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AN ANALYSIS OF BUNDLE PRICING:
THE CASE OF THE CORN SEED MARKET

1. INTRODUCTION

There has been much interest in the pricing of bundled goods by multiproduct firms. Three types
of bundle pricing have been analyzed: component pricing where each component is priced
separately and the effective price of products is the sum of their components; pure bundling
where consumers are restricted to buy either a fixed bundle of components or nothing at all; and
mixed bundling where products are offered both bundled and unbundled, each being priced
separately. The industrial organization literature has examined how bundling and bundle pricing
can help firms exercise market power under imperfect competition. This includes the price
discrimination effects of bundling as a strategy to exploit heterogeneity of consumer preferences
(e.g., Adams and Yellen 1976; Schmalensee 1984, McAfee et al. 1989; Venkatesh and
Kamakura 2003; Fang and Norman 2006; Gans and King 2006). It also includes the use of
bundling strategies as means of deterring entry or driving out rivals (e.g., Whinston 1990; Choi
1996; Carlton and Waldman 2002; Nalebuff 2004, 2005; Shi 2008a; Peitz 2008).

In general, which bundling strategy is better from the firm’s viewpoint depends on the situation
considered (Adams and Yellen 1976; McAfee et al. 1989; Venkatesh and Kamakura 2003; Fang
and Norman 2006). Bundling can be motivated from the supply side in the presence of
economies of scope (Adams and Yellen 1976). It can also be motivated from the demand side.
When products are valued independently (i.e., when consumers’ reservation value of a bundle is
the sum of the reservation values of each component), McAfee et al. (1989) has shown that pure
component pricing does not dominate if reservation values are independently distributed among
consumers. And when purchases can be monitored, mixed bundling dominates (at least weakly)
other bundling strategies (which can be seen as special cases of mixed bundling).

Going beyond the case where consumers’ reservation values of components are independent,
Venkatesh and Kamakura (2003) investigated the role of complementarity/ substitution in
bundling decisions by a monopoly. By definition, components are complements (substitutes)
when the reservation value of a bundle is super-additive (sub-additive) in the value of its
components. They document how both degree of complementarity/substitution and production
cost affect optimal bundling decision and pricing. They find that pure bundling dominates under
strong complementarity regardless of cost levels. Pure component strategies are likely to
dominate for substitutes, especially when production cost is high. And mixed bundling can
dominate for weak substitutes or weak complements when production cost is low.



The implications of price discrimination for efficiency have been examined extensively in the
literature (e.g. Schmalensee 1981; Holmes 1989; Corts 1998 and Armstrong and Vickers 2001).
There are scenarios where bundling strategies can reduce the adverse effects of exercising
market power (Adams and Yellen 1976; Brennan 2005; Shi 2008a). Also, if bundling strategies
are motivated from the supply side in the presence of economies of scope, the production of
multiple outputs by a single firm can reduce production cost and improve efficiency.

The empirical assessment of bundling and bundle pricing under imperfect competition raises
significant challenges due to lack of data and a gap between theory and empirical validation of
bundling.* We confront these challenges in three interdependent ways. First, we develop a model
of bundle pricing under quantity setting games. In a multiproduct context, we show how the
substitution/complementarity relationships among products with different sets of bundled
characteristics can affect pricing. This is used to motivate multi-product generalizations of the
Herfindahl-Hirschmann index (hereafter GHHI), which capture cross-market effects of imperfect
competition on bundle pricing. Second, the GHHIs are introduced in an econometric analysis of
the determinants of bundle pricing. To our knowledge, this is the first econometric investigation
using GHHI to estimate the linkages between imperfect competition and multiproduct pricing.
The model also allows for a test of standard component pricing. Third, we present an empirical
application to the US corn seed market. The econometric estimates provide useful information on
interactions between bundling and market power.

The corn seed market presents a great case study for the analysis of bundling and bundle pricing
under imperfect competition. Genetically modified (GM) corn acres account for about 80 percent
of the total US corn acreage in 2007. GM corn seeds include patented genetic traits (such as
insect resistance and/or herbicide tolerance) produced by biotech firms. These traits can be
introduced into the seed either separately, or bundled together when multiple genetic traits are
“stacked”. In this context, bundled GM seeds refer to seeds with stacked genetic traits.

The last decade has seen a rapid rise in bundling in the US corn seed market. As documented
below, the proportion of US corn acres planted with stacked seeds has gone from 2.1 percent in
2000 to 56.2 percent in 2007. Also, there has been a sharp increase in the number of traits being
bundled. Single trait GM corn seeds were first commercialized in 1996. Two years later the
double stacked corn seed (i.e. seed with two genetic traits) was introduced, followed by the
introduction of the triple stacked system (i.e. the bundling of three traits), and then the quadruple
stacked system in around 2006. Moreover, corn seeds with eight traits are expected to be
released by Monsanto and Dow AgroScience by 2010 or sooner.

1 An evaluation of complex bundle pricing is presented by Chu et al. (2008). However, their analysis is based on
numerical simulations.



The increased use of genetically modified and patented corn seeds has been associated with
changing structure in the seed markets. After a flurry of horizontal and vertical mergers in the
1990s, the corn seed industry is now dominated by a few large biotech firms (Fernandez-Cornejo
2004). According to Graff, Rausser and Small (2003), these mergers have been motivated in part
by the complementarities of assets within and between the agricultural biotechnology and seed
industries. This indicates that seed bundling can be associated with cost reductions obtained from
capturing economies of scope in the production of genetic traits. But bundling can also be part of
a product differentiation strategy and price discrimination scheme intended to extract more profit
from farmers facing varying agro-climatic conditions. In this context, increased market
concentration has raised concerns about adverse effects of imperfectly competitive pricing and
the strategic use of bundling (Fulton and Giannakas 2001; Fernandez-Cornejo 2004). These
issues suggest a need to investigate empirically the economics of GM seed pricing and bundling.

Our econometric analysis quantifies the linkages between seed bundling, changes in market
concentrations, and corn seed pricing. For bundled biotech traits, we reject standard component
pricing of corn seed. We find strong evidence of sub-additive bundle pricing, which is consistent
with price discrimination strategies and scope economies in the production of bundled seeds. We
also find evidence of spatial price discrimination. The analysis captures the interactive role of
market concentrations and complementarity/substitution in demand. We document how
traditional and cross-market effects of imperfect competition affect seed prices. This is done by
estimating Lerner indexes which provide useful information on departures from marginal cost
pricing. Our analysis also illustrates how changing market structures (e.g., from mergers) can
affect seed prices.

The paper is organized as follows. Section 2 presents a conceptual framework of multiproduct
pricing under imperfect competition. It develops a Cournot model introducing the GHHIs
capturing cross-market effects of imperfect competition. Section 3 provides an overview of the
US corn seed market. Section 4 presents our econometric model of seed pricing, where the
GHHiIs reflect the exercise of market power. The estimation method and econometric results are
discussed in section 5. Sections 6 and 7 report the empirical findings and evaluate their
implications. Finally, section 8 concludes.

2. THE MODEL

Consider a market involving a set N ={1,..., N}of N firms producing a set M ={1,...,M}of M
outputs. Denote by y" =(y;,...,y,..., y5, ) € R" the vector of outputs produced by the n-th firm,
y» being the m-th output produced by the n-th firm, m € M, n e N. The price-dependent
demand for the m-th output is p,, (zneN y") . The profit of the n-th firm is:

ZmeM[pm (ZneN y")ya]1-C.(y"), where C_(y")denotes the n-th firm’s cost of producing y" .



Assuming a Cournot game and under differentiability, the profit maximizing decision of the n-th
firm for the m-th output y; satisfies

P+ D i Ve — 5 <0, (1a)
Ym 20, (1b)
(ot Xy 20— 22} y5 =0, (10)

Equation (1c) is the complementary slackness condition. It applies whether the m-th output is
produced by the n-th firm (y, > 0) or not (y, = 0). This is important for our analysis: (1c)

remains valid irrespective of the firm entry/exit decision in the industry; and for an active firm,
(1c) holds no matter how many of the M products the firm chooses to sell.

