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To tal Factor Productivity 
Decomposition and Unobserved 
Heterogeneity in Stochastic 
Frontier Models

Magnus A. Kellermann

This study examines in an empirical comparison how different econometric 
speci ications of stochastic frontier models affect the decomposition of total factor 
productivity growth. We estimate nine stochastic frontier models, which have 
been widely used in empirical investigations of sources of productivity growth. 
Our results show that the relative contribution of components to total factor 
productivity growth is quite sensitive to the choice of econometric model, which 
points to the need to select the “right” model. We apply various statistical tests to 
narrow the range of applicable models and identify additional criteria upon which 
to base the choice of non-nested models.

Key Words: heterogeneity, panel data, stochastic frontier, TFP decomposition

In many empirical studies of total factor productivity growth, the question 
of interest is focused on the relative importance of the various factors that 
contribute to productivity growth. Results from such studies often are the 
basis for recommendations on regulatory and support policies (e.g., Fan 
1991, Brümmer, Glauben, and Thijssen 2002, Saal, Parker, and Weyman-Jones 
2007, Key and McBride 2007, Goto and Sueyoshi 2009, Tovar, Ramos-Real, 
and de Almeida 2011). Therefore, it is crucial to be aware of how potentially 
sensitive those results can be to the particular methods chosen.

The focus in this study is on the econometric models used to estimate 
parametric representations of production technologies in a stochastic frontier 
framework and how different models in luence the results related to sources of 
productivity growth. Consequently, we elaborate not only on ef iciency scores 
but also on estimated representations of the production technology itself since 
the corresponding production elasticities and return-to-scale measures are an 
elementary part of every total factor productivity (TFP) decomposition. We also 
call attention to the fact that we can draw inferences from the results of a TFP 
decomposition only if the underlying estimate of the production technology 
ful ills the requirements of microeconomic theory. These features distinguish 
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our work from prior studies, which compared the results of different stochastic 
frontier models mainly in terms of ef iciency scores (e.g., Ahmad and Bravo-
Ureta 1996, Hallam and Machado 1996, Abdulai and Tietje 2007).

We compare a variety of the stochastic frontier models that have been most 
widely applied in empirical TFP growth studies. In particular, we focus on how 
models account for (unobserved) heterogeneity1 in the data and distinguish 
heterogeneity from inef iciency. It appears that there are no clear-cut criteria 
available to guide researchers when choosing “the” appropriate model since 
seemingly valid models are not all nested, which complicates the choice 
purely based on econometric speci ication tests. However, we can provide 
some guidance for choosing an appropriate econometric model for a speci ic 
empirical application.

For our application, we use a data set of just under 1,000 dairy farms in an 
unbalanced panel covering 2000 through 2008. A translog output-oriented 
distance function is used to represent the production technology. To make 
the results of the models comparable, we keep the data, the speci ication 
of variables, and the functional form identical for all of the econometric 
speci ications. Based on the resulting estimated parameters and inef iciencies, 
we decompose productivity growth into the three components most commonly 
found in empirical applications: technical change, changes in technical 
ef iciency, and scale change effects.

Stochastic Frontier Models

Technical ef iciency is the ability of a irm to produce the maximum possible 
output from a given set and level of inputs.2 A irm’s potential inef iciency is the 
shortfall in observed production relative to a best-practice frontier. Econometric 
estimation of a function that represents this maximum possible expansion of 
output for given inputs is the objective of all models discussed here. Several 
excellent surveys of the concepts of (technical) ef iciency and estimation of 
stochastic frontier models exist (e.g., Greene 1993, Kumbhakar and Lovell 
2000); hence, we limit our overview to a short description of the models we use 
in our application and their main properties. Consequently, we focus mainly 
on the assumptions the models impose on the residual error term, whether 
they account for heterogeneity between the irms, and how the estimates of 
inef iciency are derived. These properties are summarized in Table 1.

We start with the pooled model (our model I), which is based on the original 
normal half-normal composed-error-term model proposed for cross-sectional 
data by Aigner, Lovell, and Schmidt (1977) and which treats every observation 
in a sample as independent of every other. Two examples of TFP studies 
concerning the agricultural sector that used the pooled model are Fan (1991) 
and Key, McBride, and Mosheim (2008).To keep the notation simple, we start 
from a production function, a single-output special case of the output-oriented 
distance function. Assuming a log-linear functional form, we can express this 
model as

1 Models that take parameter or technological heterogeneity into account are excluded from 
this work. In this regard, see works by Tsionas (2002), Orea and Kumbhakar (2004), and Greene 
(2005) for random parameter and latent class models in the context of stochastic frontier models 
and Emvalomatis (2012) for a recent application.

2 This statement corresponds to the concept of output-oriented technical ef iciency. Input-
oriented ef iciency aims for the minimal feasible use of inputs to produce a given level of output.
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(1) yit = xiʹt β + eit

where eit = vit – uit is a composed error term, yit is the log output, x is a 
vector of log inputs, and β represents the vector of all of the technology-
related regression coef icients. The subscripts i and t denote irms and time 
periods respectively. Model I contains a composed error term, eit, in which 
uit ∼ iid N+(0, σ2

u) is a non-negative term representing inef iciency (u) while 
vit ∼ iid N (0, σ2

v) is a symmetric term that captures statistical noise (e.g., from 
exogenous productivity shocks beyond the control of the analyzed units or 
measurement errors). Both components of eit are assumed to be uncorrelated 
with input quantities and each other. In particular, the assumption that the 
irms’ inef iciency is not correlated with the input quantities used requires 

further reasoning. Zellner, Kmenta, and Dreze (1966) argued that the quantities 
of variable inputs are largely predetermined when none of the irms are aware 
of their own technical inef iciencies at the time they make input decisions and 
all of the irms maximize expected pro it. Thus, the quantity of inputs is not 
necessarily correlated with technical inef iciency. The individual ef iciency 
score of the ith analyzed unit can be obtained using the mean (or the mode) of 
the conditional distribution of uit given eit as a point estimator (Jondrow et al. 
1982). However, since the variance from the mean (mode) of [uit | eit] for each 
unit is independent of the sample size, ef iciency scores cannot be estimated 
consistently using the pooled model.

