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Diversification and Sustainable Agricultural
Production

- The Case of Soil Erosion -

Abstract

A dynamic economic model of soil erosion is presented where the choice of crops,
each one associated with distinct erosion rates, allows the farmer to control soil
losses. The results show that it is predominately optimal to approach the steady
state equilibrium most rapidly by the cultivation of a single crop. At the steady
state, however, a mix of crops is cultivated supporting the argument that diver-
sification, as a prerequisite for sustainable agricultural production, is a necessary
condition for long run profit maximizing behavior of the farmer. Myopic behavior
of the farmer favors the cultivation of a single crop throughout the planning horizon
irrespectively whether the farmer owns or leases the land. Decretion of the soil
stock may occur if the land market is not efficient, if the price of a high erosion
crop increases or if the social discount rate raises at the beginning of the planning
horizon. At the steady state, however, an increase in the price of a low erosion
crop may decrease the soil stock if the initiated intensification of production has a
stronger negative effect on the soil stock than does the positive effect of an increase
in the share of this crop in the crop mix.
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1 Introduction

Over the last thirty years the intensification of agricultural production has caused a sub-
stantial increase in soil erosion on cropland. If the rate of soil erosion exceeds the rate
of soil genesis, then the soil productivity is expected to decline. Empirical studies on
water erosion, usually classified as sheet or rill erosion, (Papendick, Young, Mc Cool
and Krauss, 1985), (Troeh, Hobbs and Donahue, 1991) confirmed these deliberations and
showed that crop yields may decrease progessively with soil depth. Moreover, they es-
timated that the national annual soil loss due to water erosion is about 11.2 tons per
hectare (t/ha) compared to the goal of 4.5t/ha (Bentley, 1985). Economic studies for the
U.S. suggest that the decline of soil productivity given the current rate of water erosion
would result in a loss of $ 500 million to $ 1 billion per year. (Colacicco, Osborn and
Alt, 1989). The resulting concern stimulated studies modeling the optimal private and
social agricultural utilization of the soil. In particular, it was recognized that soil man-
agement is a dynamic process that has to be adjusted continually to changes in the soil
depth. '

Past research, including that of McConnell (1983) and Burt (1981), focused on the analy-
sis of the optimal private and social intertemporal path of soil use when the farmer grows
a single crop. Miranowski (1984), as well as Smith and Shaykewich (1990), considered
the more realistic case where the farmer grows a variety of different crops. Based on
dynamic linear programming models they determined optimal cropping and tillage prac-
tices. However, the mathematical models employed did not allow for a nonlinear relation
for crop yields and soil losses as a function of the soil depth. Yet, the different soil char-
acteristics of the distinct soil layers commonly found in many cultivated types of soils
suggest nonlinear relationships. Recent research by LaFrance (1992) and Clarke (1992)
incorporated nonlinear relationships, but their analysis is confined to the case of a single
crop. Both papers examine the situation where the farmer has the opportunity to reduce
soil losses. LaFrance (1992) considers the case where the farmer employs soil conserving
inputs which decrease crop yields. However, common practices for the reduction of soil
losses such as the utilization of twin tyres for tillage operations, or not leaving the land
fallow over the winter period, do not have a direct effect on crop yields. Clarke (1992) fo-
cuses on soil conserving investments which do not affect crop yields directly such as water
way constructions or terracing. Yet, the availability of economically viable soil conserving
investments often depend crucially on the cooperation of individual farmers due to the
size of the investment. Thus, both papers address specific soil conserving strategies which
are an option for some farmers. The fact that crop yield reduction and the soil loss rate
vary considerably for different types of crops, suggests that the crop itself is an important
choice variable with respect to the rate of soil loss. Hence, it is argued that the choice
of the crop is a soil conservation strategy open for nearly all farmers facing the problem
of soil erosion. This paper analyzes the optimal private and social intertemporal path



of soil use when the farmer’s crop mix is determined endogenously while accounting for
nonlinear relationships within the dynamic process of soil losses caused by sheet and rill
erosion.

Furthermore the paper provides an additional argument for diversification versus non-
diversification. Traditionally, diversification is supported in the presence of uncertainty
or in the case of abundance or lack of quasi-fixed production factors such as labor or
capital goods. Provided that a natural resource is essential for the production process,
diversification may increase the long run net returns. Non diversification, on the other
hand, may lead to an accelerated exhaustion or complete deterioration of the resource.
The management of natural resources such as soil or pests are examples where diversified
cropping may increase the long run net returns and can be a prerequisite for sustainable
agricultural production.

This paper shows that the optimal cropping strategy is predominately given by the most
rapid approach path to a steady state. The steady state equilibrium can be characterized
by a saddle point and it can be attained from any given initial value of the soil stock.
The results of a comparative dynamic analysis show that an increase in the crop prices
may not affect the optimal path towards the equilibrium. However, if it alters the optimal
path then an increase in the price of a low erosion crop, for example, leads to an increase
of the steady state value of the soil stock. The analysis suggests further that the private
discount rate has a negative impact on the steady state value of the soil stock. However,
a high private discount rate will not lead to a total depletion of the soil. On the contary,
depletion may occur if the land market does not account appropiately for the soil depth.
The results of a comparative static analysis based on particular specifications of the
relationship between the production and erosion functions for the different crops indicate
that an increase in the prices of a low and high erosion crop leads to a decrease of the
steady state value of the soil stock.

2 Soil erosion and the allocation of land

2.1 The Dynamic Economic Model

Let u(t) be an index of inputs and z(t) be the overall soil depth at instant ¢. The per
hectare production function is then given by:

f(2(8), u(?)). (1)

To simplify notation the argument ¢ of the variables z,u and of the variables z, \, @1, ¢,
#3, ¢4 to be introduced later will be suppressed unless it is required for an unambigous
notation. All our assumptions about the production function can formally be summarized
as follows:




fz>0, fu>0’ fzz<0’ fuu<0
fozfuu — (fzu)2 >0

fzu>0; f(&,u)=f(2,0)=0
f:(z,u) =0, Vz >z,

(2)

where the subscript indicates the partial derivative with respect to the variable. The
" production function is jointly strongly concave in z and u, and twice continuously differ-
entiable. The inputs are complementary, and considered essential for production where z
denotes the minimum soil depth necessary for agricultural production. Beyond a certain
soil depth Z the crop yields will not increase any longer with the soil depth.

