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1. INTRODUCTION 
Economic models of agricultural technology adoption have long emphasized the role of farm and 
farmer characteristics in shaping decisions, with scant attention paid to the role of technology 
traits themselves (Feder, Just and Zilberman 1985). Recent adoption studies of transgenic or 
genetically modified (GM) crops have followed in this tradition by focusing on how such factors 
as farm size, education of farmer, age, and other farm management practices shape adoption 
decisions (see Fernandez-Cornejo and McBride (2002) for a review). Conventional approaches 
to modeling adoption ignore the range of choice farmers face and the trade-offs among distinct 
yet related GM crops. As seed varieties are increasingly differentiated by their traits (such as the 
potential to reduce herbicide or insecticide inputs, save labor, reduce management demands, 
affect health and safety outcomes, increase or stabilize yields, affect environmental performance, 
and the like), farmers assess, for their own situation, the benefits and costs associated with the 
distinct trait combinations embodied in the various types of GM crops. This paper develops and 
implements a model of technology adoption that integrates farmer demand for individual traits 
with the potential for heterogeneity in that demand.  

The proposed trait-based adoption model unifies three major lines of adoption research. First, it 
incorporates the traditional adoption approach of economic studies, which views profitability and 
relative advantage as the key factors determining the adoption of new crops and new 
technologies (Qaim and Zilberman 2003; Jovanovic and Stolyarov 2000, 1995; Feder, Just and 
Zilberman 1985; Griliches 1957). Second, it helps to quantify and put formal structure on 
conceptual, descriptive, and qualitative research by anthropologists and sociologists that 
documents the influence of farmer assessments of the attributes or traits of agricultural 
technologies on their adoption behavior (Ruttan 2003; Nowak 1992, 1987; Kivlin and Fliegel 
1966, 1967; Rogers 1962). Third, it exploits recent innovations in consumer demand analysis 
(Berry, Levinsohn and Pakes 2004; Nevo 2000, 2001; Brownstone and Train 1999; Revelt and 
Train 1998; Berry 1994) that describe consumer purchase (adoption) of a good as a function of 
the traits of the good purchased, in addition to the individual specific characteristics of the 
consumer.  

The standard empirical methods used to estimate technology adoption models are probits, logits, 
and their multinomial versions. The multinomial specifications in particular provide insights into 
the manner in which changes in farm and farmer characteristics push the individuals into and out 
of several different adoption categories, and are used to handle multiple choice situations 
including selection among multiple varieties. However, these models have several shortcomings 
for the study of multiple traits within a seed variety. As explained in detail below, these models 
do not readily incorporate traits, the potential heterogeneity of demand for those traits, or the 
potential substitution possibilities inherent in GM varieties with related traits. The multinomial 
logit model, for example, breaks down under the burden of incorporating traits because of the 
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proliferation of parameters and problems with multicollinearity. These standard approaches also 
impose restrictions, such as independence of irrelevant alternatives, which limit the between-
choices substitution patterns of related varieties. In other words, traditional empirical adoption 
models fail to capture the important features of the trait differences that are likely to govern GM 
crop adoption, leaving the econometric models of technology adoption as poorly specified 
analyses of the actual farmer choice problem.  

This work uses the conditional (CL) and mixed multinomial logit (MMNL) specifications to 
implement the trait-based adoption models in this paper, with the first being a special and more 
restrictive case of the second. The models focus on farmer adoption choices of four different 
corn varieties (Ht, Bt, Ht/Bt, or non-GM). Our specific focus on farmer choices across these 
trait-differentiated corn varieties enables us to derive willingness-to-pay estimates for different 
crop traits in corn (herbicide savings, insecticide savings, yield improvements, and labor 
savings), and to account for farm and farmer heterogeneity in those estimates (both observed and 
unobserved components). The models allow us to consider all crop traits simultaneously. 
Obviously, a high willingness to pay (WTP) for a certain trait should lead to increased demand 
for the new technology, while a low WTP for other traits may reduce demand for adopting the 
technology.  

The economic and econometric approach developed below provides a structure for examining 
the effect of traits, farm/farmer characteristics, and the interactions between traits, such as farm 
revenues and seed price, on the adoption decision of farmers. The methodology we demonstrate 
in this work is sufficiently flexible to allow recovery of estimates for the values of different 
combinations of traits and to incorporate regional dimensions of the demand for these traits. The 
empirical results, not surprisingly, confirm that individual traits, heterogeneity of tastes for traits, 
and farm/farmer characteristics shape adoption decisions. They do so in ways that both verify 
some well-known outcomes (such as education influences technology adoption) and offer some 
new insights (such as “family farms”, where labor is supplied almost entirely by the owner-
operators, are more likely to value GM crops because of their labor-saving traits). The 
econometric results also demonstrate the superior performance of the more general MMNL 
model over the CL model. 

The rest of this article is divided into six sections. Section 2 introduces key factors (both crop 
traits and farm/farmer characteristics) that are likely to shape adoption decisions of corn seeds. 
Section 3 develops the trait-based adoption model, while Section 4 explains the CL and MMNL 
econometric approaches. Section 5 presents the data and descriptive statistics. Section 6 specifies 
the econometric models and then explores the results. Section 7 concludes. 
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2. FACTORS LIKELY TO INFLUENCE ADOPTION DECISION OF GM CORN 
VARIETIES 
The now large literature on the adoption of GM crops has found a number of farm and farmer 
characteristics which influence adoption decisions. Dynamic diffusion models (Fernandez-
Cornejo, Alexander, and Goodhue 2002) and farmer adoption choice models (Qaim et al. 2006; 
Marra, Piggot, and Carlson 2004; Gouse, Pray and Schimmelpfennig 2004; Marra, Hubbel, and 
Carlson 2001) have identified farm size, education, age, available market information, as among 
the key explanatory factors. Ex ante descriptive studies and benefit-cost analyses of GM crops 
have examined several trait-based rationale for farmer adoption beyond yield and input-reduction 
reasons, such as ease of use (Benbrook 2001a, 2001b; Gianessi and Carpenter 2000), lower 
harvest costs (Duffy 2001), more convenience (Fernandez-Cornejo and McBride 2002), and 
compatibility with reduced and no-tillage systems (Fawcett and Towery 2002). While these latter 
studies investigate trait based differences they have done so without formally incorporating these 
traits into the adoption models. 

In estimating our model, we explore the role of key crop traits of the GM varieties and the 
characteristics of the farm and farmer in our adoption model. The key traits we investigate in this 
work are: price differential, yield advantage, and savings in herbicide, insecticide, and labor 
inputs. Based on standard microeconomic principles, we expect the demand for GM crops to be 
declining in the price of seeds. We further expect ceteris paribus that the demand for GM crops 
will be increasing as they increase yields as well as when they decrease herbicide, insecticide and 
labor use. Based on the literature cited above we expect the following farm and farmer 
characteristics to favor GM crop adoption. Larger farms will be more likely to adopt, as are 
better educated farmers and farms facing labor constraints (Fernandez-Cornejo and McBride 
2002). Because agricultural biotechnology has been politicized, and farmers have varied views 
on the environmental and social effects of the technology, we also expect farmers with 
environmental or safety concerns about the technology to be less likely to adopt it (Barham et al. 
2004).  