Below, we consider the case of linear demands where p, = ¢, + ZmeM (akmzneN Ya),» With
;ig =q,, and «,,, <0. We also assume that the cost function takes the form C_(y") =
F(S")+ ZmeM CyYm» Where S" ={j e M:y] >0} is the set of positive outputs produced by the

n-th firm. Here, F,(S")> 0 denotes fixed cost that satisfies F (<) = 0. And ZmeM c,y, denotes
variable cost, with constant marginal cost acay—(y) =c,, m e Mforall n € N. Note that the

presence of fixed cost (where F, (S") >0 for S" = ) implies increasing returns to scale. In this

situation, marginal cost pricing would imply negative profit and any sustainable equilibrium
must be associated with departures from marginal cost pricing. Fixed cost can also capture the
presence of economies of scope. This would occur when F, (M,)+F,(M,)>F (M, uM,) for

some M, — M and My — M, i.e. when the joint production of outputs y; = {y}:jeM.} and y;
= {y] : j e M,} reduces fixed cost (Baumol et al., 1982, p. 75). A relevant example is the case of

an R&D investment contributing to the joint production of y; and vy, .
Assuming that the aggregate output of the m-th product is positive, Y, = ZneN y. >0, define

m =

s i— €[0,1] as the market share of the n-th firm for the m-th product. Dividing equation (1c)

by Y, and summing across all n € N yield

Pn = Cn _ZkeM (akm ZneN S:Srrr:Yk) | (2)



which can be alternatively written as

Pn = Cn _ZkeM akakak ) (3)

" owithm, k e M.

m?

where Y, is the aggregate output of the k-th product, andH,, = zneN S S

Equation (3) is a pricing equation for the m-th product. It is a structural equation in the sense that
both price p,, and the market shares in the H,’s are endogenous (as they are both influenced

by firms’ strategies). Yet, equation (3) provides useful linkages between price and market
structure. It shows that the exercise of market power in (3) is given by

M m = _ZkeM akakak , (4)

which reflects departures from marginal cost pricing. A simple way to characterize this departure
is through the Lerner index: L, :pp;‘: , where ¢y, is marginal cost. The Lerner index L,
measures the proportion by which the m-th output price exceeds marginal cost. It is zero under
marginal cost pricing, but positive when price exceeds marginal cost. The Lerner index provides

a simple characterization of the strength of imperfect competition (where the firm has market
power and its decisions affect market prices). From equations (3) and (4), the Lerner index can

be writtenas L, = “S— This makes it clear that My, in (4) gives a per-unit measure of price
enhancement beyond marginal cost. Equation (4) also provides useful information on the
structural determinants of M. Indeed, whileH, , € [0, 1], note that H,, — 0 under perfect
competition (where the number of active firms is large) and H, = 1 under monopoly (where
there is single active firm). In other words, the term M, in (4) captures the effects of imperfect
competition and the exercise of market power on prices.

When k = m, note that H |

measure of market concentration. The HHI is commonly used in the analysis of the exercise of
market power (e.g., Whinston 2008). Given ¢,,, <0, equation (3) indicates that an increase in

is the traditional Herfindahl-Hirschman index (HHI) providing a

m

the HHI H_, (simulating an increase in market power) is associated with an increase in the
Lerner index L, and in price p,, . As a rule of thumb, regulatory agencies have considered that
H.., > 0.1 corresponds to concentrated markets where the exercise of market power can
potentially raise competitive concerns (e.g. Whinston 2008).2

2 The markets shares are often expressed in percentage term in the calculation of the Herfindahl-Hirschman index.
Then, the rule becomes Hmm > 1000 (Whinston 2008).



Equation (3) extends the HHI to a multiproduct context. It defines H,, as a generalized

Herfindahl-Hirschman index (GHHI). When k = m, it shows that a rise in the “cross-market”
GHHI H,,, would be associated with an increase (a decrease) in the Lerner index L, and in the

price p, if ¢,, <0 (>0). This indicates that the signs and magnitudes of cross demand effects

akm

= fyﬁ affect the nature and magnitude of departure from marginal cost pricing. Following

Hicks (1939), note that «,, = gsk <0 (> 0) when products k and m are substitutes (complements)

on the demand side, corresponding to situations where increasing y, tends to decrease (increase)
the marginal value of y; . The terms { H, . : k #m} in equation (3) show how the nature of
substitution or complementarity among outputs on the demand side (through the terms e, )
influences the effects of market concentration on the Lerner index and prices™ a rise in H,,
would be associated with an increase (a decrease) in the Lerner index L, and in the price p,,

when vy, and y,, are substitutes (complements).

Note that equation (3) applies to general multiproduct pricing in a Cournot game under imperfect
competition. It includes as a special case the pricing of bundled goods differentiated by their
characteristics. In a way consistent with previous research (e.g., Adams and Yellen 1976;
Venkatesh and Kamakura 2003; Fang and Norman 2006), it shows that the exercise of market
power in bundling and bundle pricing can be complex. This indicates a need to assess
empirically how the bundling of product characteristics interacts with market structures to affect
pricing. This issue is explored next in the context of the evolving market for US corn seeds.

3. THE US CORN SEED MARKET

Our analysis relies on a large, extensive data set providing detailed information on the US corn
seed market. The data were collected by dmrkynetec [hereafter DMR], St. Louis, MO. The
DMR data come from a stratified sample of US corn farmers surveyed annually from 2000 to
2007.* The survey provides farm-level information on corn seed purchases, corn acreage, seed
types and seed prices. It was collected using computer assisted telephone interviews. On average
about 40-50% of the farms surveyed each year remain in the sample for the next year.”

3 Our model provide a more general framework in analyzing the role played by substitution/complementarity in
multiproduct pricing under imperfect competition than Venkatesh and Kamakura (2003), who investigate such
issues only in a monopolistic setup.

4 The survey is stratified to over-sample producers with large acreage.
5 Thus, the DMR survey is not a true panel as the farm composition of the sample changes over time.

6



Since farmers typically buy their seeds locally, our analysis defines the “local market” at the
Crop Reporting Districts (CRD)® level. On average each farm purchased four to five different
seed varieties each year’. To guarantee reliable measurement of market concentrations, our
analysis focus on those CRDs with more than ten farms sampled every year between 2000 and
2007. In total our data contain 149,919 observations from 91 CRDs in 18 different states.”

Starting in the 1930s, the development and diffusion of hybrid corn transformed the US seed
industry and contributed to the dominant role played by private seed companies. With advances
in breeding technology (including biotechnology) and institutional changes in the intellectual
property protection of life forms since the 1980s, many small seed firms exited the market, and
the seed industry is now dominated by few large companies (Fernandez-Cornejo 2004). The
DMR data show that about 300 seed companies operate in the US corn seed market. However,
only six biotech firms are involved,’® four of which own subsidiary corn seed companies.*°

Currently there are two major groups of genes/traits in the GM seed market: insecticide
resistance designed to reduce yield damages caused by insects; and herbicide tolerance designed
to reduce yield reductions from competing plants (weeds). For corn, the insect resistance traits
focus on controlling damages caused by two insects: the European corn borer (ECB),*" and
rootworms (RW).* In corn biotech seeds, this means incorporating the Bt gene against the ECB,
and the Bt gene against RW." The herbicide tolerance (HT) traits work with corresponding
herbicides. After adopting the HT traited seed technology, farmers can apply the relevant
herbicide to the field, which kills the weeds without damaging the traited crop. Some biotech
seeds contain only one of these traits, while the bundled seeds contain multiple traits from some
combination of the two groups of traits.

Figure 1 shows the evolution of corn acreage shares reflecting adoption rates in the US from
2000 to 2007, for conventional seed, single-trait biotech seed, double-stacking biotech seed,

6 A crop-reporting district (CRD) is defined by the US Department of Agriculture to reflect local agro-climatic
conditions. In general, a CRD is larger than a county but smaller than a state.

7 Due to the fast turnover in the seed market, farmers may try new varieties every year, thus would purchase more
than one variety seed for their field. In addition, the US EPA requires that farmers maintain at least 20% of their
cropland for non —“insect resistant” varieties.