The concavity of the production function is a result of the non-homogeneity of the soil. A
vertical soil profile displays different layers or horizons with distinct physical and chem-
ical properties. They provide the key for understanding the vulnerability of agricultural
production to soil erosion. The A-horizon lies near or at the surface and is characterized
by maximum accumulation of organic matter and maximum leaching of clay materials.
The underlaying subsoil, the B-horizon, consists of weathered material with maximum
accumulation of iron and aluminium oxides and silicate clays. Generally the B-horizon
is less favorable to plant growth than the A-horizon because of its accumulation of clay,
its high density and strength, its low pH value and its high aluminium saturation (Lal,
Pierce and Dowdy, 1983). When tilled or ploughed, the A-horizon of the eroding soil
will increasingly be mixed with the B horizon and will gradually show more and more
properties of the B-horizon. Hence, the decretion of the soil leads to lower crop yields as
a result of the reduction of the effective field capacity, the maximal rooting depth, the
infiltration and permeability rate, the humus content, the hydraulic conductivity and the
availability of plant nutrients (National Soil Erosion-Soil Productivity Research Planning
Committee, 1981). This deteriation of the soil properties, however, can only be partly
offset by an increase in inputs.

The proposed specification of the production function is in line with the work of LaFrance
(1992), Clarke (1992) and Walker and Young (1986). Unlike other studies, such as Mc-
Connell (1983) or Barrett (1991), soil loss is not being considered as an argument of the
function since it is a result of the choice of u as well as the development of the soil depth
over time, rather than a choice variable for the farmer.

The soil depth, however, does not only affect crop yields, it also influences the magnitude
of soil losses for a given amount of rain. Therefore a twice continuously differentiable per
hectare erosion function is introduced given by:

h(z,u). (3)

We assume the following properties for the erosion function:



h, <0, hy>0, hy; >0, hy, >0
hzzhuu - (hzu)2 >0

he <0, h(2,0)=0

h,(z,u) =0, Vz> z.

(4)

The erosion function is jointly strongly convex in z and u. As the soil depth decreases
the soil becomes finer textured and less friable. Furthermore, the low content of organic
matter in the subsoil decreases the aggregate stability of the soil particles such that rain
can destroy them more easily. Hence, reduced infiltration and permeability as well as
the unstable structure of the soil aggegate results in increased runoff and erosion of the
subsoil (Troeh et al., 1991), suggesting h, < 0. An increase in the production intensity
will result in higher erosion rates, implying h, > 0. The structural changes of the soil
due to water erosion help to determine the sign of h,,. Rain drops disintegrate aggregates
on the surface and produce a compact surface crust. Percolating rainwater dislocates
suspended fine soil particles from the top soil to the subsoil. These changes amplify the
magnitude of soil erosion as the soil layers decrease (Troeh et al., 1991) suggesting h,, > 0.
An augmentation of the production intensity leads to higher erosion rates. However, a
simultaneous accretion of the soil adversely affects this increase which implies h,, < 0.
In case u = 0 no agricultural production takes place and the soil is naturally covered by
plants. Finally, an accretion of the soil above the soil depth Z does not alter the magnitude
of the soil loss. '

Instead of an erosion function, Clarke (1992) proposed a particular proportion of the
production function to capture soil losses. This specification, however, implies that the
magnitude of soil losses is increasing with the soil depth, contradicting chemical and
physical properties for most types of soils being cultivated. Another functional form for
the erosion function was proposed by LaFrance (1992). Focusing on soil conserving inputs
he assumed the erosion function to be independent of z. Yet, the decretion of the soil
depth alters the properties of the soil as reflected by decreasing crop yields. Hence, one
would expect a change in the erosion function as z changes.

In our analysis we consider two different kind of crops. The share of the land cultivated by
crop one, say pasture or small grains, is denoted by z. The remaining share of the land,
1 — z, is utilized for the cultivation of crop two, such as row crops. We hereby assume
that the farmer does not leave any land fallow and the entire cultivated land is equal to
one by an appropiate normalization procedure. The production and erosion functions for
crop one and two are denoted by a corresponding superscript. To analyze a meaningful
problem we assume that f! # f2 and h! # h2.

The last function to be introduced is the twice continuously differentiable soil genesis
function e(z). Troeh, Hobbs and Donahue (1980) reported on studies showing that soil
genesis is decreasing with the soil depth, implying e, < 0. Additionally, we assume that
e:. <0, and e(Z) = 0 for all z > Z > z, where Z is the soil depth beyond which the soil




does not grow anymore. The dynamics of the soil can now be stated as
z = —h'(z,u;)T — h?(2,u2)(1 — z) + e(2), (5)

where the dot over z denotes % and u; is an index of inputs applied to crop ¢ for ¢ = 1, 2.
For any instant in time the “dynamics” can be illustrated by Figure 1. The two highlighted
lines correspond to the steady state of the soil dynamics, 2 = 0, where the upper line
represents the example z = 1 and the lower one z = 0. Below the z = 0 line, long term
monoculture of crop one or two is feasible and the soil stock is replenished. Between the
z = 0 and z = 1 lines monoculture of crop one or a crop rotation of crop one and two is
consistent with sustainable agricultural production. Beyond the z = 1 line farming would
lead to a complete exhaustion of the soil stock finally ending in the “desertification” of
the land. Figure 2 depicts the possible choices of z,u; and uy supporting sustainable
agricultural production. Above this three-dimensional hypherplane, satisfying z = 0,
desertification would occur, whereas the space below characterizes monoculture. Thus,
crop diversification may enable the farmer to increase the long run farm net returns while
sustaining the soil stock. The farmer’s options for sustainable agricultural production via
crop diversification are illustrated by a combination of the graphs in the (u;,0,Z — z) and
(0, ug, Z — z) space for z=0.

Our discussion of the dynamic processes of the soil so far was framed in the context of soil
erosion, which is usually relevant for sloping lands. However, in the case of plains lands,
soil quality is a pressing problem. For the functions discussed so far, as well as the model
to be introduced later, the variable z can also be interpreted as an index of soil quality.
Hence, the results of our analysis apply to the case of soil degradation as well, given an
appropiate rephrasing.

2.2 The Maximum Principle

It is assumed that the farmer wants to maximize the discounted net returns received over
the planning horizon. Thus the farmer’s decision problem, (P) can be formulated as:

T,u1,u2

max /Ot1 e ((pof' (2, uy)—c1uy )T+ (P2 f2(2, Ug) —Couz) (1—2)) dt+e " s(2(t)), (P)

subject to

—hl(z,u1)z — B*(2,u2)(1 — z) + e(2)
2(0) = =z, u; >0, 1=1,2 z € [0,1],

where t; denotes the final point of time under consideration, § > 0 is the private rate of
discount, c;, 4« = 1,2, are the constant costs per unit of the index of inputs, s(z(t;)) is the
value of the land at time ¢;, and p; > 0 and p; > 0 are the constant prices of crops one
and two respectively.




