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Abstract: Production data provided by commercial producers of grain sorghum is used to 

estimate response functions for three alternative management decision models. The 

evaluation of yield to the total water availability, irrigation, and water application as a 

percent of potential evapotranspiration. The three methods provide similar results, but 

each provides unique information and adds valuable information to the decision process. 

The value product functions and the energy cost function are used to determine the profit 

maximizing level of water application where adequate water to fully meet the crop needs 

is available and to determine the irrigation vs. no irrigation decision where water 

availability is limiting. 

 

Key Words: irrigation efficiency, water response function, sorghum, input use 

optimization, ET. 
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Texas agriculture generated over $15 billion in receipts in 2001.  Although the High 

Plains represents less than 15% of the area it accounts for over 40% of the value of 

agricultural production for the state.  In addition to leading the state in the production of 

feed grain, wheat, and cotton; more than 6 million cattle are fed annually within 75 miles 

of Amarillo (Texas Agricultural Statistics Service 2002).  

Irrigation is important to maintaining the agricultural productivity and the regional 

economy.  The development of irrigation in the region is a recent phenomenon with 

virtually all of the development occurring since the end of World War II.  Between 1950 

and 1980 irrigated acres increased from 19,315 to 1,754,560.  Since 1980 irrigated acres 

have declined to 1,363,438.  The water availability in the Ogalalla aquifer has declined 

and pumping costs have increased (Table 1).  The significance of irrigation to agricultural 

production is shown by the differential between the yield of irrigated and non-irrigated 

corn.  In 1999, the yield on the 757,500 acres of irrigated corn averaged 180.4 bushels per 

acre, compared to an average of 40.0 bushels per acre on the 6,500 acres of non-irrigated 

corn (Texas Agricultural Statistics Service 2000).  Irrigation increases yield by 2 to 7 

times over non-irrigation.  When risk is defined as a function of the variability in yield, 

irrigation reduces risk by 75% to 90%. 

Precipitation is not only limiting but is also highly variable. At the Bushland 

agricultural research center near Amarillo the annual average precipitation over the 120-

year period from 1880 through 2000 is 20.53 inches.  However, the range in annual 

precipitation is from less than 9 inches to over 40 inches (Figure 1). In addition to the 

pronounced year-to-year variations with as much as 15 to 20 inch differences in 



4 

consecutive years there also are major wet and dry cycles observed. Short periods of 

significantly above average precipitation are usually followed by long periods of below 

average-to-average precipitation. A seasonal pattern in which over 50% of the annual 

precipitation is received during the summer growing season from May through October 

adds to the variability. The months with the highest average rainfall are May, June and 

August. 

Grain sorghum is an important feed grain crop in the Panhandle due to its drought 

resistance and ability to produce under limited precipitation. Dryland production has been 

important since the introduction of farming in the area in the late 1800s. Sorghum 

production expanded rapidly in the 1950s as a result of hybrid grain sorghum, irrigation 

and nitrogen fertilizer (Figure 2). Production peaked in the 1960s but after decreasing 

significantly appears to have stabilized in recent years. Dryland production of grain 

sorghum is becoming more important as the water level in the Ogallala declines and 

irrigation is reduced. Previous analyses of the profitability of irrigated and non-irrigated 

sorghum production have been based on simple budgets reflecting current or recommend 

practices (Bean 2000; Johnson and Falconer 2001; and Amosson et al 2003). 

The economic importance of the development of irrigation from the Ogallal aquifer 

to the region has been a concern of many economists following the rapid expansion of 

irrigation in the 1950s and 1960s (Grubb 1966; Osborn and McCrary 1972; and Mathews 

et al 1984).  Resource use and the optimal combination of fixed, renewable and non-

renewable resources have been analyzed by various economists (The economic 

implications of the depletion of a fixed resource have been a concern of agricultural 
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economics since the early 1970s (Osborne 1973; Osborne and Harris 1973; Musick et al 

1990; Amosson et al 2001; Colette, Robinson, and Almas 2001). 

The decline in the water level in the Ogalalla aquifer is an on-going concern. Wells 

that produced 1000 to 1200 gallons per minute in the 1960’s often produced less than 200 

gallons per minute in the 1990’s. Since there is only limited recharge of the Ogalalla 

aquifer in this area, irrigation water is a fixed supply and excessive pumping results in 

shortening the economic life of the farming operation and reduces the returns to the 

resources held by the farmer (Amosson et al. 2001).  This year fuel prices have more than 

doubled. Natural gas is the primary energy source used for pumping irrigation water in 

the Texas Panhandle. 

The objective of this study is to estimate the marginal value product of irrigation, 

provide alternative water management decision making tools, and provide guidelines for 

determining water applications that will maximize profit and extend the productive life of 

the Ogallala aquifer. 

Data included in this study represents production information collected from 

producers cooperating in the AgriPartners program. Cooperating producers recorded 

irrigation, rainfall, soil water, and other production information weekly. Final crop 

production data was provided following harvest. The date, number and amount of 

individual irrigations were recorded and calculated using well delivery gallons per minute 

and the number of acres irrigated. A rain gauge located at the site measured rainfall. 