8 They are: CA, CO, IL, IN, IA, KS, KY, MI, MN, MO, NE, NY, ND, OH, PA, SD, TX, and WI.

9 They are: Monsanto, Syngenta, Dow AgroSciences, DuPont, Bayer CropScience, and BASF.

10 While one of the two firms has already entered the cotton seed market, the DMR data show that it has not entered
(yet) the US corn seed market.

11 The European corn borer is a major pest of corn in North America and Europe. Yield loss due to ECB has been
estimated to average about five percent, although damages can vary widely both over time and over space.

12 Yield loss due to corn rootworms damages average around five percent in the US, amounting to about $800
million of reduced income for US corn growers.

13 Bt is shorthand for a common soil bacterium called Bacillus thuringiensis. It also refers to the insecticide

produced by a gene from these bacteria. In Bt corn, modified versions of this gene are introduced in corn plants
where they kill selective insects.



triple-stacking biotech seed, and quadruple-stacking biotech seed. The conventional seed’s
acreage share has decreased rapidly over the past eight years: from 67.5% in 2000 to 20.6% in
2007. Table 1 illustrates the average price of corn seed ($ per bag) for different types from 2000
to 2007. It indicates that biotech traits tend to add value to the conventional germplasm, and that
multiple stacking/bundling is worth more than single stacking.

Figure 1. Corn seed adoption rates in the US, acreage share, 2000 — 2007.
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The information presented in figure 1 and table 1 is at the national level, which masks important
spatial market differences. For example, while single-trait biotech seeds had a US market share
of 30% in 2000, the DMR data show that conventional seeds still dominated many local markets.
And while the US conventional seed’s market share was 20.6% in 2007, some local markets
were completely dominated by biotech seeds. This indicates the presence of spatial heterogeneity
in the US corn seed market. As shown below, such heterogeneity also applies to seed prices.



Table 1. Average price for different seeds ($ per bag), 2000 - 2007

Year|Conventional] Bt ECB Bt RW HT Double Triple Quadruple
Single Single Single

20001 79.37 100.24 n/a 87.34 95.21 100.95 n/a
2001 80.73 103.77 n/a 89.85 100.43 105.29 n/a
2002 81.81 103.91 n/a 89.08 103.19 94.64 n/a
2003 83.79 104.93 114.88 94.73 108.78 82.10 n/a
2004 86.42 108.61 120.49 98.88 113.68 112.21 n/a
2005 86.96 104.46 114.52 101.50 114.49 123.78 n/a
2006) 91.36 109.69 116.67 109.93 123.03 139.21 131.29
2007 93.53 111.36 121.07 114.67 124.71 133.02 140.03
Total 84.29 105.37 117.33 101.51 118.25 133.47 139.60

4. ECONOMETRIC SPECIFICATION

Our analysis of the determinants of corn seed prices builds on equation (3). As derived, equation
(3) is a structural equation reflecting the determinants of pricing under imperfect competition in a
multi-product framework. As discussed in section 2, fixed cost can generate economies of scope.
Economies of scope are relevant here as R&D investment likely generates synergies in the
production of bundled/stacked seeds. This would in turn affect bundle pricing. Also, the effects
of imperfect competition on price can be expected to depend on the nature of
substitution/complementarity across bundles. Below, we specify a modified version of (3) that
reflects the effects of both bundling and market power on corn seed price.

Consider for the case of seeds exhibiting different genetic characteristics. Partition the set of
seeds into mutually exclusive types. Let K; € {0, 1} be a dummy variable for a seed of the i-th
type, i =1, ....J. Let i =1 characterize conventional seed type, and let Q ={2,..., J} denote the

set of genetic traits associated with biotech seeds. Thus, K, =1 for conventional seeds. Each
biotech seed includes at least one genetic trait in the set Q, with K, =1 if the seed includes the
genetic traits of the i-th type, i € Q, and K, = 0 otherwise. In the absence of bundling/stacking

(where each seed can be of only one type), the K’s would satisfy Z::l K, =1. However, in the

presence of stacking, some biotech seeds may include the genetic traits of more than one type,



implying that Z;Ki >1. Then, while K, 's provide information on the genetic characteristic of

each seed, evaluating the effects of these characteristics on seed prices requires a flexible
specification that can capture bundling/stacking effects.

We start with a standard model in which each purchase observation is at farm-variety level and
the price of a seed varies with its characteristics (e.g., following Rosen 1974). The price p
represents the net seed price paid by farmers (in $ per bag). Consider the hedonic equation
representing the determinants of the price p for a seed of characteristics {K,, K,,...,K,}:

VTS N LD DX LIEO I I IS 35 35 39 3 IS SRS

ie{l,...,J} jeQ ieQ zeQ jeQ ieQ reQ zeQ jeQ ieQ

> z>] J>i r>z z>j J>i

where X is a vector of other relevant covariates, and ¢ is an error term with mean zero and
constant variance. In equation (5a), K; is a dummy variable for double-stacking the i-th and j-th

_ _ 1] .. [K =K, =LK, =0fori=j=z| . » 1
genetic type, with K, = 0 if stherwise , 1, ] €Q. Similarly, K;, = 0

L | K=K =K, =LK, =0fori=j=z=r 1] .
if J ) cand K. = if
otherwise 0

{Ki =K, =K, =K =1fori= jzz#r

] are dummy variables representing respectively triple-
otherwise

stacking and quadruple-stacking.*

In cases where the market is void of bundling/stacking of multiple traits, the dummy variables
K, K, and K, equal zero. This implies that the coefficients o, &;,, and ¢, in (5a) capture

ij? ijzr ij? ijz? ijzr
the effects of bundling on seed price. The DMR data reveal that seed bundling is common, which
allows us to test for its price impacts. One important special case occurs when
3; = 6, = 0, =0, which corresponds to standard component pricing. Here, the price of seed is

ijzr

just the sum of the value of its genetic components (as captured by 2 0;K, , with 6, measuring

the unit value of the i-th genetic material). When the parameters 6., o, , and o, are not all

ijr ijz» ijzr

zero, equation (5a) allows for non-linear pricing associated with bundled goods under stacking.

2 Km0 K =20 0 0 Ky =32 2 0 0 Ky =1

ie{l,..., jeQ ieQ zeQ jeQ ieQ reQ zeQ jeQ ieQ
14 Note that the K’s in (5a) satisfy I 2] 1> r>z z>j >

implying that they are perfectly collinear with the intercept. To deal with this issue below, we set 31 =0 in (5a)
meaning that the intercept reflects the price of conventional seeds and that the other & parameters measure price
differences relative to conventional seeds.

10



and J.

ijzr

In general, the parameters &., o

i O can be either positive or negative. When positive,
these parameters would reflect super-additive bundle pricing. This could occur when component
demands are complementary, i.e., when adding a trait to an existing trait system increases
consumer’s valuation for the stacked system more than the marginal value of the additional trait.
Alternatively, negative parameters would correspond to sub-additive bundle pricing. The price of
bundled goods would then be “discounted” compared to component pricing. This could happen
under two scenarios. First, this could be associated with economies of scope on the production
side, if the joint production of bundled goods leads to a cost reduction that gets translated into
lower bundle price. Second, this could be associated with price discrimination on the demand
side, if discounting the price of a bundled good can help increase firm profit. In general, equation

(5a) provides a framework to analyze the nature of bundle pricing.
Next, as shown in equation (3), we introduce market power effects in (5a) by specifying

5i :50i +5liHii' (5b)

whereH,, = zneN s's is the HHI (s being the market share of the n-th firm in the market for

the i-th seed type), measuring market concentration related to the i-th characteristic. We further
specify
ﬂ:ﬂo+22ﬂ1inHij ' (5¢)

jeQ ieQ

J>i

H. 0
where HH,; ;{ "} if K +KJ{> } i#j, H; EZS.”ST‘ being the cross-market GHHI
i 0 i =0 ij ivj

neN
discussed in section 2 and measuring concentration for firms operating in the market for both i-th
and j-th seed type. With this specification, the coefficient of the traditional HHI, 6, >0, would

reflect market power related to the i-th characteristic, while the coefficient of the GHHI, 3 >0,

would reflect the exercise of market power across characteristics.