Using Pontryagin’s Maximum Principle in current value form, the Hamiltonian # is given
by:
H = pafi(z,uz) — cous — A(h2(2, u2) — e(2))
+(p1f! (2, w) — crug — paf?(2, u2) + caup — AR} (2,u1) — h*(2, u2) )e. (6)

Taking account of the restrictions on the control variables leads to the Lagrangian £ which
is maximized with respect to the control variables. It reads as:

L = pzfz(zﬂtz) — CoU2 — )\(h2(2, Uu) — e(2)) + (plfl(Z, u1) — C1uy — szz(Z, uz) + Cotlp
(b} (z,u1) — h2(z, up) )x + &1(1 — x) + P2z + P3uy + Paus. (7)

The optimal values of the control variables are associated with the costate variable A(t)
and the Lagrange multipliers ¢;(¢),7 = 1,2, 3,4. A solution of problem (P) has to satisfy
the following necessary conditions, which are stated in accordance with propositions 2.3
and 6.1 of Feichtinger and Hartl (1986),

Lo = piflz,w) — ciuy — paf?(z, ug) + coug — AR (2, u1) — h2(z, ug))
—¢1+¢2=0 (8)
Ly, = (0ifs(z,w1) —c — /\h1 (zwm))z+¢3=0 (9)
Ly, = (p2fi(z,u2) — ca — ARZ,(2,u2))(1 — 2) + ¢4 = 0 (10)
A= —pifzu)z — p2f2(z ug)(1—z) + /\((5 —e,(2)
+h (2, w1)x + b2 (2, u2) (1 — 7)) (11)
2 = —h'(z,uw1)z — h*(2,u3)(1 — z) + e(2) , 2(0) = 2. (12)

Moreover, the optimal values of the control variables and the Lagrange multipliers have
to satisfy the Kuhn-Tucker conditions

£¢i ZO, ¢i > 0 and ¢i£¢.~ =0 fOI‘i=1,2,3,4. (13)

The constraint qualification, a prerequisite for the Lagrangian approach, will be satisfied
due to the linearity of the restrictions in z and wu;, ¢ = 1,2 (Takayama, 1985). The
transversality condition stated by Feichtinger and Hartl (1986) takes the form

A1) = s2(2(t1)). (14)

The costate variable A can be interpreted as the current value shadow price of the soil
depth. Therefore, the necessary condition (8), for ¢; = ¢; = 0, indicates that the
allocation of the land between crops one and two is optimal when their returns minus
their costs for eroding the soil equal each other. In the case of a boundary solution,
their returns minus their cost should differ by the additional shadow price for the binding
constraint. The second and third necessary condition (9) and (10), for the case were u,
and uy are strictly greater than zero, states that the value of the marginal productivity
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of the index of inputs should equal the sum of the marginal costs of the index of inputs
and of the erosion of the soil. In the case where u; or u, is zero these conditions state
that the value of the marginal productivity of the index of inputs and of the Lagrange
multiplier equal the sum of the marginal costs mentioned above.

The structure of the problem does not allow one to determine unambigously the sign
of H;,. However, it turns out that the description of the qualitative properties of the
solution only requires that this cross derivative does not vanish over some positive time
interval. H,, = 0 is given by p; f1 — Ahl = po f2— Ah2. Over some time horizon this seems
to be a rather special case and it is not further pursued here.

The linearity of H in z suggests defining a switching function, o, for the determination
of the optimal trajectory of . This function is given by:

He =0 =pifl(z,m) — crun — P2f?(2,uz) + caup — M (2, u1) — h*(2, up)) § 0, (15)

and proposes that

1 , 0>0
z=|z€[0,1] , o=0 |. (16)
0 , 0<0

The economic interpretation suggests choosing only crop one if its return minus the costs
for eroding the soil exceeds that of crop two. The maximal choice of crop two (z = 0) is
similarily explained. If the returns of the two crops minus their costs for eroding the soil
are equal to each other, z remains undeterminded within the interval [0, 1].

It is known from the theory of optimal control that the singular path (o = 0), if it exists,
will be attained by the most rapid approach path which suggests the first proposition.

Proposition 1 The steady state of the system of equations (11) and (12) subject to (8)

- (10) is identical with a singular path. No other singular path ezists if % = —% does
not hold for any positive interval of time.

Proof:
To analyze the properties of a singular path we start out by assuming that a singular
path exists where z lies in the interior of [0, 1]. Equation (16) provides the condition

(h' — h2)(%(l’1f1 —ciuy — paf? + Colg)) — (,,li(hl - h2))(p1f1 —ciuy — paf? + CoUs)
5 .

= t
(W= 17)

(17)

Taking the derivatives and evaluating z along its time path results in:

Hau, U1 + Hau, Uz + [(h1 — hz)(plle — szzz)
hl — h2 (k! — h2)?
_ ((Plf1 — ciur — pof? + coug) (Rl — A2)
(h! — h2)2

A

(= (B =rHz—h*+e). (18)



Next, (18) will be equated with (11), and an expression for A obtained from (16) is utilized.
As a result, the z will cancel and equation (18) can be written as

qu dl + qu d2 _ h — € 1 2 plfl — U — p2f2 + cous 1 2
1h1 _ h2 2 - [plf p2f ( (hl _ h2) )(hz —h )]
1 cqup — + cou
" (plf e f,if =2)(6 - ez + h2) — paf?. (19)

Algebraic manipulation and utilizing (16) yields
Houtis + Heuwgtis = prfIh® — pof2h' + A(RLA® — R2AY) — A(6 — e.)(h! — A?)
—e(p1f; = p2fi — A(h; — b)) (20)

Next we utilize Hzy, = Heu, = 0 and ¢3 = ¢4 = 0 as a result of (9), (10) and the fact
that z € (0,1) and obtain

(6+h1h_ S Kl —e).  (21)

h? —
0= plf,;l—_ 2f zh2 Bl zh2 Al

¥4 h2
For any singular path equation (21) suggests that the value of a marginal increase in the
soil depth represented by the first two terms equals the marginal costs. These costs are
given by the private rate of discount and the marginal erosion minus the marginal soil
genesis all valuated with the shadow price of the soil. Thus, the marginal value of delayed
extraction of the soil does not only need to cover the marginal forgone profits by not using
the soil but also the capital costs of these profits. To find conditions when the right side
of (21) vanishes consider the steady state z = 0. Thus, we obtain

h?—e e — hl

S T G Al ¥y 3 (22)
and equation (21) reads as
pifiz +pafi(1 — ) = A6 — e, + hlz + h2(1 — x)). (23)