Model II is an inef iciency-effects model following the concept initially 
proposed by Kumbhakar, Ghosh, and McGuckin (1991) and Huang and Liu 
(1994). Our speci ication was formulated by Battese and Coelli (1995) (BC95) 
for panel data sets, which have been used extensively in analyses of productivity 
growth. Examples are Yao, Liu, and Zhang (2001), Brümmer, Glauben, and 
Thijssen (2002), Rae et al. (2006), and Jin et al. (2010). The main feature of 
model II is incorporation of exogenous in luences on the inef iciency term 
in a one-step approach. Battese and Coelli (1995) achieved this by assuming 
that the inef iciency term has a truncated normal distribution with a mean of 
μit = zitʹζ and variance σ2

u (see Table 1). In this context, zit is a vector of observed 
exogenous variables that may in luence the irm’s inef iciency and ζ is the 
corresponding vector of additional parameters to be estimated. Although this 
model was designed for use with panel data, it is not a panel-data treatment in 
the classical sense because the inef iciency terms are assumed to be independent 
over time (Battese and Coelli 1995) and observations of a single irm in various 
time periods are treated as observations of separate irms (Abdulai and Tietje 
2007) just as in model I. However, in contrast to model I, the distribution of 
inef iciency in this model, uit, varies over z. Hence, inef iciency is not assumed to 
be identically distributed. There is ongoing debate in the literature on ef iciency 
that traces back to a seminal paper on the topic by Deprins and Simar (1989) 
about the “right place” for these exogenous z-variables. The question of “where 
do we put the zs” (Greene 2008, p. 154) concerns whether these variables truly 
explain part of the variation in inef iciency or whether they instead pick up 
heterogeneity and misspeci ications of the production technology.3 An intuitive 
example is use of variables related to the level of education and age of farmers 
or to farm location that are found in many agricultural studies (e.g., Battese and 

3 See Kumbhakar and Lovell (2000) for a literature review and a detailed summary of different 
approaches to incorporating exogenous in luences on ef iciency.
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Coelli 1995, Tzouvelekas, Pantzios, and Fotopoulos 2001). It has been argued 
that these variables instead should enter the production function as part of 
efforts to reduce heterogeneity and create homogeneous measures of labor 
and land inputs (Sherlund, Barrett, and Adesima 2002). We do not elaborate 
further on this question, but it seems worthwhile to address such concerns 
when specifying any stochastic frontier model.

Model III is a ixed-effects panel speci ication and model IV is a random-effects 
panel model, both developed by Schmidt and Sickles (1984) and extended to 
allow for time-varying technical ef iciency by Cornwell, Schmidt, and Sickles 
(1990), who also proposed an ef icient instrumental variable estimator as a 
generalization of the Hausman and Taylor (HT) (1981) estimator. Wu (1995) 
and Karagiannis, Midmore, and Tzouvelekas (2004) used the HT estimator to 
decompose TFP growth. We do not use the HT estimator. Our models are closely 
related to standard effects models commonly used in panel-data treatments. 
In the initial speci ication of those panel models with time-invariant ef iciency, 
the term eit is assumed to be an identically and independently distributed (iid) 
white noise term, iid (0, σ2

e); the additional effect, designated ϑi, is a constant 
irm-speci ic parameter in model III and an iid (0, σ2

ϑ) random effect in model IV. 
The ixed-effects model can be estimated by ordinary least squares (OLS) using 
the “within groups” transformation. Then, slope coef icients are estimated 
consistently as N or T → +∞ and are unbiased from unobserved time-invariant 
heterogeneity since all of the stable characteristics of the individual irms 
are controlled. The random-effects model can easily be estimated by feasible 
generalized least squares (FGLS). As is common in random-effects models, the 
individual effects (ϑi) are assumed to be uncorrelated with the explanatory 
variables. In case this assumption does not hold, however, we have to expect 
biased slope parameters. Schmidt and Sickles (1984) relied on the irm-speci ic 
means of the eit residuals from the within-groups and FGLS estimators to recover 
estimates of the individual effects. From there, we obtain each irm’s level of 
inef iciency using the normalization ui = max( i) – i. However, the a priori 
assumption of time-invariant inef iciency appears to be rather restrictive and 
may even be implausible for a productivity growth analysis, especially if the 
operating environment is competitive and the panel includes more than a few 
time periods. To allow for time-varying inef iciency, Cornwell, Schmidt, and 
Sickles (1990) adapted this model and replaced the constant irm effect, 

 ϑi =  eit,

with it = 1i + 2it + 3it2 varying as a lexible function of time. Firm-speci ic 
estimates of the respective parameters are derived by regressing the residuals 
of the within-groups and the generalized least squares (GLS) estimator on 
constants, t and t2 respectively, as in eit = θ1i + θ2it + θ3it2

 + ξit. Thereby, ξit is 
an additional error term that captures all of the remaining variance in the 
residuals that is left unexplained by the lexible function of time. Again, we get 
the irm’s level of inef iciency from uit = max( it) – it ∀ t. The main feature of 
models III and IV is that they allow for time-varying estimates of inef iciency 
that are consistent for all i and t as T → +∞ (Cornwell, Schmidt, and Sickles 
1990) without the need to make distributional assumptions.

An important issue regarding models III and IV is the lack of distinction 
between unobserved heterogeneity and inef iciency. The inef iciency 
estimates obtained from these models contain, by construction, the effects of 
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all time-invariant differences between the analyzed units. This may lead to 
overestimation of inef iciency for irms that are subject to unfavorable external 
conditions. As Farsi, Filippini, and Greene (2005, p. 77) noted, this issue may 
be even more serious for the ixed-effects model since “the irm-speci ic effects 
do not follow a single distribution and thus can have a relatively wide range 
of variation.” In the random-effects model, part of the heterogeneity, which 
might be correlated with the explanatory variables (contrary to the respective 
assumption), can be partly suppressed in biased slope coef icients, leading to 
biased TFP decompositions.

Model V was proposed by Battese and Coelli (1992) (BC92) and extends 
the maximum-likelihood random-effects panel model of Pitt and Lee (1981) 
to allow for time-varying inef iciency. It is one of the most popular stochastic 
frontier models used in empirical work on TFP growth (e.g., Kim and Han 2001, 
Coelli, Rahman, and Thirtle 2003, Newman and Matthews 2006, Rasmussen 
2010). Under an assumption that it has a truncated normal distribution, 
N+(μ, σ2

u), the irm effect ui is modeled as time-variant inef iciency as

(2) uit = β(t)ui

where β(t) = exp(–η(t – T)). If inef iciency appears to be time-invariant (η = 0) 
and ui is half-normal distributed (μ = 0), this speci ication simpli ies to the 
model of Pitt and Lee (1981). Model V shares two important properties with 
the GLS random-effects model (IV). Despite inef iciency being allowed to vary 
over time, the irm-speci ic random effect (ui) is still time-invariant and includes 
constant irm effects in the inef iciency term (Greene 2005). In addition, model 
V relies on the assumption that the irm effects are not correlated with the 
explanatory variables. Regarding use of this model in productivity analyses, two 
more aspects are noted. First, the function β(t) that determines how inef iciency 
varies over time is not very lexible and thus can only depict monotonous 
patterns of ef iciency change. Inef iciency increases at an increasing rate when 
η < 0, decreases at an increasing rate when η > 0, and remains constant when 
η = 0. Second, unlike models III and IV, model V restricts the time path for 
ef iciency change as common to all irms.4 As an advantage of its panel nature, 
the model yields consistent estimates of uit as T → +∞ in equivalence to the Pitt 
and Lee model, its time-invariant special case.