Since HHI and the GHHI’s are zero under competitive conditions, it follows from equations (4)
and (5a)-(5c) that the effect of market power on price is given by

M = z §liHiiKi+ZZﬂlinHij' (6)
iefl,...,J} jeQ ieQ

>

In a way similar to equation (4), equation (6) provides a structural representation of the role of
imperfect competition in pricing. As noted in section 2, the term M in (6) measures the difference

11



between price and marginal cost. It can be used to obtain the associated Lerner index L = 1.

When positive, M reflects the effect of imperfect competition on price enhancement.

Our analysis is based on 5 seed characteristics (J = 5): Conventional (K, =1); insect resistance
trait Bt ECB (K, =1); insect resistance trait Bt RW (K, =1); herbicide tolerance trait HT1
(K, =1); and herbicide tolerance trait HT2 (K, =1). Note that this distinguishes between two

types of herbicide tolerance: HT1 and HT2. The reason is that, in our sample, HT1 and HT2 are
sometimes stacked/bundled together. This implies that HT1 and HT2 are seen as different by
farmers (otherwise, no farmer would pay extra for a second herbicide tolerant technology).

Our model specification allows us to estimate the pricing of each seed type along with
stacking/bundling effects. To illustrate, from (5a)-(5c), the price equation for conventional seed
(K, =1) is

5
p1::Bo+501K1+511H11K1+Zﬂ11jHH1j+(PX+5- (72)

j=2
For a seed marketed with a single Bt ECB trait (K, = 1), the price equation becomes

5
P, = By + 0K, +0,HuK, + B1,HH, +Zﬂ12jHH2j +o-X+e. (7b)

i=3

And for a double-stacking seed with an insect resistance trait (Bt ECB) and our first herbicide
tolerance trait (HT1) (K, =1, K, =1, and K,, =1), the price equation is

p24 = ﬂO +502K2 +504K4 +524K24 +522H22K2 +544H44K4 +

5
ﬂllZHHIZ +18114HH14 +Z/812jH sz +18134HH34 +ﬁ145HH45 +0X+¢

i=3

(7c)

Comparing equations (7b)-(7c) reveals how our model captures price differences between single-
trait seed and bundled/stacked seeds. It shows how both stacking and market concentration affect
pricing. The first row of (7c) contains all the dummy variables reflecting stacking/bundling of
traits along with their interaction effects with the traditional HHI’s. The second row of equation
(7c) contains the parameters linking price to the generalized cross market GHHI’s. Note that
market share information is contained in both the traditional and cross Herfindahl indexes. This
means that the effects of market concentration and imperfect competition on prices are complex.
Evaluating these effects will be addressed in section 7.

The relevant covariates in X include location, a time trend, each farm’s total corn acreage, and
binary terms covering the range of how each purchase was sourced. The location variables are
defined as state dummy variables, capturing spatial heterogeneity in farming systems and agro-
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climatic conditions. The time trend is included to capture the advances in hybrid and genetic
technology through the years of the study. Farm acreage captures possible price discrimination
effects related to farm size. While there are a total of 16 different purchasing sources, most seeds
are purchased through “Farmer who is a dealer or agent” (33%), followed by “Direct from seed
company or their representatives” (29.4%), and “Myself, | am a dealer for that company”
(15.7%). Note that farmers may choose different sources for different seed varieties. Including
source of purchase as an explanatory variable in (5a) captures possible price discrimination
schemes affecting the seed price paid by farmers.

The market share of biotech seeds has increased significantly during the years of our study (see
figure 1). In many cases, we found “entry” and “exit” in some local markets. Note that our model
specification includes each H only in interaction with K (with coefficient &;;). Similarly, the

specification for HH;; implies that the structural linkage between market concentration H;; and

pricing is present only when either K; or K; or both are non-zero, with i # j. In order to

investigate whether entry/exit may affect seed prices beyond the H’s and HH’s effects, we also
introduce entry/exit variables in the specification (5a). In our data, we observe local exits in the
conventional seed (K,) markets. We also observe local entry in the HT1 trait (K,) markets, the

Bt ECB trait ( K,) markets and the Bt RW trait ( K,) markets. To capture entry-exit effects on

seed price, the following binary terms are included in the model: Exitl=1 when
H,, =0; Entry2 =1 when H,, =0; Entry3=1 when H,, =0;and Entry4=1 when H,, =0.%

5. ESTIMATION

Table 2 reports summary statistics of key variables used in the analysis. The mean values of H;;’s
show that the conventional seed markets exhibit greater competition than the biotech trait
markets. For the 91 CRDs covering the eight years of our data, the average conventional seed
HHI is 0.258. This is over 40% above the Department of Justice’s threshold of 0.18 for
identifying "significant market power". Each CRD is presumed to represent the relevant market
area for each transaction; thus, all H terms are calculated at that level. Conducting market
concentration analysis at the CRD level seems relevant as farmers typically buy their seeds
locally and seed varieties vary with local agro-climatic conditions.*® We observe significant
changes in the H’s both across regions and over time. This reflects the fact that the corn seed
market has undergone dramatic structural changes over the last decade. Our analysis of the

15 Note that we do not construct an event dummy for Ks, as we do not observe any pattern of entry or exit for this
trait.

16 The average national HHI for the conventional corn seed markets from 2000-2007 is only 0.164, indicating that
seed companies market in localized regions.
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determinants of seed prices both over time and across space provides useful information on the
effects of these changes.

Table 2. Summary statistics

Variable Number of Mean Standard Minimum | Maximum
observations” Deviation
Price ($) 149910 97.94 26.49 0 230
Farm size (acre) 149919 593.31 634.90 5 15500
H, 727 0.258 0.168 0.067 1
H,, 718 0.769 0.188 0.334 1
H, 353 0.909 0.151 0.345 1
H,, 726 0.783 0.174 0.432 1
HH,, 673 0.040 0.037 2.09E-05 0.318
HH,, 321 0.037 0.030 1.40E-04 0.190
HH., 653 0.033 0.034 5.54E-06 0.264
HH,, 351 0.760 0.174 0.166 1
HH,, 695 0.594 0.260 0.010 1
HH,, 351 0.794 0.201 0.085 1

%/ The data contain 149919 observations from 91 CRDs spanning 8 years (2000-2008). For the price, nine
observations have missing value, thus the total number of observation becomes 149910.

%/ For the market concentration measurements H’s, we only report the summary statistics of those non zeros at the
CRD level, therefore the number of observations is at most 91x 8 = 728.

One econometric issue in the specification (5a)-(5c) is the endogeneity of the H’s. Both market
concentrations (as measured by the H’s) and seed pricing can be expected to be jointly
determined as they both depend on firm strategies in the seed market. To the extent that parts of
the determinants of these strategies are unobserved by the econometrician, this would imply that
the H’s are correlated with the error term in equation (5a). In such situations, least-squares
estimation of (5a)-(5c) would yield biased and inconsistent parameter estimates (due to
endogeneity bias). The solution is to consider estimating equation (5a)-(5c) using an instrumental
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variable (IV) estimation method that corrects for endogeneity bias. To address this issue, we first
test for possible endogeneity of the H’s using a C statistic calculated as the difference of two
Sargan statistics (Hayashi 2000, p. 232). Under the null hypothesis of exogeneity of the H’s, the
C statistic is distributed as Chi-square with degrees of freedom equal to the number of variables
tested. The test is robust to violations of the conditional homoscedasticity assumption (Hayashi
2000, p. 232).2" In our case, the C statistic is 92.94, showing strong statistical evidence against
the null hypothesis of exogeneity of the H’s.

The presence of endogeneity motivates the use of an IV estimator. We used the lagged value of
each H as instruments and conducted a series of tests supporting this choice. We estimated an
Arellano-Bond dynamic panel regression of a reduced form model for the H's that also includes
lagged H’s as explanatory variables. The Arellano-Bond estimation allows for a test of serial
correlation of the associated error term. Given lagged H°s, the test results failed to find evidence
of serial correlation in the reduced-form error terms (reflecting unobservable factors affecting the
H’s). This lack of serial correlation indicates that lagged H’s appear to be good candidates for
instruments. On that basis, equation (5a)-(5¢) was estimated by two-stage-least-square (2SLS),
using one-period lag of the H's for instruments. Further evaluation of these instruments is
presented below.