3. MODEL FORMULATION 
As in many adoption studies (Zepeda 1990; Barham 1996), our farmer choice model utilizes a 
random utility framework (Marschack 1960; McFadden and Train 2000). Farmers seek to 
maximize stable preferences for the traits of the crop varieties they plant. In the context of the 
farmer’s rational choice problem, they are assumed to collect information on alternative 
varieties, use the rules of probability to convert this information into perceived traits, and then go 
through a cognitive process that can be represented as aggregating the perceived trait levels into 
a stable one-dimensional utility index which is then maximized. Thus, in contrast to classical 
demand studies (in product space), the data from each farmer is not seen as one observation of 



 

 4

purchases when faced with a particular price, rather, as an observation on the likelihood of 
purchasing J different bundles of attributes.1  

In this work we assume that a farmer faces a choice set consisting of J alternative corn varieties 
(e.g. Herbicide tolerant (Ht), Bacillus Turigensis (Bt), etc).2 The utility that farmer i receives 
from alternative j is denoted by Uij, which is the sum of a linear-in-parameters component Vij and 
a stochastic component eij. The stochastic component is assumed to be known by the farmer, but 
to be unobserved by the analyst. Let the systematic component of the utility be a function of 
farmer’s marginal monetary gain/loss from the variety, denoted as income net of the cost of the 
variety, (πij - pj), and the levels of K observed attributes of the variety j, xij. The income term has 

two components: the budget that the farmer assigns for farm production (πi
* ) and an 

environmental-political benefit (γj ) if the variety that s/he grows is non-transgenic: πij= πi
* + γj. 

3
 

The observed attributes of the varieties are yield advantage, pesticide use, labor savings, and 
price. 

Assuming a linear shape to the utility function, the observed component of utility Vij can be 
written as:4 

Vij(αi , βi) = αi(πij – pj) + xij*βi   (1) 

Where (αi , βi) is a vector of parameters to be estimated that give the marginal effect of traits on 

farmers’ utility.5 Farmer heterogeneity implies that the vector of preference parameters, 
(αi , βi), will vary over individuals. In particular, we let  

         (2) 

vi be a component of characteristics of the farmer, which influence their preferences for specific 
traits, but are unobserved by the analyst. This component is assumed to be stochastic and have a 
distribution, Pv(v). Assuming Pv(v) to be a standard multivariate normal distribution, the vector 
(α , β) captures the mean value of the sensitivity of farmers’ utility to traits and Σ , a (K+1)*(K+1) 

                                                 
1 A variety is defined by a set of traits, which producers and consumers observe. However, the researcher observes 
only some of them. 
2 Here we deal with varieties of a single crop; however, the model can be generalized to different crops. The only 
difference would be that crop specific effects would have to be accounted for.  
3 In the following analysis, we implicitly assume a multi-stage budgeting process in which the farm production 
budget is separable from the other parts of the farm household budget. 
4 V is “observed” conditionally (on αi andβi). 
5 Notice that we refer to a marginal effect with respect to utility not with respect to choice probability. 

,i
i

i

v
α α
β β

⎛ ⎞ ⎛ ⎞
= + ∑  ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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matrix of variance parameters σk, allows each component of (αi , βi) to have a different 

variance.6  

The model represented by equations (1) and (2) is more flexible than traditional models in two 
primary aspects. First, it allows farmers’ tastes for a trait to deviate from average tastes.7 Farm 
and farmer characteristics, which are unobservable to the analyst, are allowed to influence a 
farmer’s valuation for a trait, such that two different farmers facing the same levels of attributes 
for all alternatives might choose differently.8 Second, it allows for correlation in the 
unobservable components of the utility for different alternatives, when the degree of correlation 
depends on how close the two alternatives are in terms of their attributes.9 We present the full 
derivation of the covariance between the unobservable components of the two varieties in 
Section 4.1. The key point is that two varieties with similar attribute levels are treated by a 
farmer as closer substitutes than two varieties with very different attribute levels.  

3.1 Modeling Farmer Characteristics 
The model in (1) and (2) explains farmers’ systematic utility from a crop variety in terms of 
preferences and traits, but it does not explicitly control for the observable characteristics of the 
farm or the farmer, which will also have effects on technology adoption. For example, previous 
studies have found that characteristics such as the size of the farm or the education of a farmer 
can influence adoption patterns (Feder, Just and Zilberman 1985; Feder and Umali 1993). 
Equations (3) and (4) below present an extension of the basic model that integrates these factors 
in the analysis. 

Vij(αi , βi) = αi(πij – pj) + xij*βi+ z1i*δj  (3) 

 

 

       + D z2i (4) 

where z1i and z2i are vectors of observable farm and farmer characteristics influencing farmer’s 
utility for a specific variety. In particular, z2i might have a direct influence on farmers’ preference 
parameters and capture some or all of the variation that was assumed unobserved in the basic 
model above. For example, a farmer (or group of farmers) with high farm revenues might not 
                                                 
6 Recall that a normally distributed variable alfa, with mean a and variance s can be parameterized as alfa=a+s*e , 
where e has a standard normal distribution. However, the model flexibility is not conditional on the normal 
representation. Many other distributions can be parameterized analogously. 
7 The average is the average over all alternatives and over all farmers. 
8 Without observations of farmers choices and varietal attributes over time we cannot identify the individual value of 
(α,i , βi) but we can estimate the mean and standard deviation of these parameters in the population. 
9 The measure of closeness used in this case is mathematically derived by Hausman and Wise (1978). 

i
i

i

v
α α
β β

⎛ ⎞ ⎛ ⎞
= + ∑  ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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care about high prices of seeds as much as a farmer who barely makes a living from her crops. 
An advantage of letting the taste parameters vary with the observed demographics is that it 
reduces the reliance on parametric assumptions and brings in additional information.  

In summary, we can express the farmer’s maximization problem as a choice of the variety that 
gives her the highest utility, given the preference parameters in her utility function (αi , βi) and 

own characteristics zi. This gives the following utility function for farmer i: 

Ui = Maxj Uij (xij|αi, βi,zi) i=1,…,I; j =1,...,J. 

Here the farmer seeks to choose the variety j that yields the highest utility taking into 
consideration her knowledge of the traits of each variety, her expected profitability of each 
variety, her tastes for the traits, and her own characteristics. The estimation procedure described 
below seeks to estimate the preference parameters (αi , βi) given information on the traits, xij, 

and farmer characteristics, zi. 

4. MODEL SPECIFICATION, ESTIMATION, AND PREDICTIONS 

Model Specification 
In order to analyze the relevance of different traits for the choice of corn variety and to 
investigate the importance of individual unobserved heterogeneity in adoption choices, we 
estimate two classes of choice-specific attribute models: a conditional logit (CL) and a mixed 
multinomial logit (MMNL). The conditional logit model (CL) is mathematically equivalent to 
the standard multinomial logit, which is typically used in the adoption literature; however, it is 
derived from a behavioral model in which unobserved components enter into the subject’s 
choices. Assuming the disturbances for the J separate alternatives are i.i.d. standard extreme 
value, the conditional logit choice probabilities are: 

J1,...,kj, 1,...I,ifor         
)exp(

)exp(
===

∑ k ik

ij
ij

V

V
P , 

from which a linear specification of the systematic component of utility implies:10 

J1,...,kj, 1,...I,ifor         
)'exp(

)'exp(
===

∑k ik

ij
ij x

x
P

β
β

.    (5) 

                                                 
10 For simplicity of the illustration we omit expectation operators in the previous section and generalize the notation 
of all covariates as xij. 
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Notice that the β coefficients are the same as in the underlying utility model. They are interpreted 
as measuring preferences for the traits xij.11 These traits vary across alternatives for a single 
individual (repeated choices). The necessary assumption is that the unobserved components are 
i.i.d. extreme value. Setting the variance of the disturbances at the standard value of π2/6 is 
enough to identify the coefficients, meaning that the scale of the effects differs from that of 
models of unit variance, such as probit. The logit effects are about 1.6 to 1.8 times as large.  