In an attempt to address the issue of (unobserved) heterogeneity between 
irms in a stochastic frontier framework, Greene (2005) proposed so-called 

“true” ixed-effects (TFE) and random-effects (TRE) models. Both true effects 
models have been used in TFP growth applications. Saal, Parker, and Weyman-
Jones (2007), Wetzel (2009), and Filippini, Horvatin, and Zoric (2010) are 
recent examples. Model VI is an TFE model that is a straightforward extension 
of the pooled model (I); αi is a irm-speci ic ixed effect while vit and uit are 
the components of the normal half-normal error term representing statistical 
noise and inef iciency just as in the pooled model.5 Maximum likelihood is 
used to estimate the slope parameters and additional N dummy variables for 
individual αi. The virtue of this brute-force approach lies in the application 
of a numerical maximization algorithm that can handle a large number of 

4 Cuesta (2000) proposed a maximum-likelihood model that allowed the temporal pattern of 
inef iciency to vary across irms.

5 See Polachek and Yoon (1996) for one of the irst discussions of a ixed-effects model that 
accounted for inef iciency using a composed error term.
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parameters. As Greene (2005) pointed out, maximum-likelihood estimators of 
nonlinear models can be inconsistent in the presence of ixed effects due to 
the problem of incidental parameters.6 The main difference between model VI 
and the conventional ixed-effects model (III) is in how inef iciency estimates 
are derived. In the TFE model, αi represents time-invariant unobserved 
heterogeneity while inef iciency is obtained as in the pooled model—from the 
conditional mean of the inef iciency term as E[uit | eit]. Thus, the TFE model is 
a ixed-effects model that includes a composed error term with a normal half-
normal distribution. Despite the panel characteristic of the TFE model, technical 
inef iciency is assumed to vary stochastically over time, and we cannot derive 
consistent estimates of uit even when N or T → +∞. Note that use of the TFE 
model is appropriate only when the analyzed panel contains more than a few 
time periods since individual ef iciency scores rely on the variation of ef iciency 
within observations of an individual irm. If the observed period is short, some 
irms may exhibit inertia in their inef iciency that would then mistakenly be 

captured by the ixed effect. A feature of the TFE model is that it allows the 
αi ixed effects to be correlated with the input quantities, xit. However, αi and 
xit are still assumed to be uncorrelated with both uit and vit.

Model VII is an TRE model in which the irm-speci ic effect is assumed to 
be an iid normal distributed random term; that is, αi ∼ N(0, σ2

α). As in model 
VI, time-invariant effects are treated as heterogeneity and captured by αi while 
technical inef iciency is estimated by the conditional mean of the inef iciency 
term E[uit | αi + eit].7 As Greene (2008) noted, this model can be seen as a 
special case of the random parameter model in which only the constant is a 
random parameter. As with all random-effects models, the irm-speci ic effect 
αi is “assumed to be uncorrelated with everything else in the model” (Greene 
2008, p. 207). To overcome the problem of heterogeneity bias in the slope 
parameters in case this assumption does not hold, Farsi, Filippini, and Greene 
(2005) and Farsi, Filippini, and Kuenzle (2005) proposed incorporation of 
Mundlak’s (1978) adjustment in the TRE and GLS models.8 The underlying 
assumption is that individual effects are a linear function of the group means 
of input quantities. The effects are then expressed in an auxiliary equation as

(3)  αi = γʹ i + ϑi  .

In equation 3, γ is an additional vector of parameters to be estimated and i is a 
vector of the group means of all input variables; that is, 

 i =  xit. 

Let us brie ly highlight the bene its of Mundlak’s adjustment applied in the 
GLS and TRE stochastic frontier models. We consider its incorporation into 
speci ication of stochastic frontier models based on the notion that irms adjust 
their input decisions in response to the constant operating conditions to which 

6 We refer the reader to Greene (2005) for a short discussion of the problem of incidental 
parameters related to stochastic frontier models. Wang and Ho (2010) provided a within-
difference and irst-difference transformation approach to estimate stochastic frontier models 
with ixed effects that is not affected by the incidental parameter problem.

7 Kumbhakar and Hjalmarsson (1993) proposed a very similar model that is estimated in two steps.
8 Farsi, Filippini, and Kuenzle (2005) estimated a GLS model with time-invariant technical 

inef iciency.
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they are subject. Thus, a way is introduced to improve econometricians’ ability 
to take heterogeneity that is not observed by them but is observed by producers 
into account.9 

By substituting equation 3 into the speci ications of models IV (GLS) and VII 
(TRE), we add two models to our comparison: IV-M and VII-M. In these models, 
the individual effect (αi) is decomposed in two components. The irst part is 
explained by the group-mean variables, and the remaining unexplained part, 
ϑi, is assumed to be orthogonal to the explanatory variables. The important 
difference lies in the way the remaining component is treated. In the TRE 
speci ication (model VII-M) as proposed by Farsi, Filippini, and Greene (2005), 
ϑi is treated as residual heterogeneity that cannot be explained by the 
group mean of input use. Then, as intended by the TRE model, this residual 
heterogeneity is captured by the irm-speci ic random effect: ϑi ∼ N(0, σ2

ϑ). In 
the augmented GLS random-effects model (IV–M), we assume that the group-
mean variables explain all heterogeneity between the irms in the sample. 
Thus, the term ϑi becomes part of the GLS random-effects model’s iid error 
term. As a consequence of the following procedure to derive the inef iciencies, 
ϑi is treated as part of the time-varying inef iciency.

We incorporate the IV-M and VII-M models in our comparison because they 
are useful in two ways. First, their estimated slope parameters are free from 
heterogeneity bias to the extent that equation 3 can capture correlations 
between the random effects and the explanatory variables. As previously noted, 
this is important to our estimates of production and scale elasticities. Second, 
by modeling an individual effect (αi) through a function of observed variables, 
we can mitigate the heterogeneity bias in the estimates of inef iciency. This is 
especially appealing in the case of model IV–M, which provides an alternative 
way to derive (consistent) time-varying estimates of inef iciency while taking 
unobserved heterogeneity into account.10

Empirical Application

We apply the models discussed to a set of panel data on specialized German 
dairy farms. Based on the resulting estimates of technology parameters and 
inef iciency, we calculate rates of TFP growth. Our use of farm data for the 
empirical application is bene icial in two ways. First, the methodology we 
analyze has been used in numerous empirical studies of the agricultural sector 
(e.g., Brümmer, Glauben, and Thijssen 2002, Newman and Matthews 2006, Key, 
McBride, and Mosheim 2008, Rasmussen 2010) and many other sectors, which 
demonstrates its relevance. Second, farms are natural candidates to represent 
irms that operate under heterogeneous production conditions that affect 

the feasible output (Sherlund, Barrett, and Adesima 2002, Abdulai and Tietje 
2007).

9 It is undisputed that this approach does not relieve the researcher from having to make 
assumptions. For example, how realistic it is to assume that irms adjust to operating conditions 
but do not know their degree of inef iciency is debatable.