A second pretest was to evaluate the model for the effects on prices from unobserved
heterogeneity across farms (e.g., unobserved pest populations). A Pagan-Hall test'® found strong
evidence against homoscedasticity of the error term in (5a). As reported in section 3, each farm
purchases on average four to five different seed varieties. Some large farms actually purchase up
to 30 different varieties in a single year. Unobserved farm-specific factors affecting seed prices
are expected to be similar within a farm (although they may differ across farms). This suggests
that the variance of the error term in (5a) would exhibit heteroscedasticity, with clustering at the
farm level. On that basis, we relied on heteroscedastic-robust standard errors under clustering at
the farm level in estimating equation (5a)-(5c).

Additional tests of the validity of the instruments were conducted.*® In the presence of
heteroscedastic errors, we used the Bound et al. (1995) measures and the Shea (1997)

partial R” statistic to examine the possible presence of weak instruments. The F-statistics testing
for weak instruments were large (i.e., much above 10). Following Staiger and Stock (1997), this
means that there is no statistical evidence that our instruments are weak. Finally, The

17 Under conditional homoskedasticity, the C statistic is numerically equivalent to a Hausman test statistic.

18 Compared to the conventional Breusch-Pagan test, the Pagan-Hall test is a more general test for
heteroscedasticity in an IV regression, which remains valid in the presence of heteroscedasticity (Pagan and Hall
1983).

19 Note that, since our model is just identified, the Hansen over-identification test is not applicable.
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Kleibergen-Paap weak instrument test was conducted (Kleibergen and Paap, 2006),% yielding a
test statistic of 14.67. Using the critical values presented in Stock and Yogo (2005), this
indicated again that our analysis does not suffer from weak instruments.

6. EMPIRICAL RESULTS

Table 3 reports the IV regression results from our model using 2SLS method, with
heteroscedastic-robust standard errors under clustering. We will first discuss the price impacts
associated with introducing single biotech traits. This builds toward a broader assessment of the
more complex issues related to the marginal price impacts derived from the stacking of traits and
from the role that market power has shifting rent between farmers and the seed industry. In
section 7, simulations of the Illinois corn seed market provides additional insights about the
interactive forces that derive from biotechnology.

Characteristics effects

Compared to conventional seeds, the results show that the insertion of single biotech traits led to
sizeable seed price premiums in three of the four traits considered. The coefficients of the terms
K, (BtECB), K, (Bt RW) and K, (HT2) are each positive and statistically significant. They are

respectively $23.31, $25.72, and $7.38 per bag, suggesting the presence of significant premiums
for these biotech traits. The coefficients of K, (HT1) and K, (HT2) differ, providing evidence of
differences between the two herbicide-tolerant traits HT1 and HT2. The coefficient of K, (HT1)
is negative and statistically significant. However, note that the K’s also appear in interaction with
the H’s and HH’s in (5a)-(5c). This means that coefficients of the K’s alone provide only partial

information on how prices vary across seed types. The magnitude of the price premium across
seed types will be analyzed in more detail in section 7.

The coefficients of the terms K., K. ,and K.

ij? ijz? ijzr

bundling on seed price. All 11 of the stacking coefficients are negative, and all but K,, are

provide useful information on the effects of

statistically significant. As discussed in section 4, component pricing is associated with the null
hypothesis that all stacking coefficients are zero. Using a Wald test, the null hypothesis that the
coefficients of stacking effects are all zero is strongly rejected. This provides convincing
evidence against component pricing of biotech traits in the corn seed market. The negative and
significant stacking effects also indicate the prevalence of subadditive pricing of corn seed in
their individual components. Subadditive pricing may be driven by price discrimination
associated with demand heterogeneity (higher prices being associated with more inelastic
demands). But the fact that all of the stacking coefficients are negative indicates the likely

20 Note that the Kleibergen-Paap test is a better choice compared to the Cragg-Donald test for weak instruments: the
former remains valid under heteroscedasticity (while the latter one does not).
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presence of economies of scope in the production of bundled/stacked seeds. This would be
consistent with synergies in R&D investment (treated as fixed cost) across stacked seeds. For
example, a given R&D investment can contribute to the production of multiple seed types,
meaning that bundling can help reduce the overall cost of producing seeds. In this context, the
subadditivity of prices would reflect the fact seed companies share with farmers at least some of
the benefits of scope economies.

Market concentration effects

The model incorporates market share information about each of the trait using the traditional
Herfindahl indexes H;; along with generalized cross-Herfindahl indexes HH;; as given in

equations (5a)-(5c). Here, we discuss the partial effects of concentration and withhold a global
assessment of market concentration until section 7.%* The partial effects of changes to the
traditional Herfindahl indexes for each trait are presented in the first four rows of the “Market
concentration effects”. In this context, our estimates indicate that an increase in market
concentration for conventional seeds (as measured by H,, ) has a positive and statistically

significant effect on the price of conventional seeds. More specifically, a one-point increase
inH,, is associated with a $13.1 per bag increase in the price of conventional seeds. The partial

effect of concentration in both insect resistant technologies, the Bt-ECB trait market (H,, ) and
the Bt-RW trait market (H,;), were statistically insignificant. Finally, the concentration effect in
the HT1 trait market is positive and statistically significant. A one-point increase in H,, is
associated with a $20.11 per bag increase in the price of HT1 seeds.

We have shown in section 2 that the effects of cross-market concentration HH.., i+ j, depend on

ij?
the substitutability/complementarity relationship between traits i and j. We expect that an
increase in the cross-market concentration HH ; will be associated with a rise (decrease) in the

price if the two components are substitutes (complements).

Of the three cross GHHI’s that involves conventional seed (HH,,,HH,,HH,,), only the
coefficient on HH,, (conventional market share crossed with HT1 market share) is of statistical
importance. The positive effect of HH,, suggests that the HT1 trait is a substitute with

conventional seed. This is plausibly explained by the presence of a “yield drag” associated with
adding a trait into a seed (Avise 2004, p. 41), which would induce some substitution in demand

21 We do not observe non-zero His because no firm that operates in HT2 market sells a conventional seed. Similar

H H

situations arise for Haso Has and = 45, When present, Hss =1 because only one firm operates in this
characteristic market.
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between this trait and conventional seed. The estimation shows that a one-point increase inH,, is
associated with a $35.55 per bag increase in seed price.

All the cross-market concentration effects involving biotech traits are statistically significant.
This stresses the importance of a cross-market evaluation of market power. The Bt-ECB and Bt-
RW cross-market effect (HH,;) is negative. This suggests that these two IR traits are

complements. Since these two traits are targeting the control of different insects, this would
reflect the fact that crop damages caused by one insect infestation are larger in the presence of
damages from another insect infestation. The Bt-ECB and HT1 effect (HH,,) and Bt-RW and HT1

effect (HH,,) are positive, suggesting that these two IR traits and HT1 trait are substitutes. This

indicates that the effects of insect infestation on corn yield differ significantly from those for
weed infestation.

Other Covariates

Location effects: Compared to California, corn seed is sold at a premium in all states except
Kentucky. The price premium is statistically significant in many states. Ordered from high to low
premium, these states are: Nebraska ($7.50), lowa ($7.00), Kansas ($6.86), Missouri ($6.31),
Ilinois ($5.96), Minnesota ($5.24), Colorado ($5.01), South Dakota ($4.75), Pennsylvania
($3.93), and Indiana ($3.70). This shows that the main corn-producing states in the Corn Belt
charge more for corn seeds (e.g., lllinois or lowa). This is consistent with corn belt farmers
generating greater farm benefits from high-performing corn seeds under favorable agro-climatic
conditions. It also suggests that seed companies do price discriminate across regions, reflecting
spatial differences in elasticities of demand for seeds.

Purchase source effects: Recall that most farmers purchase seed from “Farmer who is a dealer or
agent” (33%), followed by “Direct from seed company or their representatives” (29.4%), and
“Myself, | am a dealer for that company” (15.7%). Compared to purchasing from “Farmer who is
a dealer or agent”, “buying directly from a seed company or their representative” costs about
$4.59 less, while purchasing from “myself” costs about $3.89 less. These results may reflect the
effect of farmer’s bargaining position, but also possibly the presence of price discrimination

across different modes of purchase.