In addition, conditional on the traits of the alternative varieties, farmer choice probabilities can 
also depend on the characteristics of subjects (which are constant across alternative varieties, but 
vary across subjects). These characteristics can be interacted with the traits of the choices, 
making preferences for a trait different for each level of the subject-specific characteristic and/or 
by adding them to the set of covariates in a linear fashion. The latter case requires baseline 
constraints to identify the effect, such that: 

J1,...,kj, 1,...I,ifor         
)'exp(

)'exp(
==

+

+
=

∑k ijik

ijij
ij zx

zx
P

γβ
γβ

 

where setting γ1=0 identifies the other γi coefficients. 

Although the CL model presents several advantages for modeling adoption behavior, relative to 
standard binary and multinomial models, it shares with these models the restrictive 
“independence of irrelevant alternatives (IIA)” property. This property is better understood as an 
“independence among alternatives” assumption, which is directly linked to the assumption of 
independent and identically distributed error terms in the models, a point that is explored next. 

The MMNL model relaxes the independence of irrelevant alternatives assumption by allowing 
for a random deviation of an individual’s tastes from the average taste,12 such that correlation 
across alternatives is estimated simultaneously. In particular, the MMNL choice probabilities 
are:  

J1,...,kj, 1,...I,ifor          )(
)'exp(

)'exp(
=== ∫ ∑

ββ
β

β
df

x
x

P
k ik

ij
ij    (6) 

where the β coefficients are distributed across individuals, according to the density f (β).13 The 
CL model in Equation (5) is a particular case of Equation (6); one where f (β) is degenerate and 
the coefficients β = b, are fixed across individuals.  

                                                 
11 In contrast for a standard multinomial logit, the characteristics of the agent making the choices generally replace 
the traits of alternatives, and the coefficient estimates are not the same as in the underlying utility model.  
12 This is commonly called unobserved heterogeneity in the literature. 
13 For estimation purposes, this density is parameterized as f (β | b,Σ), where b,Σ are the parameters that describe the 
density. The latter parameters are estimated, and the random components are integrated out. 
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In order to illustrate the link between the IIA assumption and the unobserved heterogeneity in 
terms of our model in Section 3, we should recall that the total utility of an alternative Uij, is the 
sum of a systematic component with average coefficients (Ūij) and stochastic components (εij = 
ηij + eij). The stochastic components in the model are eij, the unobserved white noise, and xij 'Σ vi 

= ηij, the unobserved component determined by the deviation from the average taste parameters 
that are associated with each specific trait x.14 If two alternatives j and k are very similar in terms 
of their attributes, then an individual who places greater value than the sample average on one of 
them (εij is positive) should also place greater value on the other. Thus, for this non-average 
individual, εij and εik should be correlated. And this is exactly what the model achieves through 
the particular specification of εij : Cov (εij εik) = xij xik * σ2

β  = Cov (Uij,, Uik,).  

In particular, the degree of correlation depends on the attributes of both alternatives. At the same 
time, this specification of εij is what allows for non-average, heterogeneous agents, through the 
term ηij . 

The i.i.d. characteristic of the CL error terms results in coefficient estimates which might be 
better understood as an approximation of average preferences when the unobservable portion of 
utility is thought to be correlated across alternatives (Train 2003, p. 40). This feature of the CL 
model also means that it cannot account for differences in tastes that are linked to unobserved 
individual traits or characteristics (taste variation in the CL is related only to observed traits or 
characteristics). Likewise, the IIA property also restricts the substitution among alternatives, or 
relative probability of choosing a crop variety, to be independent of other available varieties (and 
their attributes). Thus, the expression in equation 7 shows the relative probability of choosing 
alternative j over k in the CL model:  

( )[ ]ikij
ik

ij xx
P
P

−= 'exp β , (7) 

which depends only on the characteristics of the two alternatives (j and k). 

Unlike the CL, the ratio of MMNL probabilities, Pij /Pik, depends on all the data, including 
attributes of alternatives other than j or k (the denominators of the logit formula are inside the 
integrals and therefore do not cancel). Another way of explaining this issue is to observe that a 
change in an attribute of alternative j changes the probabilities for all other alternatives by the 
same percent in the CL, while not in the MMNL.15 Thus, the MMNL model does not exhibit the 
restrictive substitution patterns of the CL, and different substitution patterns are attained by 

                                                 
14 In order to simplify the notation, we refer here to all traits jointly as x. 
15 This can be seen by calculating the derivative of Equations 5 and 6 with respect to xik and multiplying by xik/Pij. 

This cross elasticity is the same for all alternatives in the CL model, while in the MMNL it differs across alternatives 
and depends on the correlation of the likelihood function of j and k.  
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appropriate specification of the density or mixing distribution f. In summary, the MMNL model 
allows more realistic inferences about substitution patterns among the traits such as the effects of 
the introduction of new varieties with attribute levels that resemble those of already existing 
varieties, or the effects of policies that regulate levels of commercialization of traits on the 
adoption of unchanged crop varieties.  

4.2 Model Estimation 
In order to estimate the coefficients in equation (6) we specify a normal distribution of 
β~N(b, Σ), with Σ diagonal and individual elements equal to σh (h denoting the specific trait). 
Notice that if σh = 0 for all h, the distribution collapses to its average level and the choice 
probability is the same as in equation (5), the CL one. Therefore, the CL, when compared to the 
MMNL, provides an appropriate baseline for testing the significance of unobserved 
heterogeneity in GM adoption.  

While both the CL and the standard multinomial logit models can be estimated through 
maximum likelihood, the MMNL choice probabilities cannot be calculated exactly because the 
integral does not have a general closed form. Therefore, we need to approximate the integral 
through simulation techniques. For a given value of the parameters Ө = (b, Σ), we draw a value 
of β from the distribution f(β | Ө). Using this draw (r), we can then calculate the conditional logit 
formula  

∑
=

= J

k
iki

iji
ij

x

x
L

1

)'exp(

)'exp(
)(

β

β
β  . Repeating this process for many draws, one can use the  

average of the resulting )(βijL ’s as the approximate choice probability: 

∑
=

=

R

1r
ij )(L1 r

ij R
P β .        (8) 

One then inserts the simulated probabilities into the log-likelihood function to give a simulated 
log-likelihood (SLL) that is maximized. The value of the parameters Ө that maximizes SLL is 
the maximum simulated likelihood estimator of β and σ , which collectively determine the 
distribution of preferences for the different traits in the model, across farmers. Estimates of β 
provide mean values of the sensitivity of the probability of choosing a crop-variety to each 
specific attribute. Estimates of the standard deviation of β (denoted as σ) measure the degree of 
heterogeneity of this sensitivity among farmers that is due to individual characteristics, which are 
unobservable to the researcher.  
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4.3. Willingness To Pay for Traits 
Although the direct effect of a trait on utility cannot be identified separately from the variance 
parameter of the i.i.d. error component in these models, the normalized coefficients can be 
conveniently interpreted as the average amount that a respondent with median income would be 
willing to pay for an additional unit of a particular attribute.  