Beginning and ending soil moisture readings were used to calculate net soil water 

depletion during the growing season. Total water availability was measured and tabulated 
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in comparison to corresponding seasonal water use reported by the North Plains PET 

Network for fully irrigated crops (New 1999-2003). 

The water response function for sorghum must be estimated before the marginal 

physical product and optimal water application rate can be determined.  The response 

function shows the relationship between the yield and the amount of water used by the 

crop. One of the management tools available to producers is a measurement of water 

requirements for a given crop as indicated by potential evapotranspiration. 

Jensen and Musick (1960) were among the first to recognize the relationship 

between evapotranspiration (ET) and sorghum grain production.  ET is a measurement of 

the needs of the plant and is determined by biological and climatic factors.  Since the 

producer has no control over the level of ET it may be used as a guide but cannot be 

considered a management factor. The ET requirement is based on Reference 

Evapotranspiration (ET0) adjusted to reflect the demands of the specific crop.  The 

reference evapotranspiration is adjusted by multiplying by the specific crop coefficient 

(KC) which reflects biological factors such as the crop, maturity rating, and the stage of 

growth; and climatic conditions such as maximum and minimum temperatures, growing 

degree days (GDD-56oF), humidity, solar radiation, wind speed and direction, etc.  Three 

sources of water to meet the ET requirement include residual soil moisture, natural 

precipitation, and irrigation.  A producer has control over only one of these, irrigation.  

ET can be an aid to management decision making by indicating the amount of water that 

is needed by the plant.  Applying water so that the ET requirement is just satisfied 

minimizes excessive application and subsequent water loss.   
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Data: The data used in the study includes 61 observations of sorghum grain 

production, total water availability, supplemental irrigation, and percentage 

evapotranspiration obtained from producers in the Texas Panhandle during the period 

from 1998 through 2003. The 26 counties in the Texas Panhandle are divided into two 

areas based on the relative availability of water from the Ogallala aquifer (Figure 3). Area 

A, shown in red, represents the counties with the greatest saturated thickness of the 

aquifer and greater availability of irrigation water.  Area B, shown in blue, includes the 

counties with the shallowest saturated thickness and least amount of available irrigation 

water. The number of producers reporting grain sorghum results in the AgriPartners 

program is shown in parentheses. 

Three approaches to the estimation of the sorghum-water response function are 

evaluated. In the first sorghum grain production is defined as a function of total water 

available for the crop. In the second approach grain production is viewed as a function of 

supplemental irrigation to correct for the deficiency in natural precipitation. And, in the 

third approach, The application of water to the crop is based on the evapotranspiration 

requirements of the crop. The input cost for water is calculated by one uniform method 

for all three approaches. 

Production costs: The cost of production is the sum of the fixed cost and the 

variable input cost incurred in the production process. In evaluating the optimum level of 

a single variable input, the levels of all of the other inputs are assumed constant. The 

costs associated with all other inputs are considered as a part of fixed cost and only the 

cost of the single variable input is included in variable cost. The fixed cost is a constant 
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and independent of the amount of water applied.  The variable input cost is directly 

associated with the level of variable input.  Since all irrigation in the region uses 

groundwater, the variable cost associated with irrigation is limited to pumping and 

application cost. Therefore, the variable input cost associated with the level of irrigation 

is made up of the fuel cost; cost of lubrication, maintenance, and repairs; labor costs; and 

annual investment costs (Equation 1) (Almas et al. 2000). 

 
 TC= FC + (FULC + LMR + LC + AIC)W (1) 

 Where: 

   TC is the total production cost, 

   FC is the fixed cost associated with the inputs at constant levels, 

   FULC is the fuel cost per acre inch of water, 

   LMR is the cost of lubrication, maintenance and repairs, 

   LC is labor cost per acre inch of water, 

   AIC is annual investment cost per acre inch of water, and 

W is the amount of water available to meet ET requirements. 

The impact of a change in the price of fuel is observed in the change in the cost of 

fuel.  Since natural gas is the predominate source of energy for pumping irrigation water 

in the area, natural gas is used in the calculations.  The fuel cost (FULC) is equal to the 

product of the amount of fuel used (NG) multiplied by the price of the fuel (PNG) 

(Equation 2). 

 FULC = NG*PNG (2) 
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dW
dC

MFC W
W ?

In turn the amount of natural gas needed to pump and deliver one inch of water 

depends on the efficiency of the system, the lift required to get the water from below the 

ground to the delivery system, and the pressure of the delivery system (Equation 3). 

 NG = 0.0038*L+ 0.088*PSI – ((7.623E-6)* PSI)*(L) – (3.3E-6)*L2 (3) 

   Where: 

    NG is the mcf of natural gas 

    L is the system lift in feet 

    PSI is the system pressure per square inch 

The NG, LMR, LC and AIC are known constants for a given irrigation system. 

(Almas 2000).  For example, the Total Cost function for a typical Low Elevation Spray 

Application (LESA) system with a 350 foot system lift can be expressed as Equation 4. 

 TC = FC +(1.018PNG + 2.03 + 0.68 + 1.92)W (4) 
 

The Marginal Factor Cost of water (MFCW) can now be calculated from the cost 

function.  The MFCW is the first derivative of the cost function with respect to the input, 

water (W) (Equation 5). 