Other variables: The exit and entry dummies are all negative but none are statistically
significant. The entry dummies have relatively higher confidence levels, 81.2% for Entry3,
85.9% for Entry2, and 89.7% for Entry4, than that of the Exitl dummy (26.3%). Before the
biotech seed’s entry, seed price tends to be lower. So the introduction of biotech seed may raise
the price for all seeds, including the conventional varieties. This result is consistent with the
finding in Shi (2008b), where she argues that the introduction of biotech seed can raise the
conventional seed price.
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Table 3. IV (2SLS) regression with robust standard errors,” ¢

Dependant Var: Price ($/bag) | Coefficient | Robust z statistics
Characteristic effects, benchmark is K;: Conventional seed

K2 (Bt ECB) 23.31*** 7.82
K, (BtRW) 25.72* 1.87
K4 (HT1) -6.68** -2.32
K5 (HT2) 7.38*** 5.97
K23 -16.43** -7.66
K24 -6.93*** -3.91
K25 -3.70*** -2.82
K, -8.07*** -3.77
K -1.49 -0.45
K s -16.97** -2.25
K a4 -23.67%** -8.62
K -19.94%** -4.97
K245 -15.68*** -5.41
K 445 -12.02** -2.48
K 5304 -28.87*** -6.61
Market concentration effects

H, K, 13.13%** 5.94
H,,K, -2.97 -1.02
H,.K, 7.58 0.50
H..K, 20.11*** 5.02
HH,, 17.22 1.52
HH,, -58.19 -1.57
HH,, 35.55** 2.55
HH ., -6.85*** -3.54
HH,, 6.68*** 3.56
HH., 6.82*** 3.27
Other variables

Exitl -1.55 -0.34
Entry2 -2.90 -1.47
Entry3 -2.20 -1.32
Entry4 -5.37 -1.63
Total acre grown corn by each farm (1000 acre) 0.94*** 5.45
Year 1.89*** 13.81
Constant 71.82%** 24.40
Number of observations 132813

4 Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, ** at the 1 percent level.
®The centered R? is 0.40, and un-centered R? is 0.96.

°Results for the location effects and purchase source effects are not reported here to save space, but are discussed in
the text.
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The farm size effect is statistically significant: large farms within each state pay more for corn
seeds. This result is likely due to the fact that large farms are more productive than smaller farms
and thus are willing to pay more for seeds. The farm size variable appears to capture another
form of price discrimination used by seed companies in negotiating prices to individual clients.
The time trend effect is positive and statistically significant. Seed price goes up on average by
$1.89 per year. Given that the mean price is about $98, this gives a 1.93% increase a year,
slightly less than the inflation rate over the same time period.?? Therefore, in real terms, the seed
price is decreasing over years, ceteris paribus,? reflecting technological improvements in the
corn seed industry.

7. IMPLICATIONS

In this section, our empirical estimates are used to generate insights on bundle pricing, and the
interactive role of market power within and across markets on seed pricing. For illustration
purpose, our analysis focuses on Illinois in 2004. Illinois is one of the largest corn-producing
states in the US, and it has the largest number of farms in our sample. The year 2004 is a
convenient choice: it is in the middle of our sample period; and it avoids entry/exit events for
different traits.

Three sets of results are presented. First, we evaluate the effects of bundling/stacking by
simulating how stacking influences seed prices. Second, we simulate the Lerner indexes applied
to the pricing of different seed types. This provides useful information on the extent of departure
from marginal cost pricing. Third, in a further evaluation of market power effects, we simulate
the potential impact of merger activities.

Simulation of bundling effects

The bundling literature has identified situations where component pricing may not apply (e.g.,
when the demands for different components are correlated, or when consumers are
heterogeneous in at least a subset of the component markets). As discussed above, our
econometric results strongly reject component pricing (i.e., seeds being priced as the sum of their
component values). This raises the question: how do prices vary across bundles? To address this
question, we simulate the effects of bundling/stacking on seed prices using mean values of

22 According to the Department of Labor statistics, the average inflation rate from 2000 to 2007 is 2.78%.

23 Our data suggest that the seed rate goes up slightly over years at a rate of about 0.7%. Even after this factor into
consideration, seed prices are still increasing at a lower rate than inflation.
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relevant variables for Illinois in 2004 (including farm size, the traditional HHIs (H,) and the
cross market GHHIs (HH, ) ).**

Table 4 contains the simulation results.” The simulated mean conventional seed price is
$89.78/bag, which is presented as the base case (case 1). Cases 2-16 involve biotech seeds,
including stacked/bundled seeds. The last column of table 4 reports price premiums measured as
price differences of each seed type compared to conventional seed. Except for the seed with two
herbicide tolerant traits (case 11: K, ), all biotech seed price premiums are statistically different

from the mean conventional seed at the 1% level or higher. Thus, seed companies are able to
generate price premiums linked to specific biotech traits.

Cases 2-5 reflect the premium attached to seeds sold with a standalone biotech trait. Adding the
Bt-ECB trait (K,) alone raises the seed price by a premium of $19.04. The corresponding price

premium is $25.84 for Bt-RW (K,), $13.06 for HT1 (K,), and $5.38 for HT2 (K,).

Double, triple, and quadruple-stacked seed prices and premiums are presented in cases 6-15.
Note first the $34.07 premium for stacking Bt-ECB and Bt-RW traits (K,,) . While this is greater

than the price premium farmers pay for unstacked versions of these seeds (i.e., K2 or K3), it is
less than the sum of them (19.04 + 25.84 = $44.88). A similar pattern is evident in all the double
stacked seed prices. The triple stacking of Bt-ECB, Bt-RW and HT1 traits (K,,,) has a price

premium of $35.85. While this is greater than the value of any individual trait component or any
relevant double stacked seed price, it is less than the sum of the individual premiums ($57.94).
Note also that adding the third trait to any of the K, K,,, or K,, seeds produces a marginal

contribution of the third trait that is smaller than the contribution of the trait being added into a
single traited system (to form a double stacking system) or alone (to form a single traited
system). Other triple stacking systems follow the same pattern. Finally, the price premium for
quadruple stacking (Kzass) is $39.45, which is the highest among all scenarios. As before, the
marginal contribution of each individual trait is again lower than in a triple system.

Overall, these results document significant departures from component pricing (where seeds are
priced as the sum of their component values). The evidence supports sub-additive pricing. It
shows that the marginal contribution of each component to the seed price declines with the
number of components. Note that such a finding is consistent with the presence of economies of
scope in seed production. Indeed, synergies in R&D investment (treated as fixed cost) across

24 The purchase source is set to be from “Farmer who is a dealer or agent”.

25 Note that we did not simulate the case for HT1 trait stacked with HT2 trait (K45) because we have very few

observations on the Kas stacking system. The same applies for Kass .
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seed types can contribute to reducing total cost. This cost reduction can then be (at least
partially) shared with farmers in the form of lower seed prices. Our empirical evidence against
component pricing and in support of sub-additive pricing could then be interpreted as indirect
evidence of scope economies in seed production.

Table 4. Effects of Bundling/Stacking on Seed Prices, $/bag.?

Case Traits Expected Seed Price difference from
Price Ky (Conventional)
1 K1 (Conventional) 89.78 0.00
(0.79)
2 K, (Bt-ECB) 108.82 19.04***
(0.79) (0.39)
3 K3 (Bt-RW) 115.62 25.84***
(5.22) (5.22)
4 K4 (HT1) 102.84 13.06***
(0.86) (0.40)
5 Ks (HT2) 95.16 5.38***
(0.91) (0.58)
6 Kas 123.84 34.07***
(3.71) (3.67)
7 (ON 113.84 24.06***
(1.19) (0.73)
8 Kas 11251 22.73***
(0.95) (0.67)
9 Kz 119.69 29.91***
(3.93) (3.95)
10 Kss 121.48 31.70***
(3.28) (3.22)
11 Kys 93.27 3.50
(7.54) (7.48)
12 K234 125.63 35.85%**
(3.21) (3.21)
13 Kass 127.69 37.91%**
(2.42) (2.34)
14 K2as 112.48 22.70***
(1.48) (1.14)
15 Kaas 123.07 33.29***
(1.48) (4.47)
16 K245 127.78 38.03***
(2.22) (2.21)

#Standard errors are in parentheses. Statistical significance is noted by * at the 10 percent level, ** at the 5 percent
level, and *** at the 1 percent level.
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Estimated Lerner indexes

As discussed in sections 2 and 4, the Lerner index provides a simple characterization of the
strength of imperfect competition: it is zero under marginal cost pricing, but positive when price
exceeds marginal cost. The market power component M in equation (6) gives a per-unit measure
of the price enhancement beyond marginal cost. And the associated Lerner index is L = 1.
Using equation (6), this provides a convenient way of evaluating the Lerner index L. Evaluated
at sample means for Illinois in 2004, the Lerner indexes (100 x L) are reported in Table 5 for
selected seed types.