Hence, the singular path coincides with the steady state. To analyze the qualitative
properties of a singular path which is not identical with the steady state we assume again
that such a singular path exists and therefore it has to hold that

6 = Haz# + Houytis + Hauptiz + Hoah = Hazz + Haah =0 (24)

For any singular path off the steady state X and # does not vanish. Hence, for a positive
interval of time H,;, = H,» = 0 are sufficient conditions for the existence of singular
path off the steady state. However, this contradicts our previous assumption, and it can
therefore be concluded that a singular path is identical with a steady state provided that
for any time interval of positive length the following condition, obtained from (24), does

not hold: .
(p2f7 = AR2) — (puf; = Mh3) _ A
B2 — Rl T3

(25)
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However, if equation (25) holds for some time then the optimal trajectory of = will take
on an interior value for this period which is equivalent to diversification of agricultural
production. If this singular path is not a steady state one expects that equation (25)
holds only for a finite amount of time!. Thereafter, the next singular path is approached
most rapidly. This process comes to an end when the singular path is given by a steady
state. Hence, the optimal trajectory of z approaches the steady state most rapidly if not
interrupted for an overall finite amount of time where it is characterized by an interior
value. Moreover, the most rapid approach path indicates that the steady state is reached
within finite time provided that the planning horizon is long enough.

[

After completing this proposition we are now able to illustrate the optimal trajectories
for z,u;,u; and z as shown in Figure 3. We illustrate the case where h! < e < h2.
Depending on the initial soil stock in relation to the closest steady state stock of the soil,
it is either optimal to deplete or to build up the soil stock. For ¢ > 0 and 2y < 2*, where
the superscript * denotes the steady state value of the variable?, it is optimal to build up
the soil with the cultivation of crop one in monoculture until z* is attained. For o < 0
and zp > 2z* it is optimal to deplete the soil by cultivating only crop two. The most
rapid approach path may be interrupted for a finite amount of time when & vanishes.
During this time period the graph of z(t) may be off the boundary and off the steady
state equilibrium. In Figure 3 we depict the case where o > 0 and 2z < 2z*. The sign for
%ﬂzl = %ﬁf > 0 is obtained by employing the implicit function for equation (9). As a
result u, is increasing over time. After a certain time z*,u},u; and z* is reached. The
steady state equilibrium is characterized by a mix of crop one and two. If for instance
h', h? > e then agricultural production would lead to the depletion of the soil and the
abandoning of the land thereafter. In this case zp > z* and the crop with the highest
returns minus the costs for eroding the soil will be grown in monoculture until the soil is
depleted. Likewise, if h',h? < e for z < Z and h*(Z) = e(2) = 0, i = 1or2, the optimal
cropping strategy results in the cultivation of the crop with the highest returns minus the
costs for eroding the soil until the maximum stock of the soil is attained. From there on
crop 1, satisfying the steady state requirement h*(Z) = e(Z) = 0,7 = 1 or2, will be grown.

Comparative dynamics allows one to analyze the effect of initial changes in the para-
meters on the optimal trajectories of the control, state and costate variables. However,
the variable z is not a continous function of the state and costate variable and thus,
a comparative dynamic analysis based of calculus is not possible. Yet, equation (16)
provides some insight in the adjusted optimal trajectories of z,u;,us and z for initial
changes of the crop prices and the private discount rate. In this paragraph we assume
that no singular path besides the steady state exists and h? > e > hl. Equation (16)
indicates that a rise of p,, provided that o switches its signs, leads to z = u; = 0

1With respect to the case where equation (25) holds for an infinite amount of time our main conclusion
that agricultural production will be diversified along a singular path remain valid. Hence, we do not
consider this case in the subsequent part of the paper.

2In this context the superscript * refers in particular to the closest steady state value of the soil stock
in relation to the initial soil stock.




and to the most rapid approach of the nearest steady state value of z below the ini-
tial value of z. Likewise, an increase of p;, switching o, suggests x = 1 and uy = 0
and increases the attained steady state value of z. For an increase in the discount rate
one expects a decrease in the shadow price of the soil stock over time. Consequently,
a switching o, leads to a more intensive use of the resource and to a lower steady
state value of z.If o does not change its sign as a result of an increase in p;,p; or ¢
then the optimal trajectory of z remains unchanged and the adjusted optimal trajecto-
ries u; or uz can be determined by comparative dynamic analysis based on a fixed z.
In particular, the analysis showed that even in the presence of a high discount rate, a
steady state is approached most rapidly and the soil is not completely eroded. This find-
ing seems somehow contradictory to well known results of the economics of renewable
resources like fish or forest. However, soil itself is an input for agriculture and as such it
can only be capitalized by agricultural production. At the same time soil is an important
characteristic of the tradable good land which can be sold at any point of time. Therefore,
a high private discount rate reflecting the opportunity costs of holding land as an asset
may favour the sale of land or the farm, but it does not lead to an exhaustion of the soil
stock. It is commonly argued that a social discount rate reflecting the rate of time pref-
erences between generations, should be lower than the private discount rate (Zilberman,
Wetzstein and Marra, 1993). Thus, the social optimal cropping strategy would result in a
higher steady state stock of the soil and there would be less incentives to sell land causing
the share of land utilized for agricultural production to decline.

Comparative dynamic analysis was not included in the work by LaFrance (1992) and
Clarke (1992) and as such it is not possible to compare their results with the one of this
study. In section 2.3.3, however, the comparative static results obtained in this paper
will be discussed in comparison with the results obtained by LaFrance (1992) and Clarke
(1992), along with some policy implications.

Until now we have not addressed the question of the existence and uniqueness of a singular
path. The identity of a singular path with a steady state, however, suggest to discuss
this question in the following section 2.3.1 of the paper, where the existence of the steady
state is analyzed.

2.3 Stability analysis
2.3.1 Existence of a steady state

So far we have shown that it is optimal to approach the steady state most rapidly. How-
ever, we do not know whether a steady state exists. The complexity as well as the non
concavity of the model unfortunately does not allow to show the existence of the steady
state directly through algebraic manipulations of the steady state equations which are
given by:

pfl— cuy — pof? + Couy — /\*(hl - h2) =0 (26)
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(p1fy, — 1 — A*hyy,)z*
(p2fZ, — c2 — A"h2,)(1 — z¥)

—poflz —psz(l —z*)+ A (0 —e, + hlz* + hﬁ(l —z*)
—hlz* —h*(1—-2")+e = 0. (30

Therefore we invoke an existence theorem proposed by Filippov-Cesari, given in Theorem
8, page 132, Seierstad and Sydseeter (1987).