10 We did not include the “ ixed management model” proposed by Alvarez, Arias, and 
Greene (2005) in our comparison. That model was also an attempt to account for unobserved 
heterogeneity and is closely linked to the TRE model. We applied the model to our data set using 
the Mundlak speci ication as suggested by Alvarez, Arias, and Greene, and the results (available 
from the authors) were almost identical to those obtained from model VII-M.
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Data

The data set for our empirical application is taken from bookkeeping records 
for German farms maintained by the Bavarian State Research Center for 
Agriculture (Bayerische Landesanstalt für Landwirtschaft (LfL-Bayern)). It 
is an unbalanced panel with 7,465 observations of 974 farms covering the 
years 2000 through 2008. We consider only specialized dairies—farms that 
generated at least 66 percent of total revenue from dairy production. Farms 
for which there were less than four consecutive observations are also excluded 
to improve the panel character of the data set. In particular, models III and 
IV make this restriction necessary. The observations are evenly distributed 
over the period with 7.7 observations per farm on average. We consider two 
outputs, milk and other output, and four inputs, labor, land, intermediate inputs, 
and capital. Descriptive statistics by year are presented in Table 2. The output 
milk is measured in total revenue from milk and milk products. This allows 
us to account for quality differences since the price that the individual farmer 
receives from the processor varies depending on the fat and protein content 
of the delivered milk. The variable other output contains revenue from beef, 
crops, and other commodities produced. The input variable labor subsumes 
family and hired labor in man working units (MWUs), and the variable land 
measures total cultivated land in hectares. The intermediate inputs variable 
includes expenses for forage and crop production (e.g., seed, fertilizer, 
pesticides, fuel, and contractors) and animal production (e.g., veterinary 
services and concentrates). The capital variable is the end-of-year value of the 

Table 2. Summary Statistics of Input and Output Variables by Year

 Milk Other  Labor Land Intermediate Capital
 Output Output Input Input Inputs Input

 thousand thousand man working  thousand thousand
 euros euros units hectares euros euros

2000 56.69 30.59 1.52 40.08 44.91 206.62
 (25.30) (15.63) (0.44) (22.52) (25.01) (110.89)

2001 59.96 30.04 1.54 41.14 45.34 208.56
 (28.26) (15.70) (0.44) (23.19) (26.85) (117.87)

2002 60.36 31.16 1.54 42.02 46.32 206.94
 (28.61) (16.10) (0.43) (23.69) (26.36) (120.55)

2003 62.07 31.98 1.53 42.76 47.28 204.15
 (30.34) (17.35) (0.44) (24.99) (27.32) (121.63)

2004 64.26 31.19 1.54 43.42 48.87 202.94
 (31.32) (16.18) (0.45) (25.09) (27.45) (121.65)

2005 65.81 31.63 1.54 44.85 48.58 202.18
  (32.56) (17.58) (0.46) (26.07) (26.62) (124.02)

2006 66.72 32.92 1.55 45.32 48.78 198.96
 (33.64) (18.84) (0.46) (26.54) (27.56) (123.03)

2007 69.86 35.10 1.54 46.74 49.94 195.15
 (35.28) (21.27) (0.46) (28.08) (27.71) (121.51)

2008 69.50 33.70 1.55 47.71 49.64 195.51
 (36.39) (21.19) (0.44) (29.17) (28.41) (128.50)

Note: The summary statistics are reported as mean values. The standard deviation for each is shown 
within parentheses.
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farm’s buildings, technical facilities, machinery, and livestock.11 We use price 
indices from the German Federal Bureau of Statistics to de late the aggregated 
monetary input and output variables using year 2005 as the base year. We use 
regional dummies representing the nine agricultural production areas in the 
data set as z-variables for the inef iciency effects in model II.

Speci ication

Dairy farms are a commonly used example of multi-product irms. Even 
specialized dairy farms usually do not solely produce milk; they often also 
produce beef, veal, and ield crops as part of integrated production processes.12 
We model this multi-input multi-output technology using an output-oriented13 
distance function, DO(x, y, t), in which x = (x1, x2, . . . , xk) ∈ RK+ refers to a 
non-negative vector of inputs used to produce a non-negative vector of outputs, 
y = (y1, y2, . . . , ym) ∈ RM+, and t denotes an exogenous time trend, t = 1, 2, . . . , T. 
We choose the common, lexible translog functional form that limits the a priori 
restrictions on the relationships among inputs and outputs. Therefore,

(4)   ln DO
it(x, y, t) = β0 + αm ln ymit + βk ln xkit +  αmn ln ymit ln ynit

 +  βkj ln xkit ln xjit + δmk ln ymit ln xkit + τ1t +  τ2t2
 + ςmtt ln ymit + vkt t ln xkit .
The parameters of this function must satisfy the symmetry restrictions: αmn = αnm 
and βkj = βjk. In addition, homogeneity of degree one in the output quantities,

 αm = 1 and αmn = δmk = ςmt = 0,
is imposed by normalizing the function by an arbitrarily chosen output quantity:

(5) ln(DO
it(y, x, t) / y2it) = TL(y*, x, t) with y*

mit = ymit / y2it

where TL indicates translog and TL(y*, x, t) is the righthand side of equation 1 
after dividing all of the output quantities by y2.14 The dependent variable ln DO

it 

11 We use this measure of the capital stock to approximate the true low value of the capital input 
(e.g., Newman and Matthews 2006).

12 A farm that outsources all calf and heifer rearing and all cereal and forage production might 
provide such an example. However, there were no such farms in our sample.

13 The choice of orientation has to be made individually for each application. For our case, we 
assume that the farms in our sample are less lexible in adjustment of inputs than in output. The 
labor input, which largely contains the family workforce, is one example of a rather in lexible 
input. On the other side, a well-established system for quota trading exists in Germany. Hence, 
output can be considered as unrestricted.

14 Despite the common use of distance functions as representations of multi-input multi-output 
production technologies, there are concerns associated with the exogeneity of the ratio of outputs 
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is unobservable so we rearrange the distance function for the estimation in 
a stochastic frontier framework. We add a random error term, vit, and since 
DO

it ≤ 0, we replace ln DO
it with –u such that

(6) – ln y2it = TL(y*, x, t) + u + vit .

To allow the results to be compared with those of the standard stochastic 
production frontier, we adapt equation 3 slightly by multiplying both sides 
by –1. Hence, we use ln y2it as the dependent variable and reverse the signs 
of the regressors and of the one-sided inef iciency term u. How u is modeled 
depends on the applied econometric model (see Table 1).

Calculation and Decomposition of TFP Growth

Based on the estimated parameters and inef iciency estimates from models 
I–VII, we use the derivative-based approach to calculate and decompose 
TFP growth.15 See Denny, Fuss, and Waverman (1981) and Bauer (1990) for 
applications of production and cost functions and Brümmer, Glauben, and 
Thijssen (2002) and Karagiannis, Midmore, and Tzouvelekas (2004) for 
applications of output and input distance functions.16 Keeping our application 
simple and comparable to the production-function one-output special case 
of the output distance function, we assume allocative ef iciency and perfect 
competition of input and output markets.17 In this set-up we obtain the 
following expressions for technical change, ef iciency change, and the scale 
change effect by taking the total differential of equation 3 and relating it to the 
Divisia index of TFP growth.