The Lerner indexes are statistically significant at the 10 percent level in five cases (out of eight
cases).”® When significant, the Lerner indexes are always positive, with estimates of (100 x L)
varying from 2.25% for conventional seeds (K;,) to 21.14% for HT1 (K,) . This provides

empirical evidence that market power affects seed prices. The effect of market power on price is
found to be moderate in the conventional seed market K., but larger in the HT1 market. Also,

this effect is found to be significant and fairly large in the bundled-seed markets involving HT1,
with (100 x L) equal to 14.39 for K,, (Bt-ECB and HT1), 17.62 for K,, (Bt-RW and HT1), and

15.32 for K, (Bt-ECB, Bt-RW and HT1). Finally, the Lerner indexes are not statistically
different from zero for K, (Bt-ECB) and K, (Bt-RW). Thus, our analysis does not find empirical
evidence that market power has a significant effect on seed prices in these two sub-markets.

Table 5 Simulated Lerner Indexes?

Lerner Index (100 x L) | Standard Error t-ratio
K1 (Conventional) 2.25% 1.236 1.818
K, (Bt-ECB) -2.06 2.840 -0.724
Ks (Bt-RW) 2.05 7.573 0.271
Ka (HT1) 21.14*** 2.539 8.325
K2z 2.88 5.755 0.500
Koa 14.39*** 3.273 4.396
Kss 17.62** 7.614 2.314
K234 15.32** 6.113 2.506

% Lerner indexes are calculated from prices at the mean GHHI levels compared to the case of competition (GHHI=0)
b Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, and *** at the 1 percent level.

26 Cases involving the Ks trait are dropped due to lack of variation in the market concentration in Ks market.
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Effects of changing market structure

In equation (3), we defined the GHHI’'sH;, = Z s's” for sub-markets i and j. As discussed

neN ' 7]
above, the H’s are endogenous variables measuring market concentrations. They provide useful
information linking market structure with pricing. The assessment of changing market structures
is complex in the presence of bundling when the same firms sell different bundled goods. It
means that all the H;;'s typically change in response to any change in industry structure. The

changes in the H;;'s depend on the nature of changes in firms’ concentration in all relevant

markets. This indicates that changes in market structure can have complex effects on prices. We
evaluated such effects by simulating the effects of changing market structures associated with
alternative merger scenarios. Three sets of (hypothetical) mergers are simulated: 1/ mergers
between biotech companies within each genetic trait market (biotech/biotech within trait); 2/
mergers between biotech companies producing different genetic traits (biotech/biotech across
traits); and 3/ mergers between biotech companies and seed companies (biotech/seed merger).
Note that these merger scenarios are counterfactual: such mergers have not been observed. They
are presented to illustrate how our analysis can be used to evaluate the price implications of
changing market structures. Again, our simulation analysis focuses on the state of Illinois in
2004. The results are reported in Table 6.

Table 6 presents the price effects of selected merger scenarios. Scenarios 1-3 consider mergers
between biotech companies within a given genetic trait market (biotech/biotech within trait).
This covers mergers of biotech firms within the Bt-ECB market (scenario 1), within the Bt-RW
market (scenario 2), and within the HT1 market (scenario 3). In each case, the simulations
assume that the merger leads to a monopoly in the corresponding market (with a market share
equal to 1).%" In scenarios 1-3, Table 6 shows that the effect of such mergers on seed price would
not be statistically significant for Bt-ECB and Bt-RW. However, the effect is statistically
significant for HT1. Our simulation results show that mergers of biotech firms in the HT1
markets could potentially induce a price increase of up to $23.44/bag of HT1 seed.

Scenarios 4-6 consider mergers between biotech companies producing different genetic traits
(biotech/biotech across traits). This covers mergers of biotech firms involved in Bt-ECB and Bt-
RW markets (scenario 4), in Bt-ECB and HT1 markets (scenario 5), in Bt-RW and HT1 markets
(scenario 6). In each case, the simulations again assume that the merger leads to a monopoly in
the corresponding market (with a market share equal to 1). Table 6 shows that the effect of
mergers across Bt-ECB and Bt-RW markets would have no statistically significant effect on the
price of either Bt-ECB seeds (scenario 4a) or Bt-RW seeds (scenario 4b) or Bt-ECB/Bt-RW
stacking seeds (scenario 4c) at 5% level. However, the price effects of mergers “across traits”

27 In situations where the mergers lead to increased market concentration but without full monopolization, note that
our simulations present upper-bound estimates of the corresponding price effect.

24



involving HT1 are found to be statistically significant. In particular, mergers involving Bt-ECB
and HT1 could potentially induce a price increase of up to $12.23/bag of Bt-ECB seed (scenario
5a), $24.88/bag of HT1 seed (scenario 5b), and $30.43/bag of Bt-ECB/HT1 stacking seeds
(scenario 5c¢). And mergers involving Bt-RW and HT1 could generate a price increase of up to
$25.02/bag of HT1 seed (scenario 6b). However, the price effects on Bt-RW seeds (scenario 6a)
and on Bt-RW/HT1 stacking seeds (scenario 6c) are not statistically significant.

Finally, scenarios 7-9 consider mergers involving both biotech companies and seed companies
(biotech/seed merger). In these scenarios, the simulations assume that the mergers lead to the
monopolization in the corresponding biotech trait market. However, since the monopolization of
seed companies is unlikely (there are too many seed companies), the mergers in scenarios 7-9 are
assumed to increase market concentrations for conventional seed (as measured by the H’s and
HH’s) only to the maximum observed in our sample. How do mergers involving both seed
companies and biotech firms affect seed prices? The simulation results reported in Table 6 shows
that such mergers can have a statistically significant impact on the price of conventional seed.
The simulated effect is up to +$17.94/bag when mergers involve Bt-ECB biotech firms (scenario
7) and +$31.21/bag when the mergers involve HT1 firms (scenario 9). However, our simulations
indicate that the effects of such mergers would not be statistically significant when it involves
Bt-RW biotech firms. Importantly, note that these simulation results capture cross-market effects
contributing to the exercise of market power in the conventional seed market. These cross-
market effects play a significant role in the evaluation of the exercise of market power.

The simulations in Table 6 illustrate the potential usefulness of the model in studying the effects
of changing market concentrations. For example, in a pre-merger analysis, this would involve
evaluating the HHIs and GHHIs in all relevant markets before and after a proposed merger and
proceeding with a quantitative assessment of the price effects. Alternatively, the model could be
used to estimate the effects of spinoffs by evaluating their anticipated effects on HHIs and
GHHIs and by simulating the associated price changes.
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Table 6: Simulated Merger Effects®

Sector affected Market/Price Induced Standard
by mergers Scenarios Affected price change Error t-ratio
($/bag)
Bt-ECB (K2) 1 Bt-ECB (K2) 6.61 4.14 1.595
Bt-RW (K3) 2 Bt-RW (K3) -17.57 14.67 -1.197
HT1 (Ky) 3 HT1 (Ky,) 23.44%** 5.36 4.374
Bt-ECB and 4a Bt-ECB (Ky) -1.30 4.32 -0.300
Bt-RW 4b Bt-RW (Ks) -24.73* 14.89 -1.661
(K, Ks) 4c Bt-ECB/Bt-RW (Kz3) -19.19 1462 | -1312
Bt-ECB and 5a Bt-ECB (K)) 12.23*** 4.62 2.649
HT1 5b HT1 (Ky) 24.88*** 5.97 4.169
(K2, Kg) 5c Bt-ECB/HT1(K24) 30.43*** 6.30 4.832
6a Bt-RW (K3) -11.07 15.06 -0.735
Bt-RW and HT1 6b HT1 (Ky,) 25.02%** 5.08 4.923
(Ks, Ky) 6C Bt-RW/HT1 (Kss) 7.13 14.02 0.508
Conv. and Bt- 7 Conventional (K;) 17.94** 8.42 2.131
ECB (Ky, K»)
Conv. and Bt- 8 Conventional (Ky) -37.59 27.61 -1.362
RW (K4, Ks)
Conv. and HT1 9 Conventional (Ky) 31.21*** 10.1 3.091
(K1, Ka)

& Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, and *** at the 1 percent level.