                                                                        (5) 

 

 
Estimation of response function, marginal value product, and economic 

optimum level of irrigation: Three approaches to the estimation of the sorghum-water 

response function are evaluated. The first approach is the traditional approach in which 

63.4018.1
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grain production is defined as a function of the total water available during the growing 

season. In Area A the mean yield for the 35 producers reporting is 7,145.2 lbs per acre. 

The quadratic form produces the best explanation of the relationship between sorghum 

yield and water available with a Pr>F(2,32)=0.0043 for the model and an R2 of 0.2882.  

The estimated coefficients for the terms representing water application are shown in 

Equation 6. The Pr>t(32) is in parentheses below the coefficients.  

 
(6) 

                    0.5609     0.0729          0.2042 
 

The Marginal Physical Product of Water in Area A (MPPWA) is equal to the 

derivative of the response function with respect to the input water (Equation 7). 

 
(7) 

 
 

The Marginal Value Product of water in Area A (MVP WA) is obtained by 

multiplying the Marginal Physical Product of water in Area A (MPPWA) by the price of 

the product (PY) (Equation 8). 

 
(8) 

 
 

 
The optimal economic level of a productive input is based on the principle of profit 

maximization (Heady and Canler 1961; and Beattie and Taylor 1985).  Profit is 

maximized at that input level where the increase in value from using an additional unit of 

input, Marginal Value Product, is equal to the increase in cost associated with the use of 

that same unit of input, Marginal Factor Cost.  The MVP is equal to the increase in output 
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obtained from the use of an additional unit of input, Marginal Physical Product (MPP), 

multiplied by the price of the output (PY).  The Optimum level of the input water 

application in Area A is determined by equating the Marginal Value Product of water 

(MVPWA) from Equation 8 and the Marginal Factor Cost of water (MFCW) from Equation 

5.  

 
 MVPWA = MFCW  (9) 
 
 (373.08 – 10.55W) PY= 1.018PNG + 4.63 
 

Solving for the level of water availability (W) produces a function in the price of 

natural gas (PNG) and the price of the output (PY) (Equation 10).   

 
(10) 

 
 

 
Profit maximizing levels of water availability derived from Equation 10 for 

sorghum prices between $3 and $6 and natural gas prices between $2 and $11 are in 

Table 2. 

In Area B the mean yield for the 26 producers reporting is 3,255.0 lbs per acre. The 

linear form produces the best fit between sorghum yield and water available to meet crop 

requirements with a Pr>F(2,24)=0.0092 for the model.  The R2 is 0.2496.  The estimated 

coefficients for the terms representing water application are shown in Equation 11. The 

Pr>t(24) is in parentheses below the coefficients.  

 
(11) 

                 0.3341     0.0094 
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The Marginal Physical Product of Water in Area B (MPPWB) is equal to the 

derivative of the response function with respect to the input water (Equation 4). 

 
(12) 

 
 

The Marginal Value Product of water in Area B (MVP WB) is obtained by 

multiplying the Marginal Physical Product of water in Area B (MPPWB) by the price of 

the product (PY) (Equation 13). 

 
(13) 

 
 

 
The Optimum level of the input water application in Area B is determined by 

equating the Marginal Value Product of water (MVP WB) from Equation 13 and the 

Marginal Factor Cost of water (MFCW) from Equation 5.   

 
 MVPWB = MFCW  (14) 
 
 145.76*PY= 1.018*PNG + 4.63 
 

Since both the MVP WB and the MFCW are both linear and independent of the level 

of water use, the decision becomes a simple irrigation vs. no irrigation.  If the MVP WB is 

greater or equal to the MFC then irrigate.  If the MFCW is less than the MVP then no 

irrigation is the optimal decision (Table 3). 

Optimization of irrigation supplementing natural precipitation: The second 

approach is to define the production function of sorghum grain production as a function 

of the irrigation water added to the natural precipitation available during the growing 
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YIA
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)36.2276.379(
*
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?

season.. The best response function relating the production of sorghum to the water 

available through natural precipitation and supplemental irrigation is linear in natural 

precipitation and quadratic with respect to the supplemental water added through 

irrigation. The model has a Pr>F(2,31)=0.0021 with an R2 of 0.3720.  The estimated 

coefficients for the terms representing water application are shown in Equation 15. The 

Pr>t(31) is in parentheses below the coefficients.  

 
(15) 

                0.0234          0.0055         0.0170        0.0500 
 
  Where: YA is the production of sorghum grain in lbs per acre, 

    P is natural precipitation in inches; and 

    I is inches of supplemental irrigation. 

The Marginal Physical Product of Water in Area A (MPPWA) is equal to the 

derivative of the response function with respect to the input water (Equation 16). 

 
(16) 

 
 

The Marginal Value Product of water in Area A (MVP WA) is obtained by 

multiplying the Marginal Physical Product of water in Area A (MPPWA) by the price of 

the product (PY) (Equation 17). 

 
(17) 
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The Optimum level of the input water application in Area A is determined by 

equating the Marginal Value Product of water (MVP IA) from Equation 17 and the 

Marginal Factor Cost of water (MFCW) from Equation 5.  