I
o o O
—
[\
co
~— N N

Proposition 2 An optimal control exist if:

e There ezist an admissible pair (2(t),u1(t), ua(t), z(2)) (31)
v The set N(z,U,t) = {(goe™® +v,01) : ¥ £ 0,7, u1,us € U}
is convez for each (z,t) (32)
U is closed and bounded (33)
There exist a number b such that | 2(t) |[< b
for all t € [0,t] and all admissible pairs (2(t), u1(t), u2(t), z(t)), (34)

where go = p1f* (2, u1) —c1u1)T+(P2f?(2, u2) —c2ug) (1-2); g1 = —h' (2, w1)z—h?(2, uz)(1-
z)+e(z), and U ={z,u; : 0<z<1,0<y; < 4;,i=1,2} |

Proof: |

\
In appendix I it is shown that these conditions are met and the existence of an optimal |
solution can be concluded. [:l |

2.3.2 Stability analysis in the state-costate phase plane

|
i

The equations (8) - (10) do not allow one to solve for z, u;, us as functions of z, \. Thus, the 1
usual procedure by inserting the obtained functions Z, 41, 4o in the differential equations |
(11) and (12) for a qualitative analysis of the steady state does not work. However, ‘
equation (16) and proposition 1 show that z is a piecewise constant function and we can |
study the set of differential equations (11), (12) for constant z (Hartl, 1982). ‘
|

|

Proposition 3 : The equilibrium point of the system of equations (11) and (12) subject
to (8) - (10) can be characterized for a constant = by a saddle point.

Proof: '
Only one element of the Jacobian matrix for the system of differential equations (11) and
(12) evaluated at the equilibrium point 2 = A = 0 can be signed. However, in our case it

suffices to evaluate the trace of the Jacobian matrix. The elements of the trace are given
by:

LI A » »

0z _ O Oy

5.; = Hx: +Hxu, M + Hu, M (35)
o\ _ ouy Oty

3_)\— - 6 - HzA - qul_a—x‘ - quzgx- (36)
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The calculation of the trace shows that

0z | OA

—+=6>0. 37
0z + o (37)
_’H}\ui
HU,’“" ’
obtained from (27) and (28) by the implicit function theorem. Next, employing the fact
that the trace of the Jacobian matrix equals the sum of its eigenvalues assures that at

least one eigenvalue is positive. Both eigenvalues positive implies that

i = 1,2 respectively,

2. - ~Hou:
where the terms 2% and 2% were replaced b Z%i and
9z A Haru;

lim z = +o0. (38)
t—o0
However, the stock of the soil cannot grow infinitely large or small, and thus one eigenvalue
has to be negative. [ ]

This result shows that the steady state is characterized locally by a saddle point and
we can additionally conclude that the equilibrium point is unique. Moreover, the most
rapid approach path towards the equilibrium guarantees that the equilibrium point can
be attained from any given initial value of the soil stock within finite time.

2.3.3 Comparative statics of the steady state

Now we turn to a sensitivity analysis of the steady state with respect to changes in the
parameters of the model. In the general formulation, however, an analysis of the com-
parative statics of the steady state does not yield unambigous results. In order to drive
refutable results, we maintain the general functional form of the production and erosion
functions but we will specify the relationship between them. This specification is consid-
ered an approximation, but it captures the essence of the relationship of the production,
erosion and soil genesis functions for the studied problem. The loss of generality, however,
is compensated by a gain in unequivocalness of the comparative statics results.

In particular, we consider the case were f!(z,u;) = f(2,u) and f%(z,us) = vf(z,u), v >
0. Not distinguishing between the inputs applied to crop one or crop two implies the
interest in the overall level of production intensity, and less in crop specific production
intensity levels. This can be motivated by the observation that farmers usually either cul-
tivate crops intensively or extensively, but not both at the same time. The multiplicative
relationship of the two production functions is supported by studies which demonstrate
that the relationship is not constant as the soil erodes (Reid, 1985). We also take account
of the fact that the erosion functions for crop one and two vary to the greatest extent as a
result of their different capabilities to cover the ground during time periods where erosive
precipitation are likely to occurd. This capability, however, is independent from z and u
which suggests h'(z,u1) = h(z,u) and h2(z,up) = h(z,u) + 7, where the constant term 7
reflects the lower ground cover capability of crop two, (Troeh et al., 1991), (Mosimann,

3We hereby refer to the cover management factor C of the Universal Loss Equation which reflects the
ground cover capability and the rainfall-runoff erosivity factor for particular time periods of the year.
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Crole-Rees, Neyroud, Thoni, Musy and Rohr, 1990). Furthermore we propose p; < yp2
which implies that the returns of crop two are higher than the one of crop one. In case
p1 > ypo only crop one would be cultivated since it yields the higher returns and shows a
lower erosion rate than crop two. Finally we propose e(z) = e to be a constant. We are
hereby following the concept of soil loss tolerance as promoted by the U.S. Soil Conser-
vation Service. Depending on the type of soil, tolerable soil losses with respect to the soil
productivity ranging from 4 - 11 t/ha and year are defined.

With these specifictions at hand (26) - (30) reads as:

(pr—yp2)f +A"' = 0 (39)

((p1 — vp2)2" +vpP2) fu —Cc—A"hy = 0 (40)

— ((pr = yp2)z* +¥p2) f: + A" (6 + h:) = 0. (41)
e—h-n1-2*) = 0 (42)

Note that we can now utilize the maximum conditions (39) - (40) for an interior solution
to solve for (z,u) = (£(z,A), 4(2,A)). Applying the implicit function theorem to (39) and
(40) yields the following two equations.

,sz Hx/\ QE’ 'a_i' _ —_ H:cz ’qu
(%uz HUA)JFM(% B =0 M={g n, 42)
Since A = det M = —(Hyz)? < 0 does not vanish (43) can be solved by using Cramer’s
rule, which yields.

O T (M~ HusHe) > 0 (44)
g - —_Al—(?{x,\'ﬂuu — HurHzu) <0 (45)
% = -i—%umu <0 (46)
% = %%UIHM >0 (47)

Using (44) - (47) the Jacobian matrix, J, of the system (11) and (12) with z = z(z, A)
and u = u(z, A) can be calculated.

