), as well as 
risk aversion (when ∂U2(x)/∂x2 is a negative definite matrix, with Ut” = ∂U2(x)/∂xt

2 < 0).  

We assume that prices pt, qt and it become observable at time t. However, the future is not known 
for sure. Uncertainty is represented by a general (subjective) distribution of future prices. Under 
Bayesian learning, the distribution of future prices evolves over time following the observation 
each time period of (pt, qt, it) and possibly other random variables correlated with future prices. 
Based on the information available at time t, future uncertainty is represented by a joint 
probability distribution of (pt+1, …, pT), (qt+1, …, qT) and (it+1, …, iT). Below, we will assume 
that the random variables pt+1 and qt+1 are independently distributed. This assumption will 
simplify our analysis. It seems appropriate in situations where the commodity being stored 
involves only a small sector of the economy.  

For given the initial conditions (I0, S0) and using backward induction, optimal decisions are 
given by the optimization problem 

MaxS1,I1,x1 E1{MaxS2,I2,x2 E2{…MaxST,IT,xT {ETU(x1, …, xT):  equations (1a)-(1b)} 

= MaxS1,I1 E1{MaxS2,I2 E2{…MaxST,IT {ETU([π1 – I1 + (1 + i0) I0 + N1]/q1,  

…, [πT – IT + (1 + iT-1) IT-1 + NT]/qT): equation (1a)},  (2) 

where Et denotes the expectation operator based on the information available at time t. Since 
there is no incentive to store/invest beyond the end of the planning horizon, we set ST = 0 and IT 
= 0 as terminal conditions. From (2), the optimal decisions made at time t are St

*(pt, St-1, It-1, ⋅) 
and It

*(pt, St-1, It-1, ⋅). The properties of these decisions rules are explored next.   

3. COMPETITIVE STORAGE 
First, we consider the case of a competitive storage firm that takes market prices as given. It 
means that, from the view point of the firm, neither current prices nor the probability distribution 
of future prices are affected by the firm’s decisions. In this context, using the envelope theorem, 
the first-order necessary conditions for St and It in (2) are2  

Et[Ut+1’ ⋅ (1-δt) pt+1/qt+1 – Ut’ ⋅ (pt + Ct’)/qt] ≤ 0, (3a) 

Et[Ut+1’ ⋅ (1-δt) pt+1/qt+1 – Ut’ ⋅ (pt + Ct’)/qt] St = 0, (3b) 

                                                 
2 If the firm is involved in both storage and production activities, then in addition to equations (3)-(4), the 
first-order conditions associated with the maximization of expected utility with respect to production 
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St ≥ 0, (3c) 

and 

Et[Ut+1’ ⋅ (1+it)/qt+1 – Ut’/qt] = 0, (4) 

t = 1, 2, …, T-1, where Ct’ = ∂Ct(St)/∂St denotes the marginal cost of storage at time t, and Ut’ = 
∂U(x)/∂xt evaluated at {St+1

*, It+1
*; St-2

*, It+2
*, …}. Assume that pt, qt and it are observed at time t. 

After substituting equation (4) into (3), we obtain  

Et[(Ut+1’/qt+1) ⋅ (βt pt+1 – pt – Ct’)] ≤ 0, (5a) 

Et[(Ut+1’/qt+1) ⋅ (βt pt+1 – pt – Ct’)] St = 0, (5b) 

St ≥ 0, (5c) 

where βt ≡ (1 - δt)/(1 + it) ∈ (0, 1) is a discount factor reflecting the effects of both depreciation 
(through δt) and the opportunity cost of money (through the interest rate it). Equation (5) is an 
Euler equation characterizing the implications of optimal competitive storage for price dynamics. 
When St > 0, it can be alternatively written as 

  βt Et(pt+1) – pt = Ct’ + Rt’,  (6) 

where Rt’ ≡ -βt Covt(Ut+1’/qt+1, pt+1)/Et(Ut+1’/qt+1), and Covt(a, b) is the covariance between “a” 
and “b” based on the information available at time t. Note that the covariance term is zero under 
two scenarios: 1/ when pt+1 is known at time t; and 2/ under risk neutrality, where ∂2U(x)/∂x2 = 0. 
In this latter case, Ut+1’ = ∂U/∂xt+1 is a constant and Covt(Ut+1’/qt+1, pt+1) = 0 under the 
independence of pt+1 and qt+1. It follows that the marginal risk premium vanishes (Rt’ = 0) either 
in the absence of price risk or under risk neutrality. Alternatively, under risk aversion, ∂2U(x)/∂x2 
is a negative definite matrix, implying that Rt’ will in general be non-zero under price risk. As 
such, we interpret Rt’ in (6) as a “marginal risk premium” measuring the private cost of risk 
bearing and reflecting the role of risk and risk aversion. This gives the following result. 

Proposition 1: For a competitive firm, optimal storage at time t corresponds to equation (6), 
where Rt’ is the marginal risk premium.  

Equation (6) shows that, for a competitive firm, optimal storage corresponds to the standard 
result: marginal revenue associated with storing one more unit of St from time t to time t+1, βt 

                                                                                                                                                             

decisions would also apply (with the profit from production activities at time t being part of “other 
income” Nt in equation (2)).  
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Et(pt+1) – pt, must equal marginal cost, Ct’ + Rt’. The marginal cost includes the marginal cost of 
storage Ct’ as well as the marginal risk premium Rt’ reflecting the cost of private risk bearing. 
We have seen that risk neutrality implies that the marginal risk premium vanishes, Rt’ = 0. Thus, 
under risk neutrality, the marginal cost reduces to Ct’. However, under risk and risk aversion, Rt’ 
is in general non-zero.  

Given Ct” > 0, equation (6) implies that the optimal stock St is necessarily higher (lower) when 
Rt’ < 0 (> 0). Noting that Rt’ = 0 either under risk neutrality or in the absence of uncertainty 
about pt+1, we obtain the following results.  

Proposition 2: Consider a competitive firm facing Ct” > 0. Then, ceteris paribus at time t:  

• compared to risk neutrality, the firm would store more (less) under risk aversion when the 
marginal risk premium satisfies Rt’ < 0 (> 0);  

• compared to the riskless case, the risk averse firm facing uncertainty about pt+1 would store 
more (less) when the marginal risk premium satisfies Rt’ < 0 (> 0).    