Technical change is calculated by

 TCit = ( ln y2it) / t = 1 + 2t + mt ln ymit + kt ln xkit

(Morrison Paul, Johnston, and Frengley 2000). This expression is irm- and 
time-speci ic according to the translog functional form of equation 3.

Calculation of the effect of changes in technical ef iciency varies according 
to the econometric model. For models III, IV, and IV–M, we follow Fecher and 
Pestieau (1993) and obtain farm-speci ic estimates for the change in technical 
ef iciency from TECit = ϑit / t = 2i + 3it.18 For model V from Battese and 
Coelli (1992), we use 

when used as a dependent variable in the estimation. Based on indings by Schmidt (1988) 
and Mundlak (1996), Coelli (2000) argued that the ratio form of outputs does not suffer from 
endogeneity when expected pro it maximization is assumed. Kumbhakar and Lovell (2000) also 
discussed this issue.

15 Many empirical studies have used the Malmquist TFP index developed by Caves, Christensen, 
and Diewert (1982). That alternative approach to decomposing TFP growth is based on the same 
estimates of technology parameters and inef iciency. Hence, we expect qualitatively identical 
results from our analysis.

16 Lovell (1996) provides an overview that includes the nonparametric approach to ef iciency 
measurement.

17 Hence, we exclude from this primal framework any contributing factors to TFP growth that are 
“connected to market” and concentrate on those “connected to technology” (Brümmer, Glauben, 
and Thijssen 2002, p. 632).

18 This approach implies that technical change is associated with the trend variable in the 
technology part of the distance function and is common to all of the irms in a sector. In contrast, 
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 TECit = –(uit / t) =  exp – (t – T) .

The other models do not explicitly specify how technical inef iciency is 
allowed to vary over time. On the contrary, they include the assumption that 
inef iciency is independent across farms and time. Thus, for these models the 
change in technical ef iciency is measured by discrete changes in it from period 
t to t + 1; in other words, TECit = uit – uit+1. Karagiannis and Tzouvelekas (2005) 
showed that the marginal effects of time-varying variables in the inef iciency 
part of model II have to be taken into account in a decomposition of TFP growth. 
In our application, however, only time-invariant variables enter the inef iciency 
part of the model. In the decomposition described by Zhu and Lansink (2010), 
this relates to a case in which all of the discrete changes in technical ef iciency 
over time are ascribed to “unspeci ied factors.”

Based on the distance elasticities with respect to the inputs, the scale 
elasticity, and changes in input usage, we calculate the scale change effect: 
SCit = (εit – 1)sikt ln(xikt / xikt+1). In this expression, 

 ε = ( ln DO / xk) and sk = ( ln DO / xk) /  ln DO / xk  .

We observe a positive (negative) contribution to productivity change (i) when 
ε > 1 and input usage is expanded (reduced) or (ii) when ε < 1 and input 
usage is reduced (expanded). In the case of constant returns to scale (ε = 1) or 
constant input quantities, SC becomes zero.

Empirical Results

We present the estimated parameters of the nine models in Table A1 in an 
appendix (available from the authors) to conserve space. Models I, II, V, VI, VII, 
and VII–M were estimated using LIMDEP 9.0 (Greene 2007). Models III, IV, and 
IV–M were estimated using EViews 6 (Quantitative Micro Software 2007). The 
percentages of slope parameters that are signi icantly different from zero at 
the 5 percent level range from 54.2 percent in model IV–M to 80.0 percent in 
model VII with an average of 68.5 percent. Comparing the estimated coef icients, 
we ind apparent variation for some of the models while others are similar.

The variation in the technology parameters carries over to the respective 
distance elasticities. Table 3 shows the average elasticities of inputs and 
outputs as well as average return-to-scale measures for all of the models. The 
average elasticities have the right signs on the input and output sides, and some 
patterns in the calculated average elasticities can be noted. For all models, 
intermediate inputs has the highest average output elasticity and the return-
to-scale measure is less than one. On the output side, the elasticities re lect 
the high share of milk output in total production. Based on similarities in the 
average elasticities, we can identify three groups of models. The irst consists 
of the pooled (I), BC95 (II), and TFE (VI) models, which produce relatively high 
average scale elasticities that are close to one, high elasticities for intermediate 
inputs, and relatively low elasticities (close to zero) for the land input. However, 
standard errors of the average elasticities calculated using the delta method 

change in ef iciency is individual to producers. See Lovell (1996) for a short discussion of various 
interpretations.
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show that all are signi icantly different from zero at least at the 1 percent level. 
Model II presents a slight variation; the output elasticity for the land input 
is low but is signi icantly higher than the same elasticity in models I and VI 
as con irmed by a Welch test. We assign this inding to the incorporation of 
the regional dummy variables in the inef iciency-effects model. In that case, 
(observed) information about heterogeneous production conditions, which is 
basically related to the productive potential of used acreage, is included in the 
model and leads to a more reliable estimate.19

The second group is composed of the three random-effects models: IV, V, and 
VII. All produce highly similar elasticities on the input and output sides. The 
average scale elasticity is lower in this group than in the irst group and ranges 
from 0.752 to 0.783. Once again, intermediate inputs has the highest average 
elasticity; land has the next highest, followed by labor and then capital. These 
models share the assumption that the irm-speci ic component (speci ied as 
ϑi (IV), ui (V), and αi (VII) in Table 1) is not correlated with the explanatory 
variables.

Models III, IV–M, and VII–M make up the third group and are connected by the 
fact that they either assume that the individual effects are correlated with the 
explanatory variables (as in ixed-effects model III) or take possible correlation 
explicitly into account using Mundlak’s (1978) adjustment. This group 
generates the smallest scale elasticities, which range from 0.539 to 0.560. The 
similarities in the distance elasticities for these models indicate that the group-
mean variables pick up a large fraction of the correlation between the irm-
speci ic effects and the explanatory variables. In fact, the ixed-effects model 
(III) and augmented GLS model (IV–M) are assumed to be identical (Mundlak 
1978).20 This relationship does not hold for maximum-likelihood stochastic 
frontier models such as VII–M. However, to the extent that the group-mean 

19 As previously noted, one could argue that information about land quality should be 
incorporated directly into the distance function.

20 In our case, model IV-M (GLS+M) is not entirely identical to the ixed-effects model because 
we leave out the group-mean variables for inputs interacted with the trend variable. The results of 
a speci ication that included the additional variables were almost identical. Hence, we prefer the 
present, more parsimonious speci ication.