We can then calculate willingness-to-pay (WTP) for each trait in the model by the ratio of the 
coefficient of the trait of interest, with respect to the cost coefficient. To see this more clearly, 
recall that the general form of utility in matrix notation (the equations of the utilities of all 
alternatives stacked) is:  

U = α p + β x+ e , where α =α∗/σ ,  β =β∗/σ  and e= e*/ σ,  

where α∗ stands for the cost coefficient and β∗ for the trait coefficient. Taking the total 
differential of this equation gives, dU = α dp + β dx, which at a constant utility, dU = 0, allows 
us to write the expression for the WTP as: dp/dx =-(β∗/σ)/(α∗/σ)  =  -β /α . This expression 
captures the agent’s willingness-to-pay for a one-unit change in the level of the trait that leaves 
utility unchanged. 

The utility may also depend upon farm and farmer socioeconomic characteristics, which were 
suppressed in the above WTP expression. Including these characteristics in our model allows us 
to also estimate group specific values of the relevant parameters that determine the distribution 
of tastes for traits in the population. Therefore, we are also able to derive corresponding group 
specific estimates of willingness-to-pay for traits. Such group specific WTP for traits can help 
extension agents identify where to focus their outreach efforts and companies to identify 
potential adopters of new traits. 

5. DATA 

5.1 Data Sources and Data Construction 
The empirical analysis uses survey data gathered from 1257 randomly selected corn growers in 
Minnesota and Wisconsin. The data include information on farmers’ choices of corn varieties, 
demographic and farm characteristics, and experiences with the traits of corn varieties used in 
2003 and their planting choices in 2004. The questionnaire was implemented in the winter of 
2004 at a time when most farmers would have already ordered their seeds for the 2004 growing 
season. This analysis uses the data on the farmers experience with corn seed traits from 2003, 
while the adoption choice is measured using the 2004 data. In addition we combine the survey 
data with information from the US Agricultural Census on observed county levels of crop traits 
and from seed dealers on seed prices to construct the dataset used below.  
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On the basis of the most widely commercialized corn types, we classify farmers’ corn choices for 
2004 into four categories: (1) herbicide tolerant (Ht), if the farmer decided to purchase some Ht 
but no Bt-corn seeds in 2004; (2) insect resistant (Bt), if the farmer decided to purchase some Bt- 
but no Ht-corn seeds in this year; (3) Ht-Bt, if the farmer decided to purchase both Ht and Bt-
corn seeds;16 and (4) Non-GM, if the farmer decided to grow only non genetically modified, 
conventional varieties. Farm and farmer characteristic data come entirely from the survey 
instrument and include information on total farm receipts, total acres of operated cropland, share 
of labor performed by immediate family members (categorized as: all, more than 50%, or less 
than 50%), highest education level of the principal operator, and an indicator variable related to 
farmer concerns with environmental or safety issues associated with GM varieties.  

We consider five corn seed traits in the model of adoption: yields, seed costs, and savings in 
insecticide, herbicide, and labor. In order to implement a trait based approach to estimating 
farmer adoption, we need information on the relative levels for each of the five traits and ideally 
how they would vary across farmers. Seed costs (conventional, Bt, Ht, Ht/Bt) including the 
technology fee, because their relative values will not vary across farmers, are most easily 
calculated. The data we use are averages across corn varieties based on prices reported by Renk 
seed dealers.17  

Values of the remaining four traits, yields, and insecticide, herbicide, and labor savings, required 
more individualized estimates based on both farmer experiences and the information sets 
available to farmers. For these we combine information contained in the survey with 1997 
Agricultural Census data (USDA-NASS, 2004).18 The survey asked farmers who used GM corn 
(Bt, Ht, or both) how it performed relative to conventional varieties in terms of these traits on a 5 
point scale from “much lower” through “the same” to “much higher.” We then calibrated this 
data using the mean and distribution from agricultural census data for the farmer’s county and 
region for corn yields, dollars of insecticide costs, dollars of herbicide costs, and labor use 
converted into dollars. For example, a yield trait would get the regional (agricultural district) 
minimum if it were “much lower”, the county average if “the same”, and the regional maximum 
if it were “much higher”. Thus for each trait we were able to construct a measure of the relative 
value of the trait for farmers who had experience with the trait. 

 For farmers with no recent experience with a GM variety, we needed to make some assumptions 
about their available information sets. We assume that those farmers observe no trait 
                                                 
16 Because the survey questions did not differentiate them, this category also includes any farms that planted stacked 
Ht/Bt corn. Although stacked Ht/Bt corn was available on the market for the 2004 growing season, both the 
distribution and adoption of the stacked variety were quite low that year. 
17 We took the average sales price of Renk corn seeds with each of the traits in it, since they sell a number of 
different corn varieties with those traits. Renk sells primarily in Wisconsin, but its average prices were found to be 
close to those of other sellers in Wisconsin and Minnesota.  
18 We used the 1997 data, because the use of GMO varieties was minimal in that year, and thus 1997 data provide a 
cleaner baseline of the traits associated with conventional varieties. 
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advantages/savings or disadvantages/dissavings relative to GM varieties. Specifically, we 
assume that they observe those traits to be identical to the traits of conventional varieties.19 This 
assumption can be justified on the grounds that Ht and Bt corn varieties were by 2004 relatively 
mature technologies that Minnesota and Wisconsin farmers have had repeated opportunities to 
evaluate. Their revealed preference of choosing not to adopt them means that they may be just as 
likely to perceive the traits of the technology as being worse as better from those of conventional 
varieties for their particular farm operation. In that sense, our assumption is consistent with the 
revealed preferences shown by farmers and does not create additional contamination through 
imputation problem as described by Manski (2003). 

5.2 Descriptive Statistics on Corn Variety Adoption and Explanatory 
Variables 
Corn variety adoption data for 2003 and 2004 are presented in Table 1 in a transition matrix for 
survey respondents for whom we had data on both years. The table shows both the overall 
adoption rates in the total rows and columns as well as how farmers move between adoption 
choices across the years. Note from the 2004 total row that among these farmers, conventional 
corn was the most common choice for 2004 (39%). Next most common was the combination of 
Ht and Bt corn (28%). Then came adoption of Bt corn (19%) and finally Ht corn (14%). The 
biggest change across the 2003 to 2004 year was the increase in adoption of both Ht and Bt 
which went from 24% in 2003 to 28% in 2004, and mostly added previous Bt or Ht adopters. 
Quite noteworthy is that slightly more than three-quarters of the observations are on the diagonal 
shaded boxes which depict no change in adoption outcome across the two years. This persistence 
in adoption, along with the movement from single GM varieties into Bt-Ht combinations, implies 
that most of our sample has information sets that closely match the assumptions we made 
constructing the data.20  

Descriptive statistics on the five traits and the farm and farmer characteristics are reported in 
table 2 below. In summary, the per acre seed cost was $39,with conventional corn the lowest at 
$25 and Bt the highest at $55, per acre average yield level across all varieties was 125 bushels, 
average cost of treating one acre with insecticide is $5 and with herbicide is $22. Average per 
acre labor cost is $43. Yield differences across the varieties, on average, were small, but the GM 
crops, especially Bt, did have a slightly higher average yield than the others. While the lowest 
herbicide use, on average, is for Ht corn varieties, the conventional varieties have the lowest seed 
price. Labor cost, on average, was not very different across varieties, but conventional varieties 

                                                 
19 The regression results reported below are stable to changes in the broad neighborhood of changes in this 
informational assumption, including using information on county averages and years of previous experience with 
GM crops. 
20 If we drop from the subsequent regression analysis the 14% of respondents for whom we are making larger 
information assumptions, i.e., those who switched to a new GM variety in 2004, the results do not change 
significantly.  
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had higher averages, suggesting some labor savings potential in the GM varieties. In terms of the 
farm and farmer characteristic data, it is perhaps worth noting that more than half of the corn 
farms have total revenues that are less than $100,000, more than three-quarters of them have all 
of the farm labor performed by immediate family members, and that 14% reported serious 
concerns with possible environmental or safety issues associated with GM varieties.  