 
 MVPIA = MFCW  (18) 
 
 (379.08 – 22.36I) P Y= 1.018PNG + 4.63 
 

Solving for the level of irrigation (I) produces a function in the price of natural gas 

(PNG) and the price of the output (PY) (Equation 18).   

 
(19) 

 
 

 
 

Optimal water availability for natural gas prices between $2 and $10 per mcf and 

sorghum prices between $3 and $6 per cwt are shown in Table 4. 

In Area B the linear model in natural precipitation and supplemental irrigation 

produces the best fit between sorghum yield and water available to meet ET requirements 

with a Pr>F(2,23)=0.0355 for the model.  The R2 is 0.2519.  The estimated coefficients for 

the terms representing water application are shown in Equation 3. The Pr>t(23) is in 

parentheses below the coefficients.  

 
(20) 

                 0.3600       0.2247          0.0137 
 
  Where: YB is the production of sorghum grain in lbs per acre, 

    P is natural precipitation in inches; and 

    I is inches of supplemental irrigation. 
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The Marginal Physical Product of Irrigation in Area B (MPPWB) is equal to the 

derivative of the response function with respect to the input irrigation (Equation 21). 

 
(21) 

 
 

The Marginal Value Product of irrigation in Area B (MVP IB) is obtained by 

multiplying the Marginal Physical Product of water in Area B (MPPIB) by the price of the 

product (PY) (Equation 22). 

 
(22) 

 
 

 
The Optimum level of the input water application in Area B is determined by 

equating the Marginal Value Product of water (MVP IB) from Equation 22 and the 

Marginal Factor Cost of water (MFCW) from Equation 5.   

 
 MVPIB = MFCW  (23) 
 
 151.29*PY= 1.018*PNG + 4.63 
 

Since both the MVP WB and the MFCW are both linear and independent of the level 

of water use, the decision becomes a simple irrigation vs. no irrigation.  If the MVP IB is 

greater or equal to the MFC then irrigate.  If the MFCW is less than the MVP IB then no 

irrigation is the optimal decision Table 5. 

Optimization based on Potential Evapotranspiration: The third approach is to 

determine the application of an input based on the physiological requirement of the crop. 

In this case, basing the application of water on the physiological requirements of the crop 
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as determined by Potential Evapotranspiration (ET). In the third method the production of 

sorghum grain is defined as a function of the relationship between the amount of water 

available and the amount of water required for the growing plant as indicated by the 

Percent of Potential Evapotranspiration (PET). 

In Area A the quadratic form produces the best explanation of the relationship 

between sorghum yield and water available to meet ET requirements with a 

Pr>F(2,32)=0.0080 for the model.  The R2 is 0.2607.  The estimated coefficients for the 

terms representing water application are shown in Equation 24. The Pr>t(32) is in 

parentheses below the coefficients.  

 
(24) 

                    0.5989        0.0302              0.0625 
 

 
(25) 

 
 

Since PET is a measurement instead of an input, the productivity of the PET must 

reflect the relationship between PET and water availability. In Area A the best estimate is 

a linear model (Equation 26) 

 
(26) 

                     0.0399   <0.0001 
 

Since PET does not refer to units of water or price the chain rule is utilized to 

determine the Marginal Physical Product of water based on PET.   

 
 

(27) 
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The marginal physical product of water applied to meet evapotranspiration 

requirements as reflected by the PET is shown in Equation 28. 

 
(28) 

 
 

 
 

 
The marginal value product is shown in Equation 29. 

 
(29) 

 
Solving for the level of irrigation (I) produces a function in the price of natural gas 

(PNG) and the price of the output (PY) (Equation 5).   

 
(30) 

 
 

 
Optimal water availability for natural gas prices between $2 and $10 per mcf and 

sorghum prices between $3 and $6 per cwt are shown in Table 6. 

For Area B the linear form produces the best fit between sorghum yield and water 

available to meet ET requirements with a Pr>F(2,24)=0.0092 for the model.  The R2 is 

0.2496.  The estimated coefficients for the terms representing water application are 

shown in Equation 3. The Pr>t(24) is in parentheses below the coefficients.  

 
(31) 

                 0.6322     0.0088 
 



18 

WPETB 03.341.13 ??

06.44??
dPET
dY

MPP B
PETB

YPETB

YPETBPETB

PMVP
PMPPMVP

)06.44(
*

?
?

??
?

?
??
?

?
??
?

?
??
?

?
?

B

B

B

B
PETB dW

dPET
dPET

dY
MPP

W

03.3?
B

B

dW
dPET

The Marginal Physical Product of Water as a Percent of Evapotranspiration in Area 

B (MPPPETB) is equal to the derivative of the response function with respect to the input 

PET (Equation 32). 

 
(32) 

 
 
The Marginal Value Product of water in Area B (MVP WB) is obtained by multiplying the 
Marginal Physical Product of water in Area B (MPPWB) by the price of the product (PY) 
(Equation 5). 
 

(33) 
 
 

 
Since PET is a measurement instead of an input, the productivity of the PET must 

reflect the relationship between PET and water availability. In Area A the best estimate is 

a linear model (Equation 34) 

 
(34) 

                    0.0122    <0.0001 
 

Since PET does not refer to units of water or price the chain rule is utilized to 

determine the Marginal Physical Product of water based on PET.   