Proposition 2 establishes the role of risk and risk aversion for a competitive storage firm. Under 
risk neutrality, the inventory choice for a competitive firm depends on the expected path of 
prices as well as marginal cost, but not on future price uncertainty. And under risk aversion, 
future price uncertainty matters as it affects the marginal risk premium Rt’. The marginal risk 
premium reflects the impact of price risk and risk aversion on optimal stocks. Intuitively, a 
positive marginal risk premium means that storage contributes to increasing the cost of risk, thus 
providing a disincentive to store. Alternatively, a negative marginal risk premium implies that 
storage tends to decrease the cost of risk, providing additional incentives to store. 

Given Rt’ ≡ -βt Covt(Ut+1’/qt+1, pt+1)/Et(Ut+1’/qt+1), Ut+1’ > 0, and under future price uncertainty, 
note that the marginal risk premium Rt’ is always of the sign of [-Covt(Ut+1’/qt+1, pt+1)]. When the 
sign of [∂(Ut+1’/qt+1)/∂pt+1] can be determined ex ante, Covt(Ut+1’/qt+1, pt+1) is necessarily of the 
sign of [∂(Ut+1’/qt+1)/∂pt+1]. With Ut+1’ = ∂U(x)/∂xt+1, note that (∂Ut+1’/∂pt+1) involves the term 
[(∂2U(x)/∂xt+1

2) ⋅ ((1-δt) St – St+1
*)]. Under risk aversion (where ∂2U(x)/∂xt+1

2 < 0), this term is 
positive (negative) when [(1-δt) St – St+1

*] > 0 (< 0). This shows that the sign of the marginal risk 
premium Rt’ is in general ambiguous: Rt’ can be positive or negative depending on the 
anticipated change in stock between time t and time t+1.  

To provide an intuitive interpretation of this result, note that the variance of firm profit πt+1 is 
Vart[pt+1 ⋅ ((1-δt) St – St+1

*)], where ((1-δt) St – St+1) is the net sale at time (t+1). Under price risk, 
this means that the variance of profit (and thus risk exposure) tends to increase (decrease) with St 
when ((1-δt) St – St+1

*) is positive and large (negative and large). For a risk averse agent who 
tries to reduce his/her risk exposure, this means an incentive to store less at time t when he/she 
anticipates a large sale next period (meaning a large decrease in next-period firm inventory if δ is 
small). This corresponds to situations where Rt’ > 0. Alternatively, a risk averse agent would 
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have incentive to store more at time t when he/she anticipates a large purchase next period 
(meaning a large increase in next-period firm inventory if δ is small). This corresponds to 
situations where Rt’ < 0. Intuitively, by attempting to reduce its risk exposure, a risk averse agent 
has an extra incentive to reduce optimal stock fluctuations over time. This suggests that risk and 
risk aversion tend to diminish the capacity of a competitive storage firm to smooth market and 
price fluctuations over time.  

The above analysis shows the importance of the length of the planning horizon T in the 
investigation of the effects of risk and risk aversion on storage. As noted above, the sign of 
Covt(Ut+1’/qt+1, pt+1) depends on the term [(∂2U(x)/∂xt+1

2) ⋅ ((1-δt) St – St+1
*)]. When T = 2, then 

S2
* = 0 and Cov1(U2’/q2, p2) = sign{(∂2U(x)/∂x2

2) ⋅ (1-δ1) S1}. Under risk aversion (where 
(∂2U(x)/∂x2

2) < 0), it follows that Cov1(U2’/q2, p2) ≤ 0 and R1’ ≥ 0. Thus, when the planning 
horizon has only two periods (T = 2), price risk always provides an incentive for a risk-averse 
firm to store less at the current time (t = 1). However this specific result is implied by the 
terminal condition S2

* = 0 and does not hold in general for T ≥ 3. Indeed, when T ≥ 3, ((1-δ1) S1 
– S2

*)) can be either positive or negative, implying that the covariance term Cov1(U2’/q2, p2) can 
also be either positive or negative under risk aversion. In this context, the complexity of the 
effects of price risk on storage behavior arises only when T ≥ 3. When storage firms are 
characterized by risk aversion and a relatively long planning horizon (with T ≥ 3), this stresses 
that the effects of price risk on stocks depend on the anticipated path of future stocks.  

Finally, note that equation (6) and Propositions 1 and 2 provide a structural characterization of 
dynamic behavior for a competitive firm involved in storage activities. It is of interest to 
establish linkages between these firm-level results and market equilibrium. For the commodity of 
interest, denote the price dependent demand function at time t by pt(Dt, ⋅), where Dt is the 
aggregate quantity demanded and ∂pt(Dt, ⋅)/∂Dt < 0. Here, “⋅” denotes other factors affecting 
demand (which can include demand shifters as well as past quantities reflecting demand 
dynamics). Under market equilibrium, the aggregate quantity demanded Dt equals aggregate 
supply, (1-δt-1) St-1 - St + zt, where [(1-δt-1) St-1 - St] is the quantity supplied by our storage firm, 
and zt is the net quantity supplied from other sources at time t. Let (S1

c, …, ST
c) denote the 

optimal competitive storage given by equation (6). And let zt
c denote the net supply obtained 

from all other sources under competitive conditions. The associated market equilibrium 
conditions are    

pt = pt((1-δt-1) St-1
c - St

c + zt
c, ⋅),  (7) 

t = 1, …, T. It follows that equations (6) and (7) provide the dynamics of market equilibrium 
under competitive storage. When pt measures the marginal willingness-to-pay for consumers of 
the commodity, then equations (6) and (7) represent the dynamics of a competitive market under 
storage. Note that this dynamics always depends on the dynamics of information supporting the 
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stock decisions. If information is free, then “rational expectations” would apply, where the 
subjective probability distribution of future prices is consistent with equation (7). However, if 
information is costly, it is possible for storage firms to evaluate future prices in a way that differs 
from the “market fundamentals” given in equation (7). In this context, note that equation (6) 
would remain a valid representation of competitive storage. Equations (6) and (7) would then 
reflect how the processing of information by storage firms influences price and market dynamics.  

4. STORAGE UNDER IMPERFECT COMPETITION 
Our analysis so far has focused on a competitive firm that cannot affect prices. This appears 
appropriate when the market has a competitive structure and includes a large number of firms. 
However, this may not apply if there are few firms and/or if some of the firms are relatively large 
compared to the market. In this case, one can expect the decisions of the firm to affect market 
prices. In this section, we explore the implications of storage under imperfect competition. As 
discussed in the literature, there are many ways to introduce imperfect competition in the 
analysis of storage activities (e.g., Kirman and Sobel; Arvan; Rotemberg and Saloner; Judd; 
Wright and Williams, chapter 11). As shown by Arvan, the strategic use of inventory can make 
the characterization of equilibrium difficult. Below, we focus our attention on a simple Cournot 
game, where each firm makes its own decisions taking as given the quantities chosen by other 
agents (e.g., Tirole). 