6. RESULTS 

6.1. Estimated Model  
The empirical model estimates expected utility from the expected traits as follows: 

EUi(Ht-corn)=αi1πi,ht - αi2 pht+βi1ΕYht+ βi2Ε Iht+βi3Ε Hht+βi4Ε Labht 

EUi(Bt-corn) = αi1 πi,bt - αi2 pbt +βi1ΕYbt+βi3Ε Hbt+βi4Ε Labbt 

EUi(Ht&Bt) = γhb +αi1 πi,bh - αi2 pbh+βi1ΕYbh+ βi2Ε Ibh+βi3Ε Hbh+βi4Ε Labbh 

EUi(conventional)=γng+αi1 πi,ng -αi2 png + βi1EYng+ βi2E Ing+βi3E Hng+βi4E Labng 

where π is the individual’s variety revenue per acre outcomes including a variety specific 
preference for non-GM, p is the cost of seed per acre, Y is yield in bushels per acre, I is per acre 
cost of insecticide treatment, H is per acre cost of herbicide treatment, Lab is per acre cost of on-
farm labor, and γhb and γng are variety specific constants. The variety specific constants capture 
the average effect of unincluded factors for this alternative with respect to all others. We include 
a variety specific constant for the Ht&Bt equation to capture potential synergies (or tradeoffs) 
between growing Ht and Bt on a farm, which might not be captured by our other measures. With 
the variety specific constant in the conventional equation, we intend to capture unincluded 
benefits a farmer receives from growing conventional rather than GM varieties as would be the 
case if the farmer had ideological reasons for not planting GM varieties. The variety specific 
constant in the conventional equation might also capture any premium accruing to a farmer if 
there were added value in selling non-GM corn. 

6.2. Model Specifications 
In order to illustrate more clearly the trait-aspect of the adoption decision, the first specification 
of the model will consist of a set of baseline conditional logit (CL) estimations, models I and II. 
We then estimate a mixed multinomial logit (MMNL), model III, and that we use to test the 
restrictions of the CL model. These three models include only the traits of the crops as 
explanatory variables. We then expand the specification to be more encompassing by including 
farm and farmer characteristics in addition to the crop traits.  
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6.2.1 Baseline CL Model. 
Estimates for two basic conditional logit (fixed-effects) models are reported in table 3. The first 
model (I) only includes the traits of the crop varieties. The second model (II) includes the variety 
specific constants γhb and γng, which capture average effects of the non-included factors in the 
Ht&Bt and conventional equations. The coefficient estimates reveal the effect of each observed 
factor relative to the variance of the i.i.d. extreme value error term eij. This parameter is used to 
normalize the scale of utility and is not separately identified from the effect of the corresponding 
observed factor. Thus, even though the signs of the coefficients are meaningful, their absolute 
value cannot be interpreted in the usual way. The ratio of coefficients, however, is not affected 
by the scale parameter, and it provides an economically meaningful estimate of willingness-to-
pay. 

A perusal of table 3 reveals that the signs of almost all of the coefficient estimates are significant 
and consistent with a priori expectations in all three models. As the cost of a variety of corn 
increases in dollars per acre, ceteris paribus, the probability of that corn type being chosen 
decreases. The same holds for increases in the amount of pesticide and labor use. The lower the 
pesticide- and labor-saving levels that a variety induces, the lower is the probability of choosing 
it. In addition, yield has a significant effect; varieties that produce more corn bushels per acre are 
more likely to be adopted.  

Specification II, which includes the two variety specific constants, indicates that growing Ht&Bt 
combined has positive unmeasured complementarities, with respect to growing any variety 
alone. In contrast, the constant component capturing average unobserved effects on the 
probability of adoption of non-genetically modified varieties is not significant. This suggests that 
there would be no significant effect of a potential risk and marketability premium received by 
farmers for not growing GM varieties.  

6.2.2 Baseline MMNL Model 
In table 4, we show the mean and standard deviation for each coefficient from estimating a 
Multinomial Mixed Logit (MMNL), which allows each coefficient to take different values for 
each individual. Given the significance of the variety specific constants we show only those 
results in the table. In contrast to the CL, this MMNL allows for unobserved heterogeneity in 
preferences for the traits in the crop varieties. Notice that in table 4 we have two different types 
of standard deviations. One corresponds to the typical standard error calculated for all 
coefficients (in parentheses below the estimate of β), and the other is the deviation parameter 
indicating heterogeneity of preferences for each attribute (a diagonal term of the matrix Σ in 
equation (2) above). The latter is estimated through simulation. 

Similar to Bhat (1998) and Revelt and Train (1998), we find that the magnitudes of most 
parameters increase from the CL to the MMNL. This is an expected result, because the variance 
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before scaling is larger in the CL model compared to the mixture model. In other words, the 
variance of the stochastic portion of utility is lower for the MMNL model because some of the 
error has been explained by the other stochastic components. The signs of all coefficients are the 
same as in the CL and are expected.  

Of particular interest is the significance of the standard deviation of the coefficients for some of 
the traits, indicating that individuals’ tastes significantly differ from the average taste and vary 
across the population. For example, the preference for herbicide savings, while positive for 89% 
of the farmers, is negative for about 11% of the sample.21 That is, some individuals do not care 
about choosing a variety that requires them to use more herbicide, as long as there are other 
positive traits to the technology such as the seed cost and the labor use being lower. The share 
with positive willingness to pay is higher for the insecticide-using trait: 94%. The preferences for 
yield advantage also vary significantly across the population, with 93% of individuals 
significantly caring about having better yields and reflecting this in their choice of corn variety. 
The interpretation of the other parameters is the same as in Table 3 above. 

Using the MMNL results we can now test the validity of the restricted substitution patterns, 
restricted preference heterogeneity, and the independence of irrelevant alternatives (IIA) 
assumptions of the conditional logit. We can use a conventional likelihood ratio test to test the 
CL versus the MMNL, which amounts to testing the restrictions on the substitution patterns and 
the heterogeneity of the coefficients. The results of those tests, shown in table 5, soundly reject 
the CL models in favor of the MMNL. We then test the IIA assumption using the Hausman test 
which excludes one or more categories from the dependent variable. Because the coefficient 
estimates change significantly with exclusion of one or more alternatives, the test support 
rejection of the IIA assumption of the CL model. Thus we can reject the restricted CL model in 
favor of the MMNL. 

6.2.3 Farm and Farmer Characteristics  
The MMNL in model III identifies significant heterogeneity across farmers in their preferences 
among crop traits, but does not help us identify the causes of this heterogeneity. Including 
demographic variables (farm and farmer characteristics) in the model may help explain this 
heterogeneity across agents. From previous adoption studies and basic economic theory we 
expect the following effects in testing how preferences vary with farm and farmer characteristics: 
1) that the variation in farmer preferences with respect to the seed price will be a function of 
farm revenue categories; 2) that preferences toward labor savings will vary with the availability 

                                                 
21 We calculate this based on the coefficient of herbicide use being normally distributed with mean -0.118 and 
standard deviation 0.097. The share of people with coefficients below zero can be easily computed by calculating 
the value of the cumulative probability of a standardized normal deviate evaluated at 0.118/0.097. Thus, we find that 
the share is 0.89; meaning that 89% of the population is estimated to dislike varieties which are more herbicide 
using. 
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of family labor on the farm; 3) that, as suggested in the literature, farm size explains a significant 
variation in the preferences for different corn varieties; 4) that the level of farmer education also 
explains a significant variation in the preferences for different corn varieties; and 5) that 
differences in farmer environmental concerns account significantly for variations in farmer 
preferences for corn varieties.  