0z 0z ot

5, = Mg ~h:—hum->0 (48)
0% 0% o
) 83
5, = - ’rpz)fzé = ((p1 = ¥P2)7 + VP2) foz + ABz
94

= (((or — vp2)z + YP2) fou — /\hzu)a—: >0 (50)
)\ oz ot
o = OFh) = (01— ) fags = (P = 1P2)2 +9P2) fou = M) 53 < 0 (51)
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where the sign of (51) can be concluded from the fact that
_o:0 0o _
T 0z0\ 020\
which in turn is a direct consequence of the saddle point property of the steady state as
established in section 2.3.2.

det J 0 (52)

The sign of the slopes of the two isoclines (2 = 0 and A = 0) can be specified by applying
the implicit function theorem

d\ 9:
E 2=0 = —..g_é > 0 (53)
o
d\ 2
EIA:O = _.3_—;\. >0 (54)
A
Utilizing (52) yields
_9:  _9A
2~ 5 >0 (55)
X E3N

Hence, the slope of the (2 = 0) isocline is steeper than the slope of the (A = 0) isocline.
The corresponding phase plane is presented in Figure 4 indicating that the stable branch
is upward sloping and the unstable branch is downward sloping. Hence an increase in z,
for z < z*, is accompanied by an increase in the shadow price of the resource. At first
sight this result seems to be counterintuitive. However, an increase in the soil depth allows
the reduction of the index of inputs making the soil more valuable. Besides the phase
plane, Figure 4 also indicates the optimal values of z(¢;) and A(¢;). The endpoint of the
optimal trajectory is determined by the transversality condition (14). For simplicity the
case where s(z) is linear in z is depicted, for example, s(z) = oy + apz, o > 0,7 = 1, 2.
The optimal trajectory depends on the initial stock of the soil and on the length of the
farmer’s planning horizon. In the case where the steady state can be reached within
the time interval [0,¢;], the optimal trajectories of z and X coincide with the steady
state values of z and A as long as possible. Equivalent to our previous discussion of the
most rapid approach path, the steady state will be left at the latest point in time and the
transversality condition will be approached most rapidly (Feichtinger and Hartl, 1986) via
the unstable branch. If the time interval [0, ¢;] does not allow one to reach the equilibrium,
the optimal trajectory follows the stable branch until it is necessary to cross the z = 0
isocline where, for the case h' < e < h?, the variable x changes from 0 to 1 or vice versa,
in order to approach z(¢;) and A(¢;). This may be particular the case for myopic farmers
who grow just one crop for some time and then switch to the other crop for the rest of
their planning horizon. As a result these farmers do not to diversify their agricultural
production. In the case that the farmer leases the land the function s(z(¢;)) does not
exist and the transversality condition for problem (P) is given by:

At1)) >0 2(t1) — 2(t1)) 20 A(t1)[2(t1) — 2(t1)] = 0, (56)
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where we assume that a minimum soil depth 2(%;) is required by a lease contract. Farmers
with a short term lease and/or a high initial soil depth may be unable to deplete the soil
stock up to 2(¢;), and equation (56) will be satisfied for A(¢;) = 0. In this case the
optimal cropping strategy is given by the permanent cultivation of the crop with the
highest returns minus the costs for eroding the soil. However, if 2(¢;) can be attained
during the lease then the optimal cropping strategies are identical for farsighted farmers
either owning or leasing the land up to the steady state equilibrium. Thereafter, the
different transversality conditions are approached most rapidly. The consideration of the
ownership shows that the myopic farmers as well as the short term tenant are likely to
grow a crop in monoculture. In particular, not the ownership, but the planning horizon
determines whether the agricultural production will be diversified or not. Moreover, the
tenant will deplete the soil more than the owner if the specification of 2(¢;) is below the
market outcome due to equation (14).

The function s(z(t)) will be determined by the land market. If the land market does not
account appropiately for the soil depth, farmers are encouraged to deplete their soil up to
a certain extent while approaching the end of their planning horizon. Even if the land
market were efficient by taking into account the soil depth, farmers may find it difficult to
determine the optimal private intertemporal utilization of the soil since technical progress
covers the ‘true’ productivity impacts of soil losses. This information can be considered
as a public good and as such it will be supplied below its optimum. Data, supplied by a
particular state run agency , about the ‘true’ productivity impact would help to restore
an efficient land market. However, the implementation of this measurement should be
preceded by a cost-benefit analyses which proves its efficiency.

After determining all the signs of the entries of the Jacobian matrix we are now able to
conduct a comparative static analysis. Applying again the implicit function theorem to
the system (12) and (11) where A = 2 =0, and (=, u) is given by (£(z, A),4(z, A)). Thus,
we obtain a system of two equations.

0 0 0 z*-1 0 ) ~(6L 02" 9zt Bz 82"
* * * * +J gg‘!‘ ggz 66/\6' aa)?‘ 59;" =0
(_f“’ —7f(1-2%) A 0  -pfi(l—1%) 1 Gps @5 on  ov

(57)
Solving by Cramer’s rule yields:
g; = de_tl - fzx*% <0 (58)
o = Thial-a5 <0 (59)
g; = delt 7/ zx*% <0 (60)
5 = w5 <0 (61)

4Clarke (1992) and LaFrance (1992) consider the case of an infinite planning horizon. As such they
assume that the land market is efficient and they do not pay attention to the possibility of soil depletion
in case of an finite planning horizon
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365* = dethg—a >0 (62)

aAa - d;tlJ’\*a—z 0. (63)

%‘j; - dgtlJ(m* - 1)2—1 >0 (64)

aa’); = d-e_tlJ(l - m*)g—;\- >0 (65)

T = - <0 (66)

= ml-a)fg <0, (67)
where %, % g’z\ and ‘9’\ are given by (48) - (51).

Additionally, we are now able to analyze changes of the control variables, given by
z* = &(z*,\*) and u* = 4(z*, \*), resulting from variations of the parameters. How-
ever, appendix II, where we focus on the parameters p;, p; and d, shows that the signs of
g%, g%, %, %, %’g— and 2% % remain undetermined. Thus, in contrast to the comparative
dynamic analysis for the general model we do not obtain the signs of the changes in z* and
u* as a result of variations in the parameters. Yet, we derive uniequivocal results for the
signs of the changes in z* and \* as a result of variations in the parameters For the follow-
ing interpretation of the results we assume that > 0, g; <0,8% =5 <0, aaxn 0, %’fy <0
(allocation effect), while the signs of the correspondlng partial derivatives of u* with re-
spect to the parameters (cultivation effect) remain undetermined. The consideration of

the reversed case would not yield additional insight and thus, we refrain from it.