Again, consider the price dependent demand function pt(Dt, ⋅) where Dt is the aggregate quantity 
demanded and pt’ = ∂pt(Dt, ⋅)/∂Dt < 0. Under market equilibrium, this can be written as pt((1-δt-1) 
St-1 – St + zt, ⋅), where [(1-δt-1) St-1 – St] is the net quantity supplied by our storage firm and zt is 
the net quantity supplied from other sources. Under imperfect competition, changes in St affect 
the market price pt. And under a Cournot game, the storage decision St is made conditional on 
the quantity zt of “other net supply.” Thus, in the analysis presented below, we investigate 
storage behavior for a Cournot firm which treats the zt’s as given.  

As noted above, Nt in (1b) represents income from other activities undertaken by the firm. This 
is relevant in the case where the firm is involved both in production and storage activities. It 
means that the analysis presented below would remain valid if the firm manager also makes 
production decisions (the handling of strategic behavior will be discussed below).  

In a Cournot game, given pt[(1-δt-1) St-1 – St + zt], the first-order necessary condition for optimal 
stock St in (2) is  

Et[Ut+1’ ⋅ (1-δt) [pt+1 + pt+1’ ⋅ ((1-δt) St – St+1
*)]/qt+1  

– Ut’ ⋅ (pt + Ct’ + pt’ ⋅ ((1-δt-1) St-1 – St))/qt] ≤ 0, (8a) 

Et[Ut+1’ ⋅ (1-δt) [pt+1 + pt+1’ ⋅ ((1-δt) St – St+1
*)]/qt+1  



 9

– Ut’ ⋅ (pt + Ct’ + pt’ ⋅ ((1-δt-1) St-1 – St))/qt] St = 0, (8b) 

St ≥ 0,  (8c) 

where pt’ = ∂pt/∂Dt < 0 at time t, t = 1, …, T-1. The first-order condition with respect to 
investment It remains the same as before and is given in (4).3 Substituting equation (4) into (8) 
yields  

Et[(Ut+1’/qt+1) ⋅ [βt ⋅ [pt+1 + pt+1’ ⋅ ((1-δt) St – St+1
*))]  

– pt – Ct’ – pt’ ⋅ ((1-δt-1) St-1 – St)]] ≤ 0, (9a) 

Et[(Ut+1’/qt+1) ⋅ [βt ⋅ [pt+1 + pt+1’ ⋅ ((1-δt) St – St+1
*))]  

– pt – Ct’ – pt’ ⋅ ((1-δt-1) St-1 – St)]] St = 0, (9b) 

St ≥ 0,  (9c) 

where βt = (1 - δt)/(1 + it). Equation (9) is an Euler equation characterizing the implications of 
optimal stocks for a Cournot firm. Define  

Mt’ ≡ Et[(Ut+1’/qt+1) ⋅ [βt ⋅ pt+1’ ⋅ ((1-δt) St – St+1
*) – pt’ ⋅ ((1-δt-1) St-1 – St)]/Et(Ut+1’/qt+1). (10) 

Then, when St > 0, equation (9) can be written as  

βt Et(pt+1) – pt + Mt’ = Ct’ + Rt’.  (11) 

Note that equation (11) reduces to (6) when Mt’ = 0. Since (6) identifies the storage behavior of a 
competitive firm, it follows that Mt’ reflects the exercise of market power by the storage firm. 
Equation (11) states that, at the optimum, the storage firm equates marginal revenue, βt Et(pt+1) – 
pt + Mt’, with marginal cost, Ct’ + Rt’. It introduces the term Mt’ as an additional part of marginal 
revenue. This term can be interpreted as the part of marginal revenue due to the exercise of 
market power by our storage firm. These results are summarized next.   

Proposition 3: At time t and conditional on zt, a Cournot firm chooses storage St that satisfies 
equation (11), where the marginal revenue due to the exercise of market power Mt’ is given by 
equation (10).   

                                                 
3 Again, if the firm is involved in both storage and production activities, then in addition to equations (4) 
and (8), the first-order conditions associated with the maximization of expected utility with respect to 
production decisions would also apply (with the profit from production activities at time t being part of 
“other income” Nt in equation (2)).  
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Note that Mt’ in equation (10) can be either positive or negative depending on the anticipated 
change in future firm stocks. Proposition 3 shows that, in general, the inventory choice for a 
Cournot firm depends on the expected path of prices, on marginal cost, on price risk (under risk 
aversion) and on the anticipated path of future firm inventory.  

From Proposition 3, in a way similar to the Lerner index, a convenient measure of the exercise of 
market power is    

Lt = -Mt’/pt, 

= [βt Et(pt+1) – pt – Ct’ – Rt’]/pt,  (12a) 

using (11). Lt in equation (12a) is the excess marginal revenue due to the exercise of market 
power at time t, measured as a proportion of the market price pt. Relative to pt, it involves the 
discounted expected price change, βt Et(pt+1) – pt, minus the marginal storage cost Ct’, minus the 
marginal risk premium Rt’. From equation (6), Lt = 0 under competition. However, in general, Lt 
≠ 0 in the presence of market power. 

Given the definition of Mt’, note that equation (12a) can be alternatively written as 

Lt = -(1/pt) ⋅ Et[(Ut+1’/qt+1) ⋅ βt ⋅ pt+1’ ⋅ ((1-δt) St – St+1
*)  

– pt’ ⋅ ((1-δt-1) St-1 – St)]/Et(Ut+1’/qt+1),  

= βt ⋅ Et[(Ut+1’/qt+1) ⋅ εt+1
-1 ⋅ (pt+1/pt) ⋅ Wt+1]/Et(Ut+1’/qt+1) – εt

-1 ⋅ Wt, (12b) 

where εt = -[∂ln(pt)/∂ln(Dt)]-1 is the elasticity of demand at time t, and Wt = [(1-δt-1) St-1 – St]/Dt 
is the market share of our storage firm at time t. Equation (12b) illustrates how the market share 
W affects the exercise of market power. When the market share W becomes small (W → 0), then 
Lt → 0 in (12b) and storage behavior can be described as competitive. Alternatively, when the 
storage firm has a significant market share W, then equation (12b) shows that Lt can differ from 
zero when the storage firm exhibits market power. This gives the intuitive result that a significant 
market share is a necessary condition for the storage firm to exercise market power. In addition, 
equation (12b) shows that, when non-zero, Lt can be either positive or negative depending on the 
anticipated future price movements. Finally, equation (12b) illustrates the role of the price 
elasticity of demand ε = -[∂ln(p)/∂ln(D)]-1. In particular, a very high price elasticity (ε → ∞) 
means that Lt → 0. This gives the intuitive result that storage behavior becomes approximately 
competitive when market demand becomes highly price-elastic. Alternatively, equation (12b) 
shows that the potential for exercising market power rises when demand becomes more price-
inelastic.  
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The implications of the exercise of market power for storage are explored next. (See the proof in 
the Appendix)  

Proposition 4: Ceteris paribus, at time t and conditional on zt, a Cournot firm stores more (less) 
than a competitive firm when Mt’ > (<) 0, where Mt’ is given in (10).  