In order to evaluate the first two hypotheses, we interact the price variable with dummies 
reflecting three different total farm revenue categories for the year 2003: lower than $50,000 
(41% of farms), between $50,000 and $100,000 (16% of farms), higher than $100,000 (43% of 
farms).22 We further interact the labor variable with three different categories of the percentage 
of total amount of farm labor performed by family labor: all family labor (77% of farms), more 
than 50% (19% of farms), less than 50% (4% of farms). For the third and fourth hypotheses, we 
include both the acres operated by the farm and the highest educational level achieved by the 
person making decisions on the farm. Since the latter variables do not change across alternatives, 
i.e. they are individual specific, it is required for identification purposes that they be interacted 
with alternative specific constants. Thus, their effect on one variety is interpreted with respect to 
their effect on another (base) variety. This is also the case for the fifth hypothesis: Farmers’ 
environmental concerns --a dummy variable equal to 1 if the farmer has concerns about the 
effect on the environment of any variety-- are included as an individual specific characteristic, 
whose coefficient indicates the contribution of this farmer characteristic to the utility of adopting 
one specific variety, relative to adopting the base category (in this case regular non GM corn).23  

Since the list of explanatory variables is long, we arrange the results in separate tables. Tables 6a 
and 6b show the results of estimations including farm and farmer characteristics using the 
MMNL which allows for unobserved heterogeneity of tastes.24 Coefficient estimates of traits and 
trait interactions are presented in table 6a, displaying the effects of the different traits on the 
probability of growing any given corn variety. Part b continues with the effect of farm and 
farmer characteristics on this probability. However, the latter have to be interpreted in relative 
terms for identification purposes as noted earlier. Here we specify the effect of each farmer 
characteristic on the probability of growing a variety “j’ (where j is genetically modified) relative 
to non GM varieties.25  

The first part of table 6a shows that the price sensitivity decreases with increases in farm 
revenue. Thus, the likelihood that a farm purchases a corn variety whose price increased one 
                                                 
22 Results do not change when using different ordered categories of farm revenues.  
23 Notice the difference between controlling for the fact that many farmers care for the environment, which in turn 
affects their adoption behavior, versus including an objective trait-measure of environmental damage for each 
alternative. Because we do not observe the specific level of environmental benefit or damage associated with each 
specific variety, we cannot explicitly estimate the willingness to pay or the taste for this trait. 
24 As with the previous models a conventional likelihood ratio test shows that the CL model is too restrictive and 
implies that the MMNL model performs better. 
25 Which category is chosen as the base category is not relevant for the estimation. This is explained below.  
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unit, when the price of other varieties remained constant, will be higher if it had high rather than 
low total revenues. A second important result is that the labor savings sensitivity is only 
significant for farms whose labor force is mostly family labor. In contrast farms that use mostly 
hired labor are not sensitive to the labor saving trait. This suggests that the value of labor savings 
technologies accrue primarily to family farms where labor constraints may be more likely to 
bind.  

The second part of table 6a shows that controlling for farm and farmer characteristics helps 
explain some of the unobserved heterogeneity in yield and insecticide use. Yield and pesticide 
savings traits continue being highly significant. For the yield trait coefficient, the magnitude of 
both the mean and standard deviation of the distribution decreases as compared to the 
coefficients in table 4 without inclusion of individual characteristics. At the same time that the 
share of the population for whom the yield coefficient is negative is lower than in model III. An 
analogous change occurs for preferences for the insecticide-use trait. This is not the case for the 
herbicide-use trait coefficients which increase in magnitudes. Finally, the alternative specific 
constants have no effect in this model, which suggests that the previously unobserved 
characteristics are well explained by demographic factors.  

Table 6b presents results associated with our third, fourth and fifth hypotheses. The third one, 
that the size of the farm influences the demand for corn varieties, is confirmed only for varieties 
that include Bt-corn, relative to conventional varieties. The larger the size of the farm, the higher 
the probability that a farmer grows Bt-corn or Bt combined with Ht-corn, relative to 
conventional non-gm varieties. The likelihood of growing Ht alone relative to growing 
conventional varieties, however, is not influenced by farm size. This provides us with a more 
nuanced understanding of the commonly found link between farm size and GM crops. Farm size 
matters to certain but not all technologies and technology traits. 

Regarding the fourth hypothesis, the education of the person making decisions on the farm 
positively influences the likelihood of growing Ht&Bt together only, but is insignificant for the 
other varieties. In contrast, being concerned about environmental or safety issues of the varieties, 
hypothesis five, is a determinant negative factor affecting the probability of growing any GM 
variety, relative to non-GM ones. Most interestingly, the results produce a relative ranking of 
preferences such that a farmer who is concerned about environmental issues would rather grow 
Ht corn than Bt corn and Bt more than a combination of Bt and Ht corn on her farm. 

6.3. Willingness-to-Pay for Traits 
As delineated in section 3, the estimated coefficients of cost and of the various traits provide 
information on the value of the traits. Since we have rejected the restrictions on the CL model, 
table 7 presents estimates of the mean willingness to pay for traits derived from the MMNL 
model. In order to better understand this table, it is important to remember that, in the model in 
table 6, we interacted the seed price with three different farm revenue categories. Therefore, we 
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have three different, farm-revenue specific, seed price coefficients. Since the WTP for a trait is 
the ratio of the trait coefficient with respect to the price coefficient, we are able to calculate three 
different, group-specific, WTP measures for each trait (according to the farm-revenue group).  

Let us first analyze the low farm revenue category, which contains about 40% of the households 
in the sample. These households, on average, are willing to pay the highest amount for seeds of 
varieties that save them herbicide. For one dollar of herbicide savings related to a specific 
variety, they would be willing to pay 1.59 more dollars for the seed. For the same amount of 
savings in terms of insecticide, they are willing to pay 78 cents, and for one dollar of labor 
savings, they are willing to pay only 40 cents if they use only family labor in their production, 
and 59 cents if they use both family and hired labor (this, for households whose labor in the farm 
consists mostly of family labor).  

The lower willingness to pay for insecticide savings may be because, even for conventional 
varieties, small farmers in Minnesota and Wisconsin may prefer to use other management 
practices or suffer some level of lodging or breakage than use insecticides. Thus, it is more likely 
that the value placed on insect resistant varieties by this type of farmers accrues to the higher 
potential yield from lower pest damage, rather than to generated insecticide savings. Similarly 
for the labor savings trait, small farms using mostly family labor often do not pay the market 
value for this factor, and thus will likely not want to pay the market value price for a one unit 
reduction of it. Average willingness to pay related to yield increases for farms with low revenues 
is 2.44 per extra bushel. This is the amount of dollars that would be paid for a variety which 
would provide one extra bushel of corn. (since the average price of corn in 2003/04 was 2.40 
dollars per bushel (USDA 2004), this reflects a MWTP for the seed that is almost exactly one 
dollar for an extra dollar in yield).  