 
(35) 

 
 

The marginal physical product of water applied to meet evapotranspiration 

requirements as reflected by the PET is shown in Equation 36. 

 
(36) 
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The marginal value product is shown in Equation 37. 

 
 

 
 

(37) 
 

 
Solving for the level of irrigation (I) produces a function in the price of natural gas 

(PNG) and the price of the output (PY) (Equation 38).   

 MVPPETB = MFCW  (38) 
 
 137.91*PY= 1.018*PNG + 4.63 
 

Since both the MVP PETB and the MFCW are both linear and independent of the level 

of water use, the decision becomes a simple irrigation vs. no irrigation.  If the MVP PETB is 

greater or equal to the MFCW then irrigate.  If the MFCW is less than the MVP PETB then 

no irrigation is the optimal decision Table 7. 

Summary: Often the answers to management decision problems cannot be found in 

individual controlled experiments but must be developed under commercial management 

conditions. Collecting adequate observations to estimate management decision functions 

for commercial producers is often difficult.  Fortunately the participation of progressive 

producers in the Texas Panhandle in the AgriPartners Irrigation Demonstration Project 

allows access to the information needed to estimate a response function relating sorghum 

yield as a function of water availability and irrigation. 
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Although production cost will vary for different types of delivery systems and with 

different water lifts, for a given delivery system, such as LESA and a known lift the cost 

function can be expressed in terms of the energy cost. The response and cost functions 

are used to determine the profit maximizing level of water availability for various price 

levels for sorghum and natural gas. 

Three approaches to making the management decision on the amount of water to 

apply to maximize profits and returns to resources from grain sorghum production are 

evaluated.  The traditional approach of determining the optimum level of water 

application based on the total availability without regard for the origin of the water 

provides a response function indication the total water needs but only indirectly 

addressing the management decision of irrigation levels. 

In the second approach, irrigation is viewed as a supplementation to natural 

precipitation.  Irrigation becomes a management decision variable.  The response 

function indicates that grain production increases as both natural precipitation and 

irrigation increase.  The response is linear with respect to natural precipitation and 

quadratic with respect to irrigation.  This may be due to the fact that natural precipitation 

is in the Panhandle is never sufficient to meet the total evapotranspiration needs of the 

crop.  Therefore, we only observe response in the linear portion of the production 

function.  On the other hand, irrigation moves the total water availability into the range 

where efficiency declines rapidly and the response per unit of input declines. This 

approach provides a measurement of the actual irrigation levels that would be relevant to 

the management decision. 
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The third approach is to base irrigation management decisions on the needs of the 

crop as indicated by potential evapotranspiration for a crop that is not limited by water 

availability.  This method would be more valuable if a dynamic model which could 

account for the timing of irrigation application were available instead of a static model. It 

is interesting to note how low the optimal percent evapotranspiration levels are compared 

to the 100 percent PET level that would provide a water stress free environment for the 

crop. 

The estimation of separate response functions for the two areas based on the 

availability of water in the Ogallala aquifer provides insight into the different 

management decisions that are faced by producers in those areas. In Area A where water 

is still readily available the decision is still selecting the optimum level of irrigation of 

water availability.  Optimization has a unique solution.  In Area B where water 

availability is limited and the decision becomes one of irrigation vs. no irrigation.  A 

unique optimal level is not defined as producers do not have sufficient water to move into 

the range of application with rapidly declining marginal productivity. 

The analysis for natural gas prices between $2 and $10 per mcf and sorghum prices 

between $3 and $6 per cwt indicate that the amount of water to apply increases as the 

price of sorghum increases. Conversely, for a fixed price of sorghum the optimal water 

application rate declines as the price of natural gas increases. Where water availability is 

severely limited, it is interesting to note that in none of the approaches is irrigation 

indicated at any sorghum price when the natural gas price is above $4.50 
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Table 1.  Irrigated acres in Region A of the High Plains, by method of application, 1950 
through 1997. 
 

Year Furrow 
Irrigated 

Sprinkler 
Irrigated 

Total Acres 

1950 19,315 0 19,315 
1960 549,884 20,397 570,281 
1970 1,379,878 137,139 1,517,017 
1980 1,353,443 401,117 1,754,560 
1990 676,051 515,195 1,191,246 
1997 509,267 854,171 1,363,438 

 
 
 
 
Figure 1.  Annual precipitation and growing season precipitation reported at the Amarillo 
weather station from 1880 to 2000. 
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Figure 2. Acreage of Grain Sorghum in the 26 Counties in the Texas Panhandle, 1920-
1997. 
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Figure 3. Counties in the Texas Panhandle grouped into areas based on relative 
availability of irrigation water from the Ogallala aquifer. 
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Table 2.  Optimum water availability for meeting crop requirements under different 
sorghum and natural gas prices in Area A. 

 
 
Table 3. Optimum water availability for meeting crop requirements under different 
sorghum and natural gas prices in Area B. 