Proposition 4 shows how the exercise of market power affects storage behavior for a Cournot 
firm at time t. The stated results apply under risk neutrality as well as under risk aversion. First, 
consider the case of risk neutrality (where ∂U2(x)/∂x2 = 0 and Rt’ = 0). Under risk neutrality, 
Proposition 4 implies that, ceteris paribus, a Cournot firm stores more (less) at time t than a 
competitive firm when βt ⋅ Et[(1/qt+1) ⋅ pt+1’ ⋅ ((1-δt) St – St+1

*)]/Et(1/qt+1) > (<) pt’ ⋅ ((1-δt-1) St-1 – 
St). In the case where pt’ = pt+1’ = p’ < 0 and qt+1 is known with certainty, this condition reduces 
to βt ⋅ Et[((1-δt) St – St+1

*)] < (>) ((1-δt-1) St-1 – St). The term {βt ⋅ Et[((1-δt) St – St+1
*)]} can be 

interpreted as the “discounted firm sale” at time t+1. This shows that a Cournot firm has an 
incentive to store more (less) than a competitive firm at time t when its discounted sale is 
expected to increase (decrease) over the next time period. Since increasing (decreasing) sale 
means reducing (increasing) stocks, this suggests that the exercise of market power tends to 
stimulate (reduce) St in periods when significant increases (decreases) in stocks are anticipated 
for the next period. To the extent that stock variations over time help smooth anticipated market 
shocks, this indicates that the exercise of market power reduces the ability of storage to absorb 
such shocks. These effects will be further evaluated in the empirical analysis presented below.  

The role of anticipated future stocks stresses the importance of the length of the planning 
horizon. This is particularly relevant given that a number of previous papers have investigated 
non-competitive storage in the context of two-period models (e.g., Allaz; Arvan; Mitraille; 
Moellgaard et al.; Rotemberg and Saloner; Saloner). Noting that T = 2 implies that S2

* = 0, it is 
clear that two-period models impose strong restrictions on the prospects for increasing future 
stocks. In particular, S2

* = 0 means that “discounted sale” is less likely to decrease between t = 1 
and t = 2. This implies that such models fail to capture some of the adverse effects of imperfect 
competition on storage. By showing that two-period models impose strong restrictions on 
Cournot behavior, this stresses the need to consider storage models with longer planning 
horizons (with T ≥ 3).      

Second, consider the case of risk averse firm, where ∂2U(x)/∂x2 is a negative definite matrix. 
Under risk aversion, Proposition 4 implies that a Cournot firm tends to store more (less) at time t 
than a competitive firm when βt ⋅ Et[pt+1’ ⋅ ((1-δt) St – St+1

*)] + βt ⋅ Covt[Ut+1’/qt+1, pt+1’ ⋅ (St – 
St+1

*)]/Et(Ut+1/qt+1) > (<) pt’ ⋅ ((1-δt-1) St-1 – St). This condition introduces a role for the 
covariance term Covt[Ut+1’/qt+1, pt+1’ ⋅ ((1-δt-1) St – St+1

*)]. Under risk aversion, note that this 
covariance term can be either positive or negative depending on the anticipated path of future 
sales, i.e., on the anticipated path of future firm stocks. This indicates the presence of interaction 
effects between risk management and the exercise of market power. For example, under risk 
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aversion, a positive covariance term would strengthen the incentive of a firm playing a Cournot 
game to store more than a competitive firm. Alternatively, a negative covariance term would 
strengthen the incentive for a Cournot firm to store less than a competitive firm.  

Proposition 4 identifies the role of Mt’. This provides useful insights on how imperfect 
competition affects storage incentives. However, note that the results presented in Proposition 4 
hold under rather strong ceteris paribus conditions. These conditions require than nothing else 
change besides the decision rule used for choosing stock St at time t. In a dynamic context, the 
exercise of market power will typically affect the storage decisions for all relevant periods. This 
suggests the need to explore the effects of imperfect competition in this broader context. To 
address this issue, define  

W(S, I) = E1U[p1[((1-δ0) S0 – S1) + z1] ⋅ ((1-δ0) S0 – S1) – C1(S1) – I1 + (1 + r0) I0  

+ N1]/q1, …, pT[((1-δT-1) ST-1 – ST) + zT] ⋅ ((1-δT-1) ST-1 – ST) – CT(ST) – IT  

+ (1 + iT-1) IT-1 + NT]/qT],  (13) 

where S = (S1, …, ST), and I = (I1, …, IT). Denote by (Sc, Ic) the optimal decision rules obtained 
under perfect competition (corresponding to (3) and (4)). And denote by (Sm, Im) the optimal 
decision rules obtained under Cournot competition (corresponding to (8) and (4)), taking the zt’s 
as given. Note that, subject to information constraints, (Sm, Im) ∈ argmaxS,I {W(S, I)}, and 
W(Sm, Im) is the ex ante utility function obtained under Cournot behavior. It follows that W(Sm, 
Im) ≥ W(S, I) for any feasible (S, I). Choosing (S, I) = (Sc, Ic) generates the following result. 

Proposition 5: Under Cournot behavior and conditional on (z1, …, zT), the exercise of market 
power tends to make the storage firm better off in the sense that 

W(Sm, Im) ≥ W(Sc, Ic).  (14) 

Proposition 5 gives the standard result that, conditional on (z1, …, zT), a Cournot firm benefits 
from the exercise of market power. These private benefits give an incentive for the firm to 
implement non-competitive behavior. Of course, to the extent that competitive behavior 
implements a Pareto efficient allocation (from the first welfare theorem), this means that the 
exercise of market power by storage firms also generates an inefficient allocation and creates a 
social cost. In the absence of other distortions, this social cost means that the private gains 
obtained by the storage firm are associated with losses suffered by other agents in the economy 
(i.e., producers and consumers), and that these losses are larger than the storage firm’s gains.  