Farmers in higher farm-revenue groups are willing to pay more for the mentioned traits than their 
low revenue counterparts. The relative magnitudes of the MWTP for traits in other farm-revenue 
groups reflect the same ordering as in the low-revenue group, however, willingness to pay for all 
traits increases monotonically with increases in the farm-revenue category.26 The same is true for 
the standard deviation of the MWTP.  

In addition, the significant standard deviation of the WTP for the yield, insecticide and herbicide 
saving traits tells us that, although these are valued traits among most farmers, a minority of 
them is willing to pay nothing for the traits. For the low revenue farms, these farmers represent 
about 6% for insecticide, 7% for yield and 11% for herbicide. Low or negative willingness to pay 
for these traits might be related to the high uncertainty associated with the levels of the traits due 
to weather variation and difficulty predicting pest infestations. Contradictory information about 
trait advantages might also be associated with the high heterogeneity in WTP for trait values. 
                                                 
26 Several thresholds of farm-revenue categories were calculated and the results regarding monotonicity were not 
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Also, potential yield effects of GM crops might not have an influence on adoption choices of 
farmers who already used advanced weed and pest management techniques, such as might be the 
case for some of the high revenue farms. 

From an opposite point of view, a minority of farmers are willing to pay much more than the 
average farmer for a dollar of savings in chemical inputs or for a dollar of extra-yield. 
Unobserved factors that could give rise to a high WTP for input savings include equipment cost 
savings, human safety, environmental safety and savings in management time (See Alston et. al. 
(2002) for a study about the WTP for these specific factors). These high WTP estimates also 
suggest that there might be some correlation among preferences for different factors. For 
example, savings in herbicide use might be associated with labor force savings. Overall, our 
results suggest that herbicide saving technologies have a much wider potential to be adopted. 

7. CONCLUSION  
This work offers a new approach to the adoption of GM crop varieties by adapting the 
econometric methodology of the characteristics-based demand literature, the mixed multinomial 
logit. The coefficient estimates of the MMNL model allow us to measure preferences of U.S. 
farmers, in the Upper Midwest, for the traits of Bt-, herbicide tolerant, and conventional, non-
transgenic, corn varieties. Comparing the results from our MMNL model with results from 
standard adoption models demonstrates the importance of taking farm and farmer heterogeneity 
into account when estimating the demand for new technologies.  

We show that farmers faced with the decision to adopt genetically modified corn seeds display 
heterogeneous preferences across different seed traits. Although they value herbicide and labor 
savings the most, the valuation of herbicide savings varies markedly across individuals. The 
value of the labor-saving trait is also significantly heterogeneous among the population; 
however, controlling for farm and farmer characteristics this heterogeneity disappears, and is 
reflected in a higher willingness to pay for this trait among “family farms”. The common result 
that farm size affects technology adoption holds for Bt varieties but not for Ht ones. We further 
find that the willingness-to-pay for any given seed trait increases monotonically with farm size. 
The results also show that farmers who chose to grow conventional corn varieties have motives 
to grow non-transgenic, crop varieties, which are different from the typical economic factors 
included in standard adoption regressions. Traits related to environmental and marketability 
concerns are thus also helpful in explaining the choice of non-GM varieties.  

Our use of a trait-based model to examine the adoption patterns of GM crop varieties among 
corn farmers in Minnesota and Wisconsin reveals results and lessons that classic adoption 
models cannot provide. This method holds considerable promise for deepening our 

                                                                                                                                                             

sensitive to these changes. 



 

 20

understanding of agricultural biotechnology, or other types of innovations where traits are added 
to existing technologies. A trait based approach can also be used to identify sub-populations of 
potential adopters for extension services, to develop predictions of market shares for bundles of 
traits in a variety not yet on the market, and, because of its capacity to capture flexible 
substitution patterns among traits, to evaluate potential market power concerns associated with 
vertical or horizontal mergers of seed and chemical companies.  

The traits-based approach needs further research innovation and refinement. For example, the 
methodology suggests the need for different types of survey questions than those that are 
commonly used in adoption studies, ones that help to identify more carefully farmer information 
sets with respect to traits and bundled varieties. In addition, attention to the effects of interactions 
across traits (e.g., input and labor saving in the case of corn) will be needed both in the modeling 
design and in the questionnaires. With those and other refinements, the trait-based approach 
developed in this paper can be a foundation for technology adoption studies that provide a more 
appropriate and meaningful specification of the many factors influencing adoption outcomes. 
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Table 1. Transition Matrix of Corn Variety Adoption – 2003, 2004 Among 
Minnesota and Wisconsin Grain Producers 

    2004 

   
HT-
Corn Bt-Corn 

Both 
Ht+Bt No GMO Total 

HT-Corn 8.9 0.2 2.6 3.0 14.8 

Bt-Corn 0.2 14.3 5.1 1.6 21.2 

Both Ht+Bt 1.6 2.5 19.4 0.7 24.1 

No GMO 2.9 2.2 1 33.7 39.9 

2003 

Total 13.7 19.3 28.1 39.0 100 
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Table 2. Descriptive statistics for all varieties, farm and farmer characteristics 

VARIABLE MEAN STD. 
D
E
V
. 

MIN MAX 

TRAITS     
SEED PRICE ($/A) 38.8 8.5 25.0 55.0 
YIELD (BU/A) 125.0 11.6 72.9 145.9 
INSECTICIDE USE ($/A ) 5.3 4.0 0.0 80.9 
HERBICIDE USE ($/A) 21.5 8.0 0.0 75.0 
LABOR USE ($/A) 43.0 30.9 16.2 482.3 

      
TOTAL OPERATED ACRES 363.1 487.7 2.0 6500 
SHARE OF TOTAL FARM LABOR BY 

IMMEDIATE FAMILY 
     

 ALL 0.76 0.43 0.0 1.0 
 >= 50 % 0.20 0.40 0.0 1.0 
 < 50 % 0.03 0.18 0.0 1.0 
TOTAL FARM RECEIPTS       
 < $50,000 0.35 0.48 0.0 1.0 
 >= $50,000 AND < $100,000 0.16 0.37 0.0 1.0 
 >= $100,000 0.49 0.50 0.0 1.0 
HIGHEST EDUCATIONAL LEVEL 

ACHIEVED BY PERSON TAKING 
DECISIONS – SHARE BY LEVEL 

     

 ATTENDED GRADE SCHOOL OR SOME 
HIGH SCHOOL 

0.08 0.27 0.0 1.0 

 HAS A HIGH SCHOOL DIPLOMA OR 
EQUIVALENT 

0.38 0.49 0.0 1.0 

 WENT TO A TWO YEAR COLLEGE, TO 
TRADE SCHOOL  

 OR A FORMAL APPRENTICESHIP 
PROGRAM 

0.39 0.49 0.0 1.0 

 COMPLETED A 4-YEAR COLLEGE DEGREE 0.11 0.32 0.0 1.0 
 HAS SOME GRADUATE STUDIES OR 

GRADUATE  
 DEGREE 

0.04 0.18 0.0 1.0 

SHARE OF FARMERS HIGHLY 
CONCERNED ABOUT 
ENVIRONMENTAL OR SAFETY 

0.14 0.34 0.0 1.0 



 

 27

ISSUES OF GM VARIETIES 

• N=1189 Sources: PATS Survey, 2004 and US Agricultural Census, 1997. 
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Table 3. Conditional (Fixed Effects) Logit 