The steady state values of z and ) always change in the same direction when one of
the parameters is varied. The soil depth as well as the shadow price decrease due to an
increase in either p; or p,. For example, increasing the price of the more erosive crop
(crop two) could lead to an increase in the share of crop two in the crop rotation which
in turn decreases the steady state value of the soil stock. On the other hand, one would
expect that a rise of p; leads to an increase in the steady state value of the soil stock.
However, an increase in p; not only induces a rise of the share of crop one in the crop
rotation but also an intensification of production. Yet, the effect of an increase in u on the
steady state value of z outweights the effect of an increase in 2. Thus the overall effect of
an increase in p; on z is negative. Similarily, if p; rises, the share of crop one in the crop
rotation increases, which in turn devaluates the soil stock, attributing a negative sign to
equation (60). An increase in p, increases the share of the more erosive crop in the crop
rotation. In order to keep the value of z constant over time the production intensity has
to be reduced. This effect on the value of the soil stock is stronger than the effect from
the extension of the area cultivated with crop two. Overall, the steady state value of the
shadow price decreases with an increase in p,.

An increase in the discount rate makes production today more valuable in relation to
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future production, and an increase in crop two along with an increase in the production
intensity is expected. Thus, the steady state value of the shadow price will rise for an
increase in the discount rate as is indicated in equation (62). However, evaluating the
effect of an increase in the discount rate on the steady state value of the soil stock requires
keeping the shadow price constant over time, which entails a decrease in the production
intensity. The latter effect on z* surpasses the effect of an increase in crop two on z*.
Hence the steady state stock increases from a rise of the discount rate. A rise in the
ground cover capability would lead to an increase in the less erosive crop, which implies
an increase in the steady state value of the soil stock. Interpretating equation (65), one has
to keep in mind that z has to remain constant over time. Thus, an increase in the ground
cover capability would lead to an increase in crop one and of the production intensity.
The latter effect on the shadow price of the soil stock, however, is stronger, attributing a

positive sign to ‘%7'. Finally the arguments for the interpretation of equations (59) and

(61) are invoked to attribute negative signs to %- and 4.

In essence, the discussion of the results of the comparative static analysis shows that the
steady state value of the soil stock as well as the steady value of the shadow price is
influenced by the sum of the cultivation and allocation effect. Depending on crop one or
two, and the parameter variation in question, these effects point either in the same or in
the opposite direction.

Clarke (1992) showed that the product price is positively related to the soil depth given
that some economically viable investment exists for preserving the soil. The assumption of
a perfectly divisible investment which does not impede agricultural production, however,
does not correspond to the situation which is analyzed here or in the paper by LaFrance
(1992). As such the results obtained by Clarke (1992) are difficult to compare with those
presented here or by LaFrance (1992).

LaFrance (1992) obtained a negative relationship between the output price and the steady
state value of the soil stock if the cultivation effect dominates the conservation effect.
This paper supports the findings of LaFrance (1992), but in terms of the cultivation and
allocation effects instead of the cultivation and conservation effects. However, we like to
emphasize that in our model the two effects (cultivation and allocation effects) are not
always working in the opposite directions. For example, a price decrease of an erosive
crop leads unambigously to an increase of the steady state value of the soil stock. In
particular, this opens up the possibility of placing a tax on an erosive crop in order to
enhance the soil stock. Yet the reversed proposal, to subsidize a low erosion crop, cannot
be supported since the allocation and cultivation effects are working in opposite directions
and their sum will lead to a decrease in in the steady state stock.

The result of Clarke (1992), that a high discount rate makes it less likely to approach
a steady state and may lead to a depletion of the soil, cannot be confirmed. LaFrance
(1992) showed that an increase in the discount rate will always decrease the steady state
value of the soil stock. While this result holds for the optimal path towards the steady
state, it cannot be confirmed for the comparative static analysis of this study. As before,
the sum of the allocation and cultivation effects is crucial.
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3 Summary and conclusions

This paper analyzes the private and social optimal intertemporal utilization of the soil
for agricultural production. It extends previous work by considering both crop yields
and soil losses as a nonlinear function of the soil depth within the decision problem of
the optimal allocation of land to a mix of crops. The choice of crops is considered the
key element for controlling soil erosion. If farmers recognize the productivity impacts
of soil loss and maximize their long run net returns, their optimal cropping strategy is
predominately characterized by the most rapid approach path to a long term equilibrium
by the cultivation of just one crop. A unique equilibrium exists and can be characterized
by a saddle point. The steady state is reached within finite time and is depicted by
the cultivation of a mix of crops. Thus, the maximization of the long run net returns
in the presence of a renewable resource essential for production as well as the call for
sustainable agricultural production both require diversification. Myopic farmers owing
the land as well as farmers with a short term or not secure lease are likely not to reach
the steady state equilibrium within their planning horizon. Their optimal cropping plan
can be characterized by non diversification. They cultivate one crop for some time and
the other crop for the rest of their planning horizon. Farsighted behavior of the farmer
likely leads to diversification irrespectively of the question of the ownership. However, the
amount of stock left at the end of the planning horizon is determined differently by the
farmer owing the land or leasing the land.

A comparative static analysis of the steady state for a particular specification of the
relationship between the production and erosion functions of crop one and two indicates
that the change of the crop mix (allocation effect) and the production intensity (cultivation
effect) as a result of variations in the parameters is not determined. However, their
common effect, in contrast to their individual effect, on the steady state value of the soil
stock and the shadow price can be signed unequivocally. For example, an increase in the
price of any crop decreases the steady state value of the soil stock. This result seems to
be contradictory given that the production and erosion functions are not identical for the
different crops. However, an increase in the price of a low erosion crop may lead to a rise
of the share of this crop within the crop mix as well as to an increase in the production
intensity. Thus, the allocation and cultivation effect have an opposite impact on the
steady state value of the soil stock. Their sum determines the result of the comparative
static analysis with respect to the steady state value of the soil stock and the shadow
price.

Without some knowledge of the relationship between the production and erosion functions
of crop one and two, it is not possible to decide on theoretical grounds whether the
allocation or cultivation effect is stronger with respect to the steady state stock of the
soil. This fact indicates in particular that an increase in the price of a low erosion crop,
via a subsidy on the basis of a goverment intervention to correct the market outcome of
the optimal soil stock, may have an ambigous effect on the steady state value of the soil
stock. Yet, it is conjectured that a decrease in the price of a high erosion crop via a tax
leads to an increase in the steady state value of the soil stock since the allocation and
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cultivation effects are pointing in the same direction.