The inequality W(Sm, Im) ≥ W(S, I) provides a basis for investigating the implications of 
imperfect competition. Note that these implications are typically complex since they involve 
dynamic behavior over a T-period planning horizon. The difficulties arise because the effects of 
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imperfect competition can vary from one period to the next. To investigate these issues, consider 
the case where storage behavior St is associated with the following conditions  

Et[Ut+1’ ⋅ (1-δt) [pt+1 + pt+1’ ⋅ α ⋅ ((1-δt) St – St+1
*)]/qt+1  

– Ut’ ⋅ (pt + Ct’ + pt’ ⋅ α ⋅ ((1-δt-1) St-1 – St))/qt] = 0, (15a) 

Et[Ut+1’ ⋅ (1-δt) [pt+1 + pt+1’ ⋅ α ⋅ ((1-δt) St – St+1
*)]/qt+1  

– Ut’ ⋅ (pt + Ct’ + pt’ ⋅ α ⋅ ((1-δt-1) St-1 – St))/qt] St = 0, (15b) 

St ≥ 0,  (15c) 

t = 1, …, T. Conditional on α, define (Sa(α)), Ia(α)) as the optimal decisions satisfying (4) and 
(15). The decision rules (Sa(α)), Ia(α)) can represent competitive behavior as well as Cournot 
behavior as special cases. Indeed, competitive behavior is obtained when α = 0, with (Sc, Ic) = 
(Sa(0)), Ia(0)). This follows from the fact that equation (15) reduces to equation (3) when α = 0. 
Alternatively, Cournot behavior is obtained when α = 1, with (Sm, Im) = (Sa(1)), Ia(1)). This 
follows since equation (15) reduces to equation (8) when α = 1.  

Equation (14) implies the following result. (See the proof in the Appendix). 

Lemma 1:  

 ∫
1

0

(1-α) ⋅ ∑
=

T

1t
E1 [Mt’ ⋅ ∂St

a(α)/∂α] ⋅ dα ≥ 0.  (16) 

With Sa(1) and Sa(0)) representing optimal stocks under Cournot behavior and competitive 
behavior, respectively, equation (16) generates the following result.  

Proposition 6: Conditional on (z1, …, zT), comparing Cournot stock behavior Sa(1) with 
competitive stock behavior Sa(0), we have 

• Sa(1) ≥ Sa(0) if Mt’ > 0 for all t = 1, …, T-1,  

• Sa(1) ≤ Sa(0) if Mt’ < 0 for all t = 1, …, T-1.   

These results are consistent with the results obtained in Proposition 4. However, Proposition 6 
applies in the broader context of a T-period planning horizon. It indicates that the sign of Mt is 
the key determinant of how market power affects storage. It shows that, under Cournot behavior, 
the exercise of market power tends to have a positive (negative) effect on storage when Mt’ > 0 
(< 0). And as discussed above, the sign of Mt’ depends on the anticipated path of future stocks. It 
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means that, in general, the exercise of market power tends to stimulate (reduce) stockholding 
when stocks are anticipated to increase (decrease) over time. Note that this result is consistent 
with previous literature (e.g., Williams and Wright, p. 325) showing that market power tends to 
increase (decrease) stocks when initial stocks are low (high). However previous analysis has 
typically been presented under stationary conditions. Our analysis is developed under more 
general conditions. For example, by not imposing stationarity, our results apply to markets 
exhibiting business cycles, seasonality, or trends. They suggest that the exercise of market power 
reduces the ability of storage to smooth anticipated market shocks. This particular finding will be 
further discussed below. Finally, note that Proposition 6 does not give clear results when the sign 
of Mt changes over the planning horizon. In this case, the effects of market power on stocks can 
be either positive or negative. As discussed above, such effects in general depend on the 
anticipated path of future stocks.  

Capturing strategic effects 
Propositions 3-6 provide a structural characterization of storage behavior for a imperfectly 
competitive Cournot firm. By being conditional on (z1, …, zT), note that these results fall short of 
capturing the strategic effects of stocks. To investigate such strategic effects, consider that the 

“other supply” zt is produced from (J+1) sources, with zt = ∑
=

J

0j

zjt, zjt being the part of “other 

supply” from the j-th source at time t. Assume that the decision about z0t is made independent of 
St, but that there are strategic interdependences among St and zjt, j = 1, …, J. Denote by St

m(zt, ⋅) 
the optimal storage given by equation (8) or (9), conditional on “other supplies” zt = (z1t, …, zJt). 
In a non-cooperative game with strategic effects among St and zt, denote by zjt

m(St, z-j,t, ⋅) the 
decision rule used in choosing zjt, where z-j,t = (…, zj-1,t, zj+1,t, …) and “⋅” represents other factors 
affecting zjt, j = 1, …, J. The associated Nash equilibrium at time t involves a fixed point (St

e, zt
e) 

satisfying St
e = St

m(zt
e, ⋅) and zjt

e = zjt
m(St

e, z-j,t
e, ⋅), j = 1, …, J. In general, it is well-known that 

such equilibrium may not exist, and if it exists it may not be unique (e.g., Tirole; Arvan). This 
creates significant challenges for the analysis of economic dynamics.   

To simplify the discussion, assume that a Nash equilibrium exists satisfying St
e = St

m(zt
e, ⋅) and 

zjt
e = zjt

m(St
e, z-j,t

e, ⋅), j = 1, …, J. The associated market equilibrium conditions under imperfect 
competition are    

pt = pt((1-δt-1) St-1
e - St

e + ∑
=

J

0j
zjt

e, ⋅),  (17) 

t = 1, …, T. Equations (9) and (17) provide the dynamics of market equilibrium under Cournot-
imperfect competition. As shown by Tirole, Arvan, and others, market equilibrium and its 
dynamics depend in general on the nature of strategic interactions between St and zt (as 
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characterized by the properties of the reaction functions St
m(zt

e, ⋅) and zjt
m(St

e, z-j,t
e, ⋅), j = 1, …, 

J). This can represent various market conditions. To see that, consider first the case where the 
storage firm specializes in storage and is not involved in production activities. Then, the storage 
firm would be a monopoly if J = 0. It would be part of a duopoly when J = 1, with z1t = z1t