EXPLANATORY VARIABLE A COEFFICIENT COEFFICIENT 
   I II 

SEED PRICE -0.055** -0.067** 
 (0.003) (0.014) 
LABOR USE -0.04** -0.039** 
 (0.008) (0.008) 
INSECTICIDE USE  -0.069* -0.066* 
 (0.037) (0.035) 
HERBICIDE USE -0.045** -0.043** 
 (0.016) (0.016) 
YIELD ADVANTAGE 0.188** 0.189** 
 (0.019) (0.019) 
AVERAGE EFFECT OF 

UNINCLUDED FACTORS 
ON PROB OF GROWING 
NON-GM (γNG) 

 
-- 

-0.034 
(0.269) 

COMBINED HT&BT 
AVERAGE 

UNOBSERVED EFFECTS (γHB) 

-- 0.485** 
(0.074) 

 
LOG LIKELIHOOD B 

 
-1517.67  

 
-1496.76 

PROB> CHI2 0.000 0.000 
OBSERVATIONS 1181 1181 

 a Standard errors are in parenthesis underneath each coefficient. 
 b The log-likelihood with only alternative specific constants  

and an iid error term is –1615. 
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Table 4. Mixed Multinomial Logit 

EXPLANATORY VARIABLE A AVERAGE 
Β 

STDDEV 
Β 

  III III 
SEED PRICE -0.075** -0.001 
 (0.017) (0.011) 
LABOR USE -0.044** -0.015 
 (0.013) (0.034) 
HERBICIDE USE -0.118** 0.097** 
 (0.039) (0.049) 
INSECTICIDE USE  -0.091** 0.059** 
 (0.02) (0.02) 
YIELD ADVANTAGE 0.311** 0.209** 
 (0.048) (0.052) 
NON-GM AVERAGE EFFECTS 

OF UNINCLUDED FACTORS 
(γNG) 

-0.045 
(0.306) 

- 
- 

COMBINED HT&BT AVERAGE 
UNOBSERVED EFFECTS (γHB) 

0.433** 
(0.078) 

- 
- 

LOG-LIKELIHOOD  -1417.20  
OBSERVATIONS 1181  

 a Standard errors are in parenthesis underneath each coefficient. 

 

 

Table 5. Log Likelihood Ratio (LR) Tests 

MODELS 
TES
TED 

LL(I) LL(II) LL(III) LR DF Χ2 (α=5%) 

I – II 1517.67 1496.76 -- 41.82 2 5.99 

II – III -- 1496.76 1417.20 159.12 5 11.07 

 



 

 30

Table 6. a.) Mixed Logit with Farm and Farmer Characteristics  

  MMNL   
EFFECT OF TRAITS ON THE PROBABILITY OF 

ADOPTION OF A CORN VARIETY 
 

AVERAGE 
Β 

 
STDDEV 

Β 
     

SEED PRICE   
PRICE * FARM_RECEIPTS < 50.000  -0.096** -- 

 (0.015) -- 
 PRICE * 50000 >= FARM_RECEIPTS < 100.000  -0.067** -- 

 (0.016) -- 
 PRICE * 100000 >= FARM_RECEIPTS  -0.049** -- 

 (0.015) -- 
LABOR USE   

 
LABOR USE * (FARMS WITH ALL FAMILY 

LABOR)
-0.038** -- 

(0.012) -- 
 LABOR USE * (FARMS WITH > 50% FAMILY 

LABOR)
-0.056** -- 

(0.019) -- 
 LABOR USE * (FARMS WITH < 50% FAMILY 

LABOR)
0.003 -- 

 (0.061) -- 
YIELD ADVANTAGE 0.234** 0.168** 
 (0.039) (0.041) 
INSECTICIDE USE  -0.074** 0.057** 
 (0.029) (0.027) 
HERBICIDE USE -0.152** 0.114** 
 (0.042) (0.049) 
NON GMO AVERAGE UNOBSERVED EFFECTS 

(γNG) 
0.432 -- 

 -0.355 -- 
HT&BT AVERAGE UNOBSERVED EFFECTS (γHB) -0.436 -- 
 (0.263) -- 
a Standard errors are in parenthesis underneath each coefficient. 
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Table 6b.) Mixed Logit with Farm and Farmer Characteristics (Continued) 

 

EFFECT OF FARM & FARMER 
CHARACTERISTICS ON THE 

ADOPTION OF A GM-VARIETY 
(RELATIVE TO THE EFFECT ON NON-

GM ) 

MMNL  

 AVERAGE 
Β 

STDDEV 
Β 

OPERATED ACRES ON HT  -0.037 -- 
 (0.045) -- 
OPERATED ACRES ON BT  0.121** -- 
 (0.032) -- 
OPERATED ACRES ON HT&BT  0.195** -- 
 (0.031) -- 
EDUCATION ON HT  0.08 -- 
 (0.09) -- 
EDUCATION ON BT  0.11 -- 
 (0.089) -- 
EDUCATION ON HT&BT  0.22** -- 
 (0.095) -- 
CONCERN ABOUT ENVIRONMENT/SAFETY 

ISSUES ON HT  
-1.277** -- 

 (0.332) -- 
CONCERN ABOUT ENVIRONMENT/SAFETY 

ISSUES ON BT  
-0.821** -- 

 (0.276) -- 
CONCERN ABOUT ENVIRONMENT/SAFETY 

ISSUES ON HT/BT 
-2.347** -- 

 (0.401) -- 

MEAN LOG-LIKELIHOOD  -1382  
NUMBER OF CASES 1181   
a Standard errors are in parenthesis underneath each coefficient. 
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Table 7. Mean Willingness to Pay for Traits 

      VARIABLE 
UNIT 

MWTP 
FOR 

1 
UNI

T  

STD. 
DE
V. 

IF FARM_REVENUE < $50.000      
 WTP FOR …… YIELD (BUSHELS) 1 BU 

/ACRE 
2.44 1.76 

  YIELD ($)  1 $ /ACRE 0.98 0.70 
   INSECTICIDE SAVINGS 1 $ /ACRE 0.78  0.59  
   HERBICIDE SAVINGS 1 $ /ACRE 1.59  1.19  
   LABOR SAVINGS    
   I. FARMS WITH ONLY 

FAMILY LABOR 
1 $ /ACRE 0.40  -- 

   II. FARMS WITH > 50% 
FAMILY LABOR 

1 $ /ACRE 0.59  

IF $ 50000 >= FARM_REVENUE < $100.000     
WTP FOR …… YIELD (BUSHELS) 1 BU 

/ACRE 
3.50 2.52 

 YIELD ($) 1 $ /ACRE 1.40 1.01 
   INSECTICIDE SAVINGS 1 $ /ACRE 1.11  0.85  
   HERBICIDE SAVINGS 1 $ /ACRE 2.28  1.71  
   LABOR SAVINGS    
   I. FARMS WITH ONLY 

FAMILY LABOR 
1 $ /ACRE 0.57  -- 

   II. FARMS WITH > 50% 
FAMILY LABOR 

1 $ /ACRE 0.84  

       
IF $100000 >= FARM_REVENUE     
WTP FOR …… YIELD (BUSHELS) 1 BU 

/ACRE 
4.75 3.42 

 YIELD ($) 1 $ /ACRE 1.90 1.37 
   INSECTICIDE SAVINGS 1 $ /ACRE 1.51  1.16  
   HERBICIDE SAVINGS 1 $ /ACRE 3.09  2.32  
   LABOR SAVINGS    
    I. FARMS WITH ONLY 

FAMILY LABOR 
1 $ /ACRE 0.78  -- 
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  II. FARMS WITH > 50% 
FAMILY LABOR 

1 $ /ACRE 1.14  

* Assuming price per bushel of corn is 2.5 dollars. 