Table 3. Average Distance Elasticities

 Labor Land Intermed. Capital Milk Other Return
 Input Input Inputs Input Output Output to Scale

I – pooled 0.174 0.018 0.628 0.134 –0.725 –0.275 0.953

II – BC95 0.165 0.057 0.611 0.128 –0.724 –0.276 0.961

III – ixed effects 0.058 0.111 0.335 0.057 –0.801 –0.199 0.560

IV – GLS 0.093 0.163 0.436 0.092 –0.790 –0.210 0.783

IV-M – GLS+M 0.058 0.110 0.335 0.056 –0.801 –0.199 0.559

V – BC92 0.090 0.165 0.417 0.085 –0.790 –0.210 0.757

VI – TFE 0.177 0.013 0.632 0.134 –0.718 –0.282 0.955

VII – TRE 0.088 0.174 0.399 0.092 –0.801 –0.199 0.752

VII-M – TRE+M  0.056 0.103 0.317 0.062 –0.814 –0.186 0.539



138   April 2015 Agricultural and Resource Economics Review

variables capture correlations between the irm-speci ic random effects and 
the explanatory variables, we can mitigate heterogeneity bias in the estimated 
technology parameters.21

A summary of the estimated ef iciency scores from each model is presented 
in Table 4. As previously noted, ef iciency scores obtained from models III, 
IV, and V contain the effects of irm-speci ic unobserved characteristics. This 
leads to downward-biased ef iciency scores for farms that have competitive 
disadvantages that are beyond the control of the farm manager, such as 
unfavorable natural conditions. The fact that these models produce the lowest 
ef iciency scores suggests that unobserved heterogeneity cannot be ignored 
in our data set. Model III produces the lowest ef iciency scores; the mean 
ef iciency for that model is less than 0.5. This would imply that, on average, 
all of the observed dairy farms could double their output without altering 
their inputs if they were fully ef icient, a clearly unrealistic result. Compared 
to model III, the mean ef iciencies obtained from models IV and V are higher—
in the range of 0.59 to 0.74. As Farsi, Filippini, and Kuenzle (2005) noted, the 
higher ef iciencies can be attributed to correlation between the explanatory 
variables and the irm-speci ic effects such that the heterogeneity is partly 
captured in the slope parameters.

The TFE and TRE models (VI and VII) produce rather high ef iciency 
scores—0.842 and 0.918 respectively at the mean. These models explicitly 
account for all time-invariant irm-speci ic effects so the ef iciency scores 
depend solely on within-variation of the irms and any potential time-
invariant inef iciency is suppressed in the irm-speci ic effect. Given that the 
European dairy sector cannot be assumed to be highly competitive, we cannot 
rule out the possibility that farms that have a certain amount of inertia in 
their inef iciency remain in the sector. On the other side, the data set also 

21 The Mundlak adjustment certainly is not a panacea for all problems associated with 
estimation of production and distance functions when heterogeneity is unobserved. Griliches and 
Mairesse (1998) elaborated on the bene its and dif iculties arising from use of panel techniques 
for estimation of production functions. They also discussed the frequently documented reduction 
in estimated scale elasticities that are also found in our empirical application. However, especially 
in the context of stochastic frontier analysis, the Mundlak adjustment has appealing features.

Table 4. Descriptive Statistics of the Ef iciency Scores

  Standard
 Mean Deviation Maximum Minimum

I – pooled 0.868 0.058 0.977 0.522

II – BC95 0.869 0.059 0.980 0.538

III – ixed effects 0.492 0.121 1.00 0.128

IV – GLS 0.588 0.112 1.00 0.225

IV-M – GLS+M 0.614 0.099 1.00 0.264

V – BC92 0.741 0.130 0.994 0.256

VI – TFE 0.842 0.032 0.962 0.506

VII – TRE 0.918 0.045 0.991 0.544

VII-M – TRE+M  0.916 0.048 0.990 0.504
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has features that agree with use of the “true” effects models. The panel 
encompasses data for 2000 through 2008, a reasonably sized timeframe. 
More importantly, dairy farmers had to adapt to several severe changes 
in operating conditions during this period, such as policy changes and 
luctuations in factor and output prices. This case of potential upward bias 

in the ef iciency estimates illustrates the analog to the predictable downward 
bias in models III, IV, and V, which do not account for heterogeneity. Models 
IV-M (denoted as GLS+M) and VII-M (denoted as TRE+M), which incorporate 
the Mundlak variables, show the expected results. The GLS+M speci ication 
accounts for heterogeneity as speci ied in Table 1 and can therefore reduce 
contamination of the ef iciency scores. This leads to an increase in the mean 
and a reduction in the standard deviation of the ef iciency scores. In the case 
of the TRE model (VII), incorporation of the group-mean variables has a 
different effect since this model already attempts to capture heterogeneity in 
its basic speci ication. Hence, any time-invariant differences between the irms 
are captured in the random constant anyway and the ef iciency estimates are 
free of time-invariant heterogeneity. The random constant is speci ied to be 
normally distributed with an additional parameter, σα in the TRE model and σϑ 
in the TRE-M model, that is the standard deviation of the random parameter. 
This additional parameter is a measure of unaccounted-for variation between 
farms. By including the Mundlak variables in the TRE model, we partly account 
for this unobserved heterogeneity, and, as expected, unaccounted variation 
between the irms is reduced from σα = 0.2327 to σϑ = 0.1459.

The correlation between the ef iciency scores obtained from different models 
(see Table 5) supports our interpretation of the varying results shown in 
Table 4. The ef iciency scores from models I and II are highly correlated (0.93) 
and show considerable correlation with scores from all of the other models 
(0.47–0.79). Neither model takes the panel structure of the data into account. 
Hence, the ef iciency scores from models I and II contain time-varying and time-
invariant components. This explains the apparent correlation of the ef iciency 
scores with both the conventional and the “true” effects models. We ind strong 
correlations between the “conventional” panel models (III, IV, and V): 0.87–0.92. 
This is not surprising. These models commonly feature inef iciency estimates 
that include a time-invariant ixed effect (III) or a random effect (IV, V) that 
also contains irm-speci ic heterogeneity. The correlation with ef iciency scores 
obtained from the Mundlak speci ication of model IV is lower—between 0.52 
and 0.70. This inding is also expected since the Mundlak adjustment accounts 
for part of the unobserved heterogeneity and removes it from the ef iciency 
scores.

Correlation between scores from the “true” effects models (VI, VII, and 
VII–M) is also fairly high. The models, which control for heterogeneity, show a 
similar ability to identify time-varying inef iciencies. Correlation between the 
“conventional” and “true” panel models is rather low—between 0.02 and 0.35, 
con irming that how heterogeneity is handled has a strong in luence on the 
resulting ef iciency estimates.

Our indings for the ef iciency scores and correlations between the scores 
obtained from different models generally agree with indings of previous 
studies that compared stochastic frontier models (e.g., Farsi, Filippini, and 
Greene 2005, Farsi, Filippini, and Kuenzle 2005, Abdulai and Tietje 2007).