m(St, z-

j,t, ⋅)) being the supply provided by the “other duopolist.” And it would be part of an oligopoly 
when J ≥ 2. Second, consider the case where the storage firm is also involved in production 
activities. In this context, let z1t represent the quantity supplied by this firm at time t, with z1t

m(St, 
z-1,t, ⋅) being the firm output produced at time t that maximizes expected utility (2). Then, the 
storing/producing firm would be a monopoly if J = 1. It would be part of a duopoly if J = 2 (with 
z2t being the supply provided by the “other” duopolistic firm). And it would be part of an 
oligopoly when J ≥ 3. This illustrates how our approach can accommodate various market 
structures. Of course, each market structure would have different implications for market 
dynamics (depending on the nature of strategic interactions between storage St and “other 
supplies” zt). However, we want to stress that irrespective of these strategic interactions, 
equation (9) remains a valid representation of storage decisions under Cournot competition. As 
such, equation (9) provides a convenient structural representation of the effects of imperfect 
competition on storage decisions.  

5. ECONOMETRIC SPECIFICATION 
We start from the fact that equation (9) is a structural model for optimal storage St under Cournot 
competition. We propose an econometric specification for (9) that can support an empirical 
analysis of storage behavior.  

Note that equation (9) suffers from an identification problem with respect to risk preferences. To 
see that, consider the case where the decision maker exhibits constant absolute risk aversion 

where U(x) = ∑
=

T

1t
-(Kt/r) ⋅ exp(-r ⋅ xt), Kt > 0 being a discount factor at time t, and r being the 

Arrow-Pratt risk aversion parameter. Risk neutral preferences are obtained when r = 0, while risk 
aversion corresponds to r > 0. Then, Ut’ = ∂U(x)/∂xt = Kt ⋅ exp(-r ⋅ xt). With xt > 0, note that Ut’ 
→ 0 as r → ∞. It follows that equation (9) would always hold when r → ∞. It means that the risk 
aversion parameter r is not identified in equation (9). In other words, equation (9) alone cannot 
provide a basis to investigate the nature of risk preferences.4 On that basis, we proceed our 
empirical investigation assuming risk neutrality, with ∂2U(x)/∂x2 = 0.  

                                                 
4 Note that risk preferences could be investigated empirically if the analysis were based instead on the 
joint estimation of equations (4) and (8). Subject to a normalization rule restricting the marginal utility of 
income to be positive, risk preferences would then be identified. The problem for us is that, under risk 
aversion, Ut’ in equations (4) and (8) depends in general on “other income” Nt. In our case, we do not 
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Consider the storage cost specification Ct(St) = c1 St + ½ c2 St
2. It follows that Ct’ = ∂Ct(St)/∂St = 

c1 + c2 St. Finally, let pt(Dt) = γ0t + γ1 Dt, with pt’ = ∂pt(Dt)/∂Dt = γ1 < 0. Then, consider the 
following specification:  

βt ⋅ [pt+1 + φ ⋅ ((1-δt) St – St+1
*))] – [pt + c1 + c2 St + φ ⋅ ((1-δt-1) St-1 – St))] = et, (18) 

where βt = (1 - δt)/(1 + it), and et is an error term distributed with mean zero and finite variance. 
Under risk neutrality (where Ut+1’ is a positive constant) and given St > 0, compare equation (18) 
with equations (5) and (9). The comparison with equation (5) shows that equation (18) represents 
the competitive storage decision rule when φ = 0. And given pt+1’ = γ1, the comparison with 
equation (9) shows that equation (18) represents the Cournot decision rule when φ = γ1. Thus, 
equation (18) nests two important storage decision rules as special cases: φ = 0 under 
competition, and φ = γ1 < 0 under Cournot behavior. In other words, in the context of equation 
(18), testing for competitive storage corresponds to the null hypothesis H0: φ = 0. And testing for 
Cournot behavior corresponds to the null hypothesis H0: φ = γ1 < 0.  

Could φ in equation (18) also have an economic interpretation n when γ1 < φ < 0? Letting φ = (1 
+ η) γ1, equation (18) can also be interpreted as the first-order condition associated with the 

maximization problem (2) with pt(Dt) = pt((1-δt-1) St-1 - St + ∑
=

J

0j
zjt

e, ⋅) and η = ∂(∑
=

J

0j
zjt

e)/∂St. 

Following Bresnahan, Perry, and Dixit, η can be interpreted as the “conjectural variation” of the 

storage firm anticipating how “other supplies” ∑
=

J

0j
zjt

e would react to the choice of St. Again, 

this includes Cournot behavior and competitive behavior as special cases. Cournot behavior is 
obtained when η = 0, i.e. when the storage firm expects no quantity response from other firms. 
And competitive-Bertrand behavior is obtained when η = -1, i.e. when the choice of St has no 
effect on the market price pt. But it also includes intermediate cases when -1 < η < 0, 
corresponding to partial departures from competitive conditions. The firm storage decisions then 
affect the market price (-1 < η), but this effect is less than under Cournot behavior due to the 
anticipated response of other firms (η < 0). With φ = (1 + η) γ1, it follows that γ1 < φ < 0 can be 
interpreted as reflecting the strength of departure from competitive conditions. Note that this 
interpretation is not solidly grounded in a game-theoretic model of strategic interactions in the 
market place. However, it provides a simple measure of departure from competition (e.g., 
Genesove and Mullin).  

                                                                                                                                                             

have data on Nt. In other words, an empirical investigation of the risk preferences of the decision maker 
would require data on all sources of his/her income.  
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Under risk neutrality, equation (18) provides the specification used in our empirical 
investigation. Equation (18) is a structural equation representing optimal storage St. As a 
structural equation, note that it involves optimal storage at time t and (t+1): St and St+1. These 
variables are clearly endogenous at time t. Equation (18) also involves prices pt and pt+1. In a 
market equilibrium framework, these variables are jointly determined (since they are influenced 
by storage decisions) and should also be treated as endogenous. This means that, in general, the 
estimation of the structural equation (18) is subject to endogeneity problems leading to potential 
simultaneous equation bias. To deal with the endogeneity problems, we propose to estimate (18) 
using the generalized method of moments (GMM). This requires the use of instruments that are 
orthogonal to the error term et in (18). When this orthogonality condition is satisfied, and under 
some regularity conditions, GMM provides parameter estimates that are consistent and 
asymptotically normal. And upon the choice of an appropriate weighting scheme, the GMM 
estimator is also asymptotically efficient (Hansen, 1982).   