 
 

Price of Sorghum ($)
PNG 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
2.00 14.3 15.9 17.3 18.5 19.6 20.5 21.3 22.1 22.7 23.3 23.9 24.4 24.8
2.50 12.7 14.4 15.9 17.2 18.4 19.4 20.2 21.0 21.8 22.4 23.0 23.5 24.0
3.00 11.1 13.0 14.6 15.9 17.2 18.2 19.2 20.0 20.8 21.5 22.1 22.7 23.2
3.50 9.5 11.5 13.2 14.7 15.9 17.1 18.1 19.0 19.8 20.6 21.2 21.9 22.4
4.00 7.9 10.0 11.8 13.4 14.7 16.0 17.0 18.0 18.9 19.7 20.4 21.0 21.6
4.50 6.3 8.5 10.4 12.1 13.5 14.8 16.0 17.0 17.9 18.7 19.5 20.2 20.8
5.00 4.7 7.0 9.0 10.8 12.3 13.7 14.9 16.0 16.9 17.8 18.6 19.3 20.0
5.50 3.0 5.5 7.7 9.5 11.1 12.5 13.8 15.0 16.0 16.9 17.7 18.5 19.2
6.00 1.4 4.0 6.3 8.2 9.9 11.4 12.7 13.9 15.0 16.0 16.9 17.7 18.4
6.50 0.0 2.6 4.9 6.9 8.7 10.3 11.7 12.9 14.0 15.1 16.0 16.8 17.6
7.00 0.0 1.1 3.5 5.6 7.5 9.1 10.6 11.9 13.1 14.1 15.1 16.0 16.8
7.50 0.0 0.0 2.1 4.4 6.3 8.0 9.5 10.9 12.1 13.2 14.2 15.1 16.0
8.00 0.0 0.0 0.8 3.1 5.1 6.9 8.5 9.9 11.1 12.3 13.3 14.3 15.2
8.50 0.0 0.0 0.0 1.8 3.9 5.7 7.4 8.9 10.2 11.4 12.5 13.5 14.4
9.00 0.0 0.0 0.0 0.5 2.7 4.6 6.3 7.8 9.2 10.5 11.6 12.6 13.6
9.50 0.0 0.0 0.0 0.0 1.5 3.5 5.2 6.8 8.3 9.5 10.7 11.8 12.8

10.00 0.0 0.0 0.0 0.0 0.3 2.3 4.2 5.8 7.3 8.6 9.8 10.9 12.0
10.50 0.0 0.0 0.0 0.0 0.0 1.2 3.1 4.8 6.3 7.7 9.0 10.1 11.2
11.00 0.0 0.0 0.0 0.0 0.0 0.1 2.0 3.8 5.4 6.8 8.1 9.3 10.4

Price of Sorghum ($)
PNG 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
2.00 NI NI NI NI NI NI NI I I I I I I
2.50 NI NI NI NI NI NI NI NI I I I I I
3.00 NI NI NI NI NI NI NI NI NI NI I I I
3.50 NI NI NI NI NI NI NI NI NI NI NI I I
4.00 NI NI NI NI NI NI NI NI NI NI NI NI I
4.50 NI NI NI NI NI NI NI NI NI NI NI NI NI
5.00 NI NI NI NI NI NI NI NI NI NI NI NI NI
5.50 NI NI NI NI NI NI NI NI NI NI NI NI NI
6.00 NI NI NI NI NI NI NI NI NI NI NI NI NI
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Table 4. Optimum irrigation applications for meeting crop requirements under different 
sorghum and natural gas prices in Area A. 

 
 
Table 5. Optimum irrigation strategy under different sorghum and natural gas prices in 
Area B. 

 

Price of Sorghum ($)
PNG 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
2.00 7.0 7.8 8.5 9.0 9.5 10.0 10.4 10.7 11.0 11.3 11.6 11.8 12.0
2.50 6.3 7.1 7.8 8.4 9.0 9.4 9.9 10.2 10.6 10.9 11.1 11.4 11.6
3.00 5.5 6.4 7.2 7.8 8.4 8.9 9.3 9.7 10.1 10.4 10.7 11.0 11.3
3.50 4.8 5.7 6.5 7.2 7.8 8.4 8.8 9.3 9.7 10.0 10.3 10.6 10.9
4.00 4.0 5.0 5.9 6.6 7.3 7.8 8.3 8.8 9.2 9.6 9.9 10.2 10.5
4.50 3.3 4.3 5.2 6.0 6.7 7.3 7.8 8.3 8.7 9.1 9.5 9.8 10.1
5.00 2.5 3.6 4.6 5.4 6.1 6.8 7.3 7.8 8.3 8.7 9.1 9.4 9.7
5.50 1.7 2.9 3.9 4.8 5.5 6.2 6.8 7.4 7.8 8.3 8.7 9.0 9.4
6.00 1.0 2.2 3.3 4.2 5.0 5.7 6.3 6.9 7.4 7.8 8.3 8.6 9.0
6.50 0.2 1.5 2.6 3.6 4.4 5.1 5.8 6.4 6.9 7.4 7.8 8.2 8.6
7.00 0.0 0.8 2.0 3.0 3.8 4.6 5.3 5.9 6.5 7.0 7.4 7.8 8.2
7.50 0.0 0.1 1.3 2.4 3.3 4.1 4.8 5.4 6.0 6.5 7.0 7.4 7.8
8.00 0.0 0.0 0.7 1.7 2.7 3.5 4.3 5.0 5.6 6.1 6.6 7.0 7.5
8.50 0.0 0.0 0.0 1.1 2.1 3.0 3.8 4.5 5.1 5.7 6.2 6.7 7.1
9.00 0.0 0.0 0.0 0.5 1.6 2.5 3.3 4.0 4.6 5.2 5.8 6.3 6.7
9.50 0.0 0.0 0.0 0.0 1.0 1.9 2.8 3.5 4.2 4.8 5.4 5.9 6.3