Based on the estimates from the econometric models, we measure and 
decompose TFP for the observed dairy farms. We report average values for 
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changes in TFP, technical change, technical ef iciency, and productivity changes 
due to changes in the scale of operations and their percentage shares of the 
change in TFP. The results, presented in Table 6, show that technical change has 
the strongest in luence on TFP. In all of the models, it has a positive effect on 
productivity throughout the observed time period. We also ind that technical 
change can be slightly increasing over time for models I, II, VII, and VII–M but 
has a more or less linear growth rate in the other models. The average annual 
productivity growth induced by technical change ranges from 1.19 percent in 
model IV to 1.64 percent in model V.

Average rates of technical ef iciency change also vary considerably across 
the speci ications. The highest absolute change rate (–0.51) is found for 
model V (BC92). The exact reason for the comparably high rate of technical 
ef iciency change in this model is not clear. One possible explanation is that 
the speci ication of time-varying inef iciency is rather in lexible. Low levels 
of ef iciency are associated with high rates of ef iciency change subject to 
the parameter η, which is common to all irms. We ind that the high rates of 
negative technical ef iciency change are offset by proportional higher rates of 
positive technical change. The change rates obtained from the other models 
are quite low, ranging between –0.06 percent and –0.15 percent per year. Scale 
changes also have a rather small negative impact on productivity for all models. 
The magnitude of this effect depends heavily on the returns to scale and is 
greatest for models III, IV–M, and VII–M, in which the return to scale ranges 
between 0.54 and 0.56.

Average annual growth rates of TFP also vary across models. Looking at the 
extreme cases, the growth rate from model VI (TFE) is more than 20 percent 
higher than the rate from models at the lower end of the range.

Table 6 also reports the share that each component contributes to TFP, and 
the differences are striking in some cases. This inding is especially relevant to 
empirical applications, which base regulatory and policy recommendations on 

Table 5. Correlation Matrix of the Ef iciency Scores from the Models

I
Pooled

II
BC95

III
Fixed 

Effects
IV

GLS
IV-M

GLS+M
V

BC92
VI

TFE
VII

TRE
VII-M

TRE+M

Pooled 1.00

BC95 0.93 1.00

Fixed effects 0.60 0.57 1.00

GLS 0.75 0.75 0.92 1.00

GLS+M 0.78 0.74 0.52 0.70 1.00

BC92 0.70 0.71 0.87 0.92 0.65 1.00

TFE 0.54 0.47 0.15 0.20 0.19 0.03 1.00

TRE 0.56 0.50 0.24 0.29 0.30 0.13 0.87 1.00

TRE+M 0.54 0.48 0.23 0.28 0.35 0.11 0.80 0.97 1.00

Note: Spearman rank correlation coef icients are highly similar to the displayed coef icients. Shades of 
gray denote the extent of correlation from high (dark) to low (light).
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calculations of TFP growth. As Grosskopf (1993, p. 169) pointed out, “a slowdown 
in productivity growth due to increased inef iciency suggests different policies 
than a slowdown due to lack of technical change.” A low rate of technical change 
can be interpreted as an indication of an insuf iciently innovative sector lacking 
investment, which suggests the need for expenditures through governmental 
policies. Decreasing ef iciency, meanwhile, points to growing heterogeneity in 
irms’ productive performance. What often is recommended in those cases is 

investment in extension services and consulting as well as resolving incentive 
problems to bring the irms back to the frontier (Fan 1991, Bayarsaihan and 
Coelli 2003, Aiello, Mastromarco, and Zago 2011). Special attention also should 
be given to interpretation of the return-to-scale measure and the resulting 
scale effect on productivity growth; for instance, Key, McBride, and Mosheim 
(2008) recommended revising legislation that limits the size or growth of 
hog farm enterprises. For our application, the substantial differences in the 
relative importance of the TFP-growth components among the econometric 
models could lead to signi icantly different and even contradictory policy 
advice.

Evaluating the Models

Our empirical application shows that the results of a productivity growth 
analysis depend to a large degree on the choice of econometric model used 
to estimate the representation of the frontier production technology. That 
different econometric models (that impose different assumptions on the data 
and the data-generating process) lead to different results is not new. However, 

Table 6. Total Factor Productivity Change for Models

   III
 I II Fixed IV IV-M V VI VII VII-M
 Pooled BC95 Effects GLS GLS+M BC92 TFE TRE TRE+M

Average Annual Change Rate (percent)

TFP Change 1.24 1.20 1.03 1.07 1.03 1.11 1.28 1.03 1.03

Technical 1.36 1.29 1.24 1.19 1.24 1.64 1.41 1.25 1.30
change

Technical –0.09 –0.06 –0.08 –0.06 –0.08 –0.51 –0.09 –0.11 –0.15
ef ic. change

Scale change  –0.04 –0.03 –0.13 –0.05 –0.13 –0.02 –0.04 –0.10 –0.12
effect

Share of Technical Change, Technical Ef iciency Change, and Scale of Operations on TFP 
Change (percent)

Technical  109.86 108.02 120.65 110.65 120.86 147.81 110.17 120.76 126.26
change

Technical  –6.90 –5.36 –7.80 –5.64 –7.96 –46.34 –7.16 –11.09 –14.64
ef ic. change

Scale change  –2.95 –2.66 –12.84 –5.01 –12.90 –1.47 –3.01 –9.68 –11.62
effect
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this is only a problem if we cannot reliably choose the most accurate models. In 
the case of the stochastic frontier models presented in this study, we ind that 
some of the models are not nested so formal testing cannot reveal the “one” 
right model for each data set. We attempt to reduce the number of appropriate 
models by rejecting as many models as possible based on statistical tests and 
discuss additional options of interest to empirical researchers to reduce the 
number of models.

We start with a test of the pooled model (I) against the inef iciency-effects 
model (II, BC95), which can be done because model I is nested in model II. 
The likelihood ratio test of these two models gives a statistic of 241.12, 
thus exceeding the critical value at the 1 percent level (χ2

(9) = 21.67), which 
indicates that model II is preferable to model I. We also check whether 
inef iciency is present in our empirical data set by testing model I against a 
simple OLS model. The hypothesis of no inef iciency is clearly rejected. In the 
speci ications of models I and II (pooled, BC95), the panel structure of the 
data is ignored, representing an assumption that no irm-speci ic effects are 
present. We approach this question using the Baltagi and Li (1990) form of the 
Breusch-Pagan Lagrange multiplier statistic for unbalanced panel data.22 The 
null hypothesis of “no group effects” is clearly rejected with a test statistic of 
9,293.65 against a critical value of χ2

(1) = 6.64. Models I and II both incorporate 
an assumption that the two error components, technical inef iciency and 
statistical noise, are independently distributed. Hence, these results contradict 
the speci ications and have to be taken into account for use of models I and II.