6. DATA 
This section presents an econometric application to the determination of stocks for American 
cheese in the US. As discussed in the introduction, the choice of American cheese is motivated in 
part by the fact that there is empirical evidence of exercise of market power in the American 
cheese market (e.g., Mueller et al., 1997; Muller and Marion, 2000). In the absence of 
disaggregate firm-level data, the analysis is applied at the aggregate level. This means that our 
empirical analysis relies on aggregate stock data for American cheese in the US. Applying our 
model to aggregate data forces us to assume that aggregate storage behaves as if it was generated 
by a representative firm. This has one important limitation: it does not allow the identification of 
which firms may be exercising market power. However, it still provides a useful framework to 
investigate empirically the question of whether aggregate private stock-holding has been 
managed in a non-competitive way over the last decade.  

The data on the American cheese market were obtained from USDA. They consist of 157 
observations on monthly prices and stocks for the period 1993 to March 2006. During this study 
period, government stocks of American cheese have been negligible.5 American cheese stocks 
have been held almost exclusively by private firms since 1993. Thus, investigating the 
competitive nature of private storage behavior in the American cheese market over the last 13 
                                                 
5 Before 1993, the US government price support program (which is part of US government dairy policy) 
was such that government purchases took place when the market price was falling below the support price 
for American cheese. As a result, significant government stocks of American cheese did accumulate in 
earlier periods. However, since 1993, the price support program for American cheese has been basically 
inactive: the market price has stayed consistently above the support price and government stocks have 
never exceeded 3 percent of total American cheese stocks.  
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years appears appropriate. The price data (pt) used in our analysis involve monthly prices for 40 
lb block cheddar cheese in Chicago.6 The stock data (St) are for US commercial stock of 
American cheese at end of each month. The stock data vary from 297 million lbs to 628 million 
lbs over the sample period. This means that censoring issues do not arise as the data never get 
close to a “zero stock” situation. The consumer price (qt) is measured by the Consumer Price 
Index for urban households reported by the US Bureau of Labor Statistics. Finally, the monthly 
riskless interest rate (it) is obtained from 6-month US Treasury bill.  

7. ESTIMATION 
Using the data just discussed, equation (18) was estimated for the US American cheese sector 
using a GMM estimator. GMM is an instrumental variable method. The following instruments 
were used: an intercept, a time trend, monthly seasonal dummies, and American cheese price and 
commercial stock lagged one and two periods. The time trend and seasonal dummies are 
supply/demand shifters in the US American cheese market. And the lagged variables capture 
market dynamics. The GMM parameter estimates of equation (18) are reported in Table 1.7 The 
standard errors are White-corrected robust standard errors allowing for possible 
heteroscedasticity.  

The GMM estimation of equation (18) provides a good explanatory power for prices: it explains 
89 percent of the price variation over the sample period. To check for the appropriateness of the 
instruments, we tested the orthogonality conditions associated with overidentifying restrictions 
(Hansen). The test statistic is 0.09. Under the null hypothesis of orthogonality, the test has a χ2 
distribution with 14 degrees of freedom. Thus, we fail to reject the null hypothesis of 
orthogonality. This provides evidence that the instruments appear appropriate and provide 
consistent estimate of the parameters. 

The estimates reported in Table 1 show that C” = c2 is positive. Also, while c1 is estimated to be 
negative, note that the marginal cost of storage, C’ = c1 + c2 St, remains positive within the range 
of the sample data. Thus, it appears that sample stock levels do not decline enough to uncover 
evidence supporting the presence of a “convenience yield.” Finally Table 1 reports an estimate of 
                                                 
6 Note that our analysis assumes a standard storable commodity. It allows for depreciation of the 
inventory over time. However, it does not allow for the depreciation patterns to vary with the “vintage” of 
the stocks (e.g., the case where the depreciation rate varies with length of storage). Addressing this issue 
would require to have data on the “vintage” of inventories and their prices. Since such data are not 
available for American cheese, we neglect these issues in our analysis.  
7 The econometric estimates reported in Table 1 are obtained assuming that δt = 0. Some sensitivity 
analysis was performed on the depreciation rate δt. We obtained the same qualitative conclusions (as 
reported below) under small positive δ.  
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φ = -1.097. With a standard error of 0.451, this means that φ is found to be negative and 
significantly different from zero. As discussed above, φ = 0 would correspond to competitive 
storage. Thus, our econometric analysis strongly rejects the null hypothesis of competitive 
storage.  

We have seen above that Cournot behavior corresponds to the null hypothesis H0: φ = γ1, where 
γ1 = ∂pt(Dt)/∂Dt < 0. The elasticity of U.S. demand for cheese has been estimated in previous 
literature. The elasticity estimates vary from -0.33 (Huang), -0.44 for processed cheese (Gould 
and Lin), and -0.52 (Pagoulatos and Sorensen). Using the -0.44 elasticity estimate evaluated at 
sample means, it follows that γ1 = -13.82. Then, testing the hypothesis that φ = γ1, we reject this 
hypothesis. Thus, we also find strong statistical evidence against Cournot behavior.  

With γ1 = -13.82 < φ = -1.097 < 0, our empirical analysis suggests that neither competition nor 
Cournot behavior provides a satisfactory representation of storage behavior in the US American 
cheese market. However, noting that φ = -1.097 is closer to 0 than it is to γ1 = -13.82, our results 
suggest that the departure from competitive conditions, while significant, appears “moderate.” 
The implications of our econometric estimates are discussed next.  

8. IMPLICATIONS 
Given the statistical evidence of non-competitive storage in the US American cheese market, we 
want to examine the nature and extent of the distortions created by the exercise of market power. 
This is a difficult task since storage activities are only parts of the economic activities affecting 
market dynamics. First, this requires information on the temporal evolution of production and 
consumption decisions. Second and perhaps more importantly, this requires information about 
how market participants anticipate the future. This involves a large number of possibilities. 
Under some scenarios, a monopoly producing a storable good may not able to exercise its market 
power (as exemplified by the “Coase conjecture”). Alternatively, the strategic use of inventory 
can be used to enforce collusion (e.g., Rotemberg and Saloner). Finally, the amount of 
information available to each market participant is always relevant. If information is costless, 
then a rational expectation equilibrium can be justified (e.g., Williams and Wright). However, if 
information is costly, then the information obtained by each market participant would depend on 
its cost. Assessing the amount of information used by various market participants remains a 
difficult task. Yet this information is expected to affect both storage and market dynamics. Given 
these difficulties, we focus our attention on the rather restrictive case of perfect foresight. While 
this is not a particularly realistic assumption, it will greatly simplify simulation exercises used to 
evaluate our econometric results.  