10.00 0.0 0.0 0.0 0.0 0.4 1.4 2.3 3.0 3.7 4.4 4.9 5.5 5.9
10.50 0.0 0.0 0.0 0.0 0.0 0.9 1.8 2.6 3.3 3.9 4.5 5.1 5.6
11.00 0.0 0.0 0.0 0.0 0.0 0.3 1.3 2.1 2.8 3.5 4.1 4.7 5.2

Price of Sorghum ($)
PNG 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
2.00 NI NI NI NI NI NI I I I I I I I
2.50 NI NI NI NI NI NI NI I I I I I I
3.00 NI NI NI NI NI NI NI NI NI I I I I
3.50 NI NI NI NI NI NI NI NI NI NI I I I
4.00 NI NI NI NI NI NI NI NI NI NI NI I I
4.50 NI NI NI NI NI NI NI NI NI NI NI NI NI
5.00 NI NI NI NI NI NI NI NI NI NI NI NI NI
5.50 NI NI NI NI NI NI NI NI NI NI NI NI NI
6.00 NI NI NI NI NI NI NI NI NI NI NI NI NI
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Table 6. Optimum percent potential evapotranspiration for grain sorghum production in 
Area A.  

 
 
Table 7. Optimum irrigation strategy based on ET requirements under different sorghum 
and natural gas prices in Area B. 

 

Price of Sorghum ($)
PNG 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
2.00 66.4 69.7 72.6 75.1 77.2 79.2 80.9 82.4 83.8 85.0 86.2 87.2 88.1
2.50 63.0 66.6 69.7 72.4 74.8 76.8 78.7 80.3 81.8 83.1 84.3 85.5 86.5
3.00 59.7 63.6 66.9 69.7 72.3 74.5 76.4 78.2 79.8 81.2 82.5 83.7 84.8
3.50 56.4 60.5 64.0 67.1 69.8 72.1 74.2 76.1 77.8 79.3 80.7 82.0 83.1
4.00 53.0 57.4 61.2 64.4 67.3 69.8 72.0 74.0 75.8 77.4 78.9 80.2 81.5
4.50 49.7 54.4 58.3 61.8 64.8 67.4 69.8 71.9 73.8 75.5 77.1 78.5 79.8
5.00 46.4 51.3 55.5 59.1 62.3 65.1 67.6 69.8 71.8 73.6 75.3 76.8 78.2
5.50 43.1 48.2 52.6 56.4 59.8 62.7 65.4 67.7 69.8 71.7 73.5 75.0 76.5
6.00 39.7 45.1 49.8 53.8 57.3 60.4 63.1 65.6 67.8 69.8 71.6 73.3 74.8
6.50 36.4 42.1 46.9 51.1 54.8 58.0 60.9 63.5 65.8 67.9 69.8 71.6 73.2
7.00 33.1 39.0 44.1 48.5 52.3 55.7 58.7 61.4 63.8 66.0 68.0 69.8 71.5
7.50 29.8 35.9 41.2 45.8 49.8 53.3 56.5 59.3 61.8 64.1 66.2 68.1 69.8
8.00 26.4 32.9 38.4 43.1 47.3 51.0 54.3 57.2 59.8 62.2 64.4 66.4 68.2
8.50 23.1 29.8 35.5 40.5 44.8 48.6 52.0 55.1 57.8 60.3 62.6 64.6 66.5
9.00 19.8 26.7 32.7 37.8 42.3 46.3 49.8 53.0 55.8 58.4 60.8 62.9 64.9
9.50 16.5 23.6 29.8 35.1 39.8 43.9 47.6 50.9 53.8 56.5 58.9 61.2 63.2

10.00 13.1 20.6 27.0 32.5 37.3 41.6 45.4 48.8 51.8 54.6 57.1 59.4 61.5
10.50 9.8 17.5 24.1 29.8 34.8 39.2 43.2 46.7 49.8 52.7 55.3 57.7 59.9
11.00 6.5 14.4 21.3 27.2 32.3 36.9 41.0 44.6 47.9 50.8 53.5 55.9 58.2

Price of Sorghum ($)
PNG 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
2.00 NI NI NI NI NI NI NI NI I I I I I
2.50 NI NI NI NI NI NI NI NI NI I I I I
3.00 NI NI NI NI NI NI NI NI NI NI NI I I
3.50 NI NI NI NI NI NI NI NI NI NI NI NI I
4.00 NI NI NI NI NI NI NI NI NI NI NI NI NI
4.50 NI NI NI NI NI NI NI NI NI NI NI NI NI
5.00 NI NI NI NI NI NI NI NI NI NI NI NI NI
5.50 NI NI NI NI NI NI NI NI NI NI NI NI NI
6.00 NI NI NI NI NI NI NI NI NI NI NI NI NI



28 

References 
Almas, L.K., F. Bretz, S. Amosson, T. Marek, L. New, and B. Stewart.  Determining 
Region A Water Supply Needs for the 50-year Planning Period. Panhandle Water 
Planning Project Task 4 Project Memorandum. Texas A&M University, Agricultural 
Research and Extension Center, Amarillo, Texas, April 2000. 
 