In contrast to the results of the comparative static analysis are those of the compara-
tive dynamic analyses obtained for the initial model without further specification of the
relationship between the production and erosion functions of crop one and two. For ex-
ample, an increase in the price of a low erosion crop up to a certain point has no effect
on the optimal cropping strategy. Beyond this point, however, the equilibrium is charac-
terized by an attained higher steady state stock of the soil. Likewise, an increase in the
private discount rate may not have any effect on the optimal cropping strategy. For a
sufficiently strong decrease in the shadow price as a result of an increase in the private
discount rate, however, the soil will be used more intensively and a lower steady state
value of the resource is attained. Yet the most rapid approach path towards a steady
state equilibrium within finite time guarantees, for any discount rate, that the resource
will not be exhausted completely given an efficient land market. This finding, in contrast
to the results of the economics of renewable resources, is explained by the fact that soil
can be sold directly with the land. A high private discount rate reflecting the returns
from capital or financial assets may lead to the sale of the land or farm, but not to the
depletion of the soil stock. If the land values do not reflect the soil depth, farmers are
discouraged from conserving their soil, and they will exhaust the stock most rapidly up
to a certain point towards the end of their planning horizon.




Appendix

D)

(31): A pair (z,u;,u,) is admissible if it satisfies the restriction stated in problem (P).
Consider the pair (zp,0,0). In this case the soil is not used for agricultural production
and z > 0 until the soil depth reaches Z and Z = 0 thereafter.

(3_2): We need to show that N(z,U,t) is a convex set which requires that:

Maoe™ +7',g1) + (1 = A)(gge™™ + 7, 6}) € N(2,U,1),

9% = pf'(zum) —au)s’ + (p2f2(z, ) — c2uz)(1 ~ &)
9% = puf'(zu]) — eud)s® + (p2f?(2,43) — cau3) (1 — 2?)
g = —h'(zu)z! — B (z,03)(1 - ') +e(2)

(2,u3)(1 -

up)(1 - 2%) + e(2)

are elements of N(z,U,t). Since any nonpositive v is sufficient we can write

’
I

1
Uy
2
Uy

@ = —hl(z,ud)z? — h*(z

goe % +y = x((plfl(z, u) — crup)e” +’)/1) +(1-z) ((pzfz(z, Up) — coug)e % +’)’2) (69)
As a first step we analyze the follwing set
= (pif* (2, w) — cius)e ™™ +;, for1; < 0 and w; € [0,4), i =1,2 (70)

Please note that we introduced an upper bound for the variables u; and us. This bound
is arbitraryly large but finite. It facilitates the proof of the existence but it has no impact
at all on the economic results of this paper. For ease of notation we just consider the case
of u and do not distingush between u; and u, for the evaluation of the set ¥;,7 = 1, 2.
The result, however, is not affected by this simplification. Let

= (pf(z,u') — cul)e™® + 41 and v’ = (pf(z,u?) —cu)e™® +42  (71)
be elements of Y. Hence we need to show that

M4+ (1=-Ny?eY (72)

= Mpf(z,u") —cul)e® 4+ 4 + (1= 1) (pf (2, u%) — cu?)e™® + o2
Utilizing the concavity of f in u we obtain

w < (pf(z, At + (1= A)u?) = deu! + (1 - )\)cuz)e“” + 2+ (1= N2

= (pf(z,v’) —cw’)e™™ + 47,




L i §

a4

where u; € U. Now let
Y =w— (pf(z,0u?) — cu®)e™, (75)

which implies 43 < Ay! + (1 — A\)y2 < 0. Thus, we obtain
M+ 1=y = (0f(z,0%) -’ +9° €Y, (76)
which shows that Y and therefore Y; and Y5 are convex sets. As a result we can write
ge % +y=zYV1+ (1 -2)Y; (77)

Next, we employ a result given by Sydsaeter and Hammond (1995), page 621, which states
that: if S and T are convex set in R™ then S x T is also convex. Hence, we can conclude
that each summand on the right hand side of (77) is a convex set. To analyze the sum of
these two summands we need the following lemma

Lemma 1 If S and T are convez sets in R™ then S + T is also convez.

Proof:
Let s1,s2 € S and t,t, € T. With A € [0,1] we have As; + (1 — A)s2 € S and At; +
(1= AN)t2 € T. Hence, M(s1 +t1) + (1 — A)(s2 +t2) € S+ T, demonstrating that S+ T is
convex.

Employing lemma 1 allows us to conclude that the first component, goe~% + 7, of the set
N(z,U,t) is convex for each (z,t). The convexity of the second component, g;, of this set
can be verified in exactly the same way as the first component since —h! is also a concave
function in u;,7 = 1,2. Finally, we conclude that (32) is satisfied.

(33): This requirement holds by definition of the set U.

(34): The soil depth z lies in the interval [z, Z] for all admissible pairs (z,u;,us) and thus

for b = Z — z equation (34) is satified.

21



1)

Differtentiating the functions z*
rameters p;, pe and J yields:

or*

0z 0z*

0z OX*

= #(z*,A*) and u* = 4(z*, \*) with respect to the pa-

% = 50 " Blom So (78)
g; = —g—”z”-gzz + g—‘/”\g; S0 (79)
gzl = g—;g; %%3; So (80)
g; = Z—Z% g—zg—;\z S0 (81)
% = mor e % (83)

where (58) - (63) were used to evaluate these terms. To analyse these expressions further
we utilize (58) - (63) together with (48) - (51) and (44) - (47). Unfortunately, the signs
of (78) - (83) can still not be determined as we will show for the case of

oz* 0z 0z* 0L 0N* <

oo aza_m+a73—m>°

ou . 0% i 312 0%
= dtJ [(” he =g oy~ ("aA heg3) 3]
Tz 00z 0u0L\q <
= g7 [y (55 ~ 3350 50 (84)
Analyzing the term in the inner brackets shows that
ouox 0uodz -1
8_/\5 - '5;5 - F((’H:cz%uu - %quzu)(Huxsz\)
_(sz\Huu - 7'[u)\?'tar:u.)(,;'tu:z:?'ta:z))
—(Huac)2
= N2 (HuAHz:z - Huz’HxA)
— -1 h
- Z‘[ - u(pl - 7p2)fz
<
—n(((p1 = YP2)z" +9p2) = Nhus)] > 0. (85)
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Figure 4: Phase diagram in the z, A plane
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