Under perfect foresight, the future is correctly anticipated and all future variables can be treated 
as if they were known. This means that our econometric results can be evaluated using observed 
data. In this context, we evaluate the market power component Mt’ given in equation (10) and 
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the associated relative index Lt = -Mt’/pt given in equation (12a). Recall that Lt provides a 
relative measure of the excess marginal revenue due to the exercise of market power. The results 
for Lt = -Mt’/pt are reported in Figure 1. Figure 1 shows that Lt varies between -0.047 to +0.064 
over the sample period. It illustrates that Lt (or Mt’) can be positive or negative depending on the 
patterns of change in stocks. The largest value for Lt (+0.064) occurred in May 1999. It shows 
that the largest relative excess marginal revenue due to the exercise of market power amounted 
to 6.4 percent of the market price. In other words, under competitive storage, the market price 
could have been 6.4 percent lower in May 1999, ceteris paribus. As discussed above, this 
percentage is significantly different from zero, reflecting the price distortion generated under 
imperfectly competitive storage. However, the exercise of market power in storage activities 
appears to be moderate. This seems the case when we consider that 6.4 percent is the largest 
relative simulated price distortion obtained within the sample period.  

To evaluate further the implications of the non-competitive price distortions, we simulated the 
implications of the exercise of market power for storage activities. Again, under perfect foresight 
(where all future variables are correctly anticipated), we simulated the effects of the excess 
marginal revenue Mt’ on optimal stocks. The simulated change in stocks were calculated as 
Mt’/(c2 - ∂pt/∂Dt), given an elasticity of demand (evaluated at sample means) of -0.44. Under 
perfect foresight, actual stocks were taken to be the stocks obtained under imperfect competition. 
Competitive stocks were then simulated by adding to actual stocks the simulated change in 
stocks. The results are reported in Figure 2. As expected, Figure 2 shows that actual stocks and 
competitive stocks are similar when |Mt’| or |Lt| is small. However, compared to competition, Lt 
< 0 (> 0) means that the exercise of market power provides an added incentive (less incentive) to 
store. As shown in Figure 2, imperfectly competitive storage differs most from competitive 
storage in periods when stocks reach either a maximum or a minimum. This is expected: these 
are situations where the path of stock changes varies most. In a way consistent with Propositions 
3-6, imperfect competition tends to reduce stocks when stocks get close to a maximum (because 
future stocks are then anticipated to decline). And imperfect competition tends to increase stocks 
when stocks are close to a minimum (because future stocks are then anticipated to increase). This 
illustrates how the effects of market power on stock-holding vary with market conditions. Figure 
2 shows that imperfect competition reduces the magnitude of stock fluctuations over time. It 
indicates that the ability of stocks to buffer anticipated fluctuations in supply/demand conditions 
declines when market power affects storage decisions. This finding suggests that imperfectly 
competitive storage has contributed to increased price instability in the US cheese market.  

9. CONCLUDING REMARKS 
We have developed a model of storage behavior under competition as well as Cournot behavior. 
The model provides a structural representation of storage decisions under alternative market 
structures. This representation is used to specify and estimate a structural model of storage 
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decisions. The analysis is applied to the US American cheese market. Several important results 
were obtained. First, the econometric analysis provides evidence of imperfect competition in 
storage activities for American cheese since 1993. In particular, we reject the null hypothesis of 
perfect competition. Second, the Cournot representation of imperfect competition in storage 
decisions is also rejected. Third, the empirical estimate suggests that the exercise of market 
power is somewhat moderate: the largest estimated impact of imperfect competition amounts to 
6.4 percent of the market price. Fourth, simulations from the econometric model show that 
imperfect competition tends to reduce the ability of stocks to buffer anticipated fluctuations in 
supply/demand conditions. This suggests that imperfectly competitive storage contributes to 
increased price instability.  

Our analysis has focused on a structural representation of dynamic storage decisions. This 
provides a convenient framework to investigate conceptually and econometrically the economics 
of storage. The approach has the advantage of being valid under broad conditions. For example, 
it applies under general supply/demand conditions, and various information scenarios. However, 
our structural analysis has its limitations. For example, we have not explored the strategic use of 
stocks in conjunction with joint production activities under imperfect competition. There is a 
need for further research to explore such issues. Also, our econometric analysis has focused on 
storage behavior in the US American cheese market. There is a need for additional research 
exploring the nature of storage competition in other markets.  
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APPENDIX 
Proof of Proposition 4: Assume that the second-order conditions for the maximization problem 
(2) are satisfied in a Cournot game. Note that the first-order condition with respect to It in (4) 
remains the same with or without the exercise of market power. With (Ct’+ Rt’) being increasing 
in St, equation (11) then implies that the optimal stock St is necessarily higher (lower) when Mt’ 
> (<) 0. But Mt’ = 0 for a competitive firm. This generates the desired result.  

Proof of Lemma 1: Note that equation (14) implies that W(Sa(1), Ia(1)) ≥ W(Sa(0), Ia(0)). It 
follows that  

0 ≤ W(Sa(1), Ia(1)) - W(Sa(0), Ia(0))  

= ∫
1

0

{[∂W(Sa(α), Ia(α))/∂S] (∂Sa(α)/∂α) + [∂W(Sa(α), Ia(α))/∂I] (∂Ia(α)/∂α)} dα.  

Using equation (13), we have [∂W(Sa(α), Ia(α))/∂I] = 0 from (4). When St > 0, it follows that  

∂W(S, I)/∂St = E1[Ut+1’ ⋅ (1-δt) [pt+1 + pt+1’ ⋅ ((1-δt) St – St+1
*)]/qt+1  

– Ut’ ⋅ (pt + Ct’ + pt’ ⋅ ((1-δt-1) St-1 – St))/qt]  

= (1-α) Mt’,  

using equations (15), (3) and (10). Combining these expressions gives equation (16).  
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Table 1: GMM estimation 

Parameters Estimate Standard error 

c1 -0.0102 0.0380 

c2 0.0409 0.0880 

φ -1.0972 0.4509 

Number of observations = 157 
R-square = 0.895 
Minimum distance = 0.0984 

 

 

Figure 1: Effect of market power relative to price: Lt = -Mt’/pt 
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Figure 2: Simulated Effects of market power on stocks 
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