Amosson, S.H., L. New, L. Almas, F. Bretz, and T Marek. Economics of Irrigation 
Systems.” Texas Agricultural Extension Bulletin B-6113, Texas Cooperative Extension, 
The Texas A&M University System, 2001. 
 
Amoson, S., J. Smith, L. Almas, F. Bretz, and M. Freeman. Texas Crop and Livestock 
Enterprise Budgets, Texas High Plains, Projected for 2004. Texas Cooperative 
Extension, The Texas A&M University System, 2003. 
 
Bean, B. Managing Grain Sorghum for Maximum Profitability in the Texas High Plains. 
SCS-2000-26, Texas Agricultural Extension Service, The Texas A&M University 
System, 2000. 
 
Ellis, John R., Ronald D. Lacewell, and Duane R. Reneau. Economic Implication of 
Water-Related Technologies for Agriculture: Texas High Plains. The Texas Agricultural 
Experiment Station, The Texas A&M University System, College Station, Texas, July 
1985. 
 
Beattie, B.R., and C.R. Taylor. The Economics of Production. John Wiley & Sons 1985. 
 
Grubb, Herbert W. Importance of Irrigation Water to the Economy of the 
Texas High Plains. Report 11. Texas Technological College for the Texas Water 
Development Board, Austin, Texas, January 1966. 
 
Heady, E.O. and J.L. Dillon. Agricultural Production Functions, Iowa State University 
Press, Ames. 1961. 
 
Jensen, M.E. and J.T. Musick, “The Effects of Irrigation Treatments on 
Evapotranspiration and Production of Sorghum and Wheat in the Southern Great Plains.” 
Proceedings of the 7th International Congress of Soil Science, Madison Wisconsin, 1960. 
 
Johnson, P. and L. Falconer. Profitability and Production Costs of Grain Sorghum in 
Texas, 2001 Annual Profit Report. Agricultural and Applied Economics, Texas Tech 
University, Lubbock, 2001. 
 
Musick, J. T., F. B. Pringle, W. L. Harman, and B. A. Stewart. “Long-Term 
Irrigation Trends – Texas High Plains.” Applied Engineering in Agriculture, Vol.6, No. 
6, pp. 717-724, November 1990. 
 



29 

New, L. AgriPartners Irrigation Result Demonstrations, 2002. Texas Agricultural 
Extension Service, Texas A&M University System, 2003. 
 
New, L. AgriPartners Irrigation Result Demonstrations, 2003. Texas Agricultural 
Extension Service, Texas A&M University System, 2004. 
 
New, L. “Grain Sorghum Production Per Inch of Water ’98,’99,’00, ‘01, ‘02, ‘03 
AgriPartners.” 2003 AgriPartner Summary, Texas Agricultural Extension Service, Texas 
A*M University, 2004. 
 
Osborn, James E., Milton Holloway, and Neal, Walker. Importance of Irrigated Crop 
Production to a Seventeen County Area in the Texas High Plains. Department of 
Agricultural Economics. Texas Tech University, Lubbock, Texas, May 1972.   

 
Osborn, James E., and William C. McCray. An Interindustry Analysis of the Texas 
High Plains Part I. Department of Agricultural Economics. Texas Tech University, 
Lubbock, Texas, April 1972. 

 
Osborn, James E. “Economic Effects of an Exhaustible Irrigation Water Supply: Texas 
High Plains.”  Southern Journal of Agricultural Economics, College of Agricultural 
Sciences, Texas Tech University, July 1973. 

 
Osborn, James E., and T. R. Harris. Economic Analysis Interindustry Effects of 
aDeclining Groundwater Supply Southern High Plains of Texas. The Texas  
Agricultural Experiment Station. Texas A& M University, College Station, Texas, June 
1973. 
 
Osborn, James E., Herbert W. Grubb, Thomas R. Harris, and Tommy J. Swann. An Input-
output Analysis of Texas High Plains Labor Employment Potentials to1980. Department 
of Agricultural Economics, Texas Tech University, Lubbock, Texas, August 1973. 

 
SAS Institute Inc., SAS/STAT® Users Guide, Version 8 , Cary, NC: SAS Institute Inc., 
1999. 
 
Segarra, Eduardo, and Yinjie Feng. “Irrigation Technology Adoption in the Texas 
High Plains.”  Texas Journal of Agriculture and Natural Resources, Volume 7, 71-83. 
Kingsville, Texas, 1994. 
 
Texas Agricultural Statistics Service. Texas Agricultural Statistics Service 1999. Bulletin 
258, September 2000. 



30 



31 

 
 
 