8. CONCLUDING REMARKS

This paper has presented an analysis of bundle pricing under imperfect competition. A

multiproduct model under Cournot competition identifies the role of
substitution/complementarity in bundle pricing. It explains how oligopoly pricing manifests
itself, and motivates generalized HHI measures of market concentration. The model is applied to
the US corn seed market and estimated using farm-level data from 2000-2007. The US corn seed
market represents a unique opportunity to evaluate the pricing of bundled goods, where patented

genetic traits are inserted into conventionally bred hybrid corn seeds either bundled or

independently. These GM seeds compete alongside conventional seeds in a spatially diverse
farm sector. There is considerable variation in the spatial concentration of conventional seeds
and seeds with various patented genetic traits. Through the years of this study, GM seeds have
been adopted quickly among US farmers and are part of a broader wave of technological
progress impacting the agriculture sector.

The econometric investigation documents the determinants of seed prices, including the effects
of bundling and imperfect competition. It finds evidence of spatial price discrimination. It
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captures the interactive role of market concentrations and complementarity/substitution. We find
strong evidence of sub-additive bundle pricing, thus rejecting standard component pricing. This
is consistent with the presence of economies of scope in seed production. Using generalized
HHI’s, we also document how traditional and cross-market effects of imperfect competition can
contribute to higher seed prices. The analysis is used to illustrate how changing market
concentrations can affect seed prices.

Our analysis could be extended in several directions. First, it would be useful to explore the
implications of bundle pricing and imperfect competition in vertical markets. Second, there is a
need for empirical investigations of bundle pricing analyzed jointly with bundling decisions.
Third, it would be useful to estimate the separate effects of supply versus demand factors in
bundle pricing. But this would require better data (especially on the supply side) to identify these
effects separately. Finally, there is a need to explore empirically the economics of bundling
applied to other sectors. These appear to be good topics for further research.

REFERENCES

Adams, W., and J. Yellen. “Commodity Bundling and the Burden of Monopoly.” Quarterly
Journal of Economics, 90(1976): 475-98.

Armstrong, M. and J. Vickers. “Competitive Price Discrimination.” The RAND Journal of
Economics, 32(2001): 579-605.

Avise, J.C. The Hope, Hype & Reality of Genetic Engineering: Remarkable Stories from
Agriculture, Industry, Medicine, and the Environment. Oxford University Press, US: 2004.

Baumol, W.J., J.C. Panzar and R.D. Willig. Contestable Markets and the Theory of Industry
Structure. Harcourt Brace Jovanovich, New York: 1982.

Bound, J., D.A. Jaeger, and R. Baker. “Problems with Instrumental Variables Estimation When
the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak.”
Journal of the American Statistical Association, 55(292) (1995):650-659.

Carlton, D.W., and M. Waldman. “The Strategic Use of Tying to Preserve and Create Market
Power in Evolving Industries.” RAND Journal of Economics, 33(2) (2002): 194-220.

Choi, J. “Preemptive R&D, Rent Dissipation, and the Leverage Theory.” The Quarterly Journal
of Economics, 114(4a) (1996): 1153-1181.

Chu, C.S., P. Leslie and A. Sorensen. “Nearly Optimal Pricing for Multiproduct Firms.”
Working Paper, Stanford University, 2008.

Corts, K.S. “Third-Degree Price Discrimination in Oligopoly: All-Out Competition and Strategic
Commitment.” The RAND Journal of Economics, 29(2) (1998): 306-323.

27



Fang, H. and P. Norman. “To Bundle or Not to Bundle,” Rand Journal of Economics, 37(2006):
946-963.

Fernandez-Cornejo, J. The Seed Industry in U.S. Agriculture: An Exploration of Data and
Information on Crop Seed Markets, Regulation, Industry Structure, and Research and
Development, Resource Economics Division, Economic Research Service, U.S. Department
of Agriculture, Agriculture Information Bulletin Number 786, 2004.

Fulton, M., and K. Giannakas. “Agricultural Biotechnology and Industry Structure.”
AgBioForum, 4(2) (2001): 137-151.

Gans, J.S., and S.P. King. “Paying for Loyalty: Product Bundling in Oligopoly.” The Journal of
Industrial Economics, 54(1) (2006): 43-62.

Graff, G., G. Rausser and A. Small. “Agricultural Biotechnology’s Complementary Intellectual
Assets.” Review of Economics and Statistics, 85(2003): 349-363.

Hayashi, F. Econometrics. Princeton University Press, Princeton: 2000.

Hicks, J.R. Value and Capital: An Inquiry into Some Fundamental Principles of Economic
Theory. Clarendon Press, Oxford: 1939.

Holmes, T.J. “The Effects of Third-degree Price Discrimination in Oligopoly.” The American
Economic Review, 79(1) (1989): 244-250.

Kleibergen, F. and R. Paap. “Generalized Reduced Rank Tests Using the Singular Value
Decomposition.” Journal of Econometrics, 133(2006): 97-126.

McAfee, R. P., J. McMillan, and M. Whinston. “Multiproduct Monopoly, Commodity Bundling,
and Correlation of Values.” Quarterly Journal of Economics, 103(1989): 371-383.

Nalebuff, B. “Bundling as an Entry Barrier.” Quarterly Journal of Economics, 119 (2004): 159-
187.

Nalebuff, B. “Exclusionary Bundling.” The Antitrust bulletin 50(3) (2005): 321-370.

Pagan, A.R. and D. Hall. “Diagnostic Tests as Residual Analysis.” Econometric Reviews,
2(2):159-218.

Peitz, M. “Bundling May Blockade Entry.” International Journal of Industrial Organization, 26
(2008): 41-58.

Rosen, S. “Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition.”
Journal of Political Economy, 82(1974): 34-55.

Schmalensee, R. “Output and Welfare Implications of Monopolistic Third-Degree Price
Discrimination.” American Economic Review, 71(1) (1981): 242-247.

28



Schmalensee, R. “Gaussian Demand and Commaodity Bundling.” Journal of Business, 62(1984):
S211-S230.

Shea, J. “Instrument Relevance in Multivariate Linear Models: A Simple Measure.” Review of
Economics & Statistics, 79(2) (1997):348-352.

Shi, G. “Commodity Bundling and the Leverage of Market Power.” Working Paper, University
of Wisconsin, 2008a.

Shi, G. “Bundling and Licensing of Genes in Agricultural Biotechnology.” American Journal of
Agricultural Economics, 2008b, forthcoming.

Staiger, D. and J.H. Stock. “Instrumental Variables Regression with Weak Instruments.”
Econometrica, 65(3):557-586.

Stock, J.H. and M. Yogo. “Testing for Weak Instruments in Linear IV Regression”. In D.W.K.
Andrews and J.H. Stock, eds. Identification and Inference for Econometric Models: Essays in
Honor of Thomas Rothenberg. Cambridge University Press, Cambridge: 2005, 80-108.

Venkatesh, R. and W. Kamakura. “Optimal Bundling and Pricing under a Monopoly:
Contrasting Complements and Substitutes from Independently Valued Products.” Journal of
Business, 76(2) (2003): 211-231.

Whinston, M.D. “Tying, Foreclosure and Exclusion.” American Economic Review, 80(1990): 37-
859.

Whinston, M.D. Lectures in Antitrust Economics. MIT Press, Cambridge, MA: 2008.

29