Another way of identifying the presence of irm-speci ic effects in the data is to 
test the pooled model (I) against the “true” effects models (VI and VII). Model I 
is a special case of the TFE model (VI) for αi ≡ β0 ∀ i. The hypothesis that there 
are no irm-speci ic effects is rejected; the likelihood ratio test gives a statistic 
of 2,071.28, which is much higher than the critical value of χ2

(973) = 1,078.5523 
(Greene 2008). Finally, we compare the log-likelihood of the TRE model (VI) 
against the pooled model (Greene 2008). The resulting likelihood ratio test 
statistic is 6,615.32 against a critical value of χ2

(1) = 6.64.24

For a straightforward check whether the explanatory variables are correlated 
with existing irm-speci ic effects (E[xitϑi] ≠ 0), we perform a Hausman test on 
the GLS random-effects model. The test rejects the hypothesis of no correlation 
between the effects and the used variables with a test statistic of 900.25 against 
a critical value of χ2

(27) = 46.96.25 This is a strong indication that all of the 
models that assume no such correlation (IV, V, and VII) produce biased slope 
parameters. Similarly, we test the random-effects models (IV and VII) against 

22 The test statistic is calculated based on the residuals (eit) of a pooled OLS model: 

LM = [(N )2/ (ΣiT 2
i ) – N ][(Σi(Σteit)2/ ΣiΣteit

2) – 1]2 where  = N / Σi(1 / Ti).

23 The validity of this test is unclear. The incidental parameter problem can prevent the TFE and 
pooled models from converging under the null hypotheses.

24 We note that this is also a nonstandard test. Under the null hypotheses (variance of the 
random constant equals zero), the test statistic is not asymptotically χ2-distributed because the 
tested value is on the border of the feasible parameter space. However, for our application the 
issue is negligible since we only restrict a single parameter and the calculated likelihood ratio 
statistic is about one thousand times greater than the critical value. For more on this topic, see Self 
and Liang (1987).

25 The test statistic is given by H = [ W–  GLS]΄Γ–1[ W –  GLS] where Γ–1 = Var( W –  GLS) (Greene 
2003).
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their respective Mundlak speci ications. Using a Wald test, we can reject the 
hypothesis that the additional group-mean variables in the GLS+M speci ication 
are jointly equal to zero with a test statistic of F = 48.15 against a critical value 
of F(20;6,444) = 2.38. The same applies to the TRE+M speci ication; the hypothesis 
is rejected based on a likelihood ratio statistic of 1,028.66 against a critical 
value of χ2

(20) = 37.57. Based on the described statistical tests, we exclude ive of 
the nine models (I, II, IV, V, and VII), leaving us with the ixed-effects model (III), 
the TFE model (VI), and the two Mundlak speci ications (IV–M and VII–M).26

Since numerous models remained, we then looked for alternative ways 
to determine which of those models best it the data. For the widely used 
translog functional form, we advise taking a closer look at how well the 
estimated representations of the production technology are in line with the 
requirements implied by microeconomic theory—namely, monotonicity and 
quasi-concavity in inputs and concavity in outputs. Several authors (e.g., 
O’Donnell and Coelli 2005, Sauer, Frohberg, and Hockmann 2006, Henningsen 
and Henning 2009) have pointed out how important this theoretical 
consistency is for correct interpretation of the obtained parameters and 
ef iciency scores and, accordingly, for the results of the decomposition of 
TFP growth. As shown in Table 3, the distance elasticities resulting from 
all of the models show correct signs and therefore ful ill the monotonicity 
requirement at the sample mean. According to Sauer, Frohberg, and 
Hockmann (2006), this is the minimum requirement that has to be ful illed 
in any case to obtain meaningful results. Monotonicity violation on the input 
side, for example, would imply that a reduction in inputs given a ixed level 
of output would reduce productivity. After checking for monotonicity for all 
of the observations we ind some violations for all of our models. However, 
as reported in Table 7, the share of observations with present violations of 
monotonicity is more severe for some models than for others. For example, 
we ind that 40.3 percent of the observations show the wrong sign on the 
distance elasticity of the land input when the TFE model (VI) is used. This high 
share of incorrectly signed elasticities can hardly be accepted. To check the 
curvature conditions of quasi-convexity in inputs and convexity in outputs, 
we construct a (bordered-) Hessian matrix for each data point and report the 
percentage of violations in Table 7.

On the input side, almost all of the models are perfectly in line with the 
curvature requirements. We ind some curvature violations, however, on the 
output side for all of the models. The violations are prominent in the TRE 
(40.9 percent) and TRE+M (38.2 percent) models. We therefore can challenge 
two more of the econometric models based on how consistent the estimated 
production technologies are with microeconomic theory.

Additional factors that should be taken into account when choosing 
an econometric model involve the distinction between inef iciency and 
heterogeneity. Expert knowledge about the sector under investigation should 
be considered when determining which assumptions are reasonable. Are the 
analyzed irms actually working under heterogeneous production conditions 
that should be controlled? Can the existence of time-invariant inef iciency be 
ruled out generally, e.g., by a competitive operating environment, changes in 

26 Another issue that invites further statistical testing is the manner in which technical ef iciency 
is speci ied to vary over time. Karagiannis and Tzouvelekas (2010) provide some insights on this 
topic.
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the operating and management conditions (e.g., policy and regulation), and a 
suf icient number of time periods? These considerations argue against use of 
the ixed-effects model (III) with our data set. As noted, model III includes all 
unaccounted-for time-invariant effects in the inef iciency term, resulting in an 
unrealistically low average ef iciency of less than 0.5.

The criteria we use for choosing a suitable stochastic frontier model for a given 
data set have narrowed the range of applicable models from nine to only one, 
the GLS+M (IV-M) model. Not that this choice is utterly irrefutable. However, 
taking our tests into consideration combined with knowledge of the production 
process should allow empirical researchers to make educated choices based on 
the general operating environment in the sector and the characteristics of the 
data set at hand.27

Concluding Remarks

We compare the results of decompositions of TFP growth using estimates from 
nine commonly used stochastic frontier models and focus on the models’ ability 
to take unobserved heterogeneity into account. The basic conclusion drawn 
from this comparison is not surprising: different econometric speci ications 
can lead to quite different results. For an unbalanced panel of 974 dairy 
farms observed for 2000 through 2008, we ind substantial differences in the 
estimated slope parameters of input, output, and trend variables in the resulting 
distance elasticities and individual ef iciency scores of the observed irms. 

27 In a similar situation, Karagiannis and Tzouvelekas (2010) recommended constructing 
averages of the results from competing models. This approach was noted by Coelli and Perelman 
(1999) in regard to ef iciency analysis.

Table 7. Percent of Violations of Monotonicity and Curvature Conditions

   III      
 I II Fixed IV IV-M V VI VII VII-M
 Pooled BC95 Effects GLS GLS+M BC92 TFE TRE TRE+M

Monotonicity

Labor 0.0 0.0 6.6 0.3 6.5 0.5 0.0 0.9 4.6

Land 37.0 14.4 0.2 0.0 0.2 0.0 40.3 0.0 0.3

Intermediate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
inputs

Capital 0.0 0.0 0.6 0.0 0.6 0.0 0.0 0.1 0.1

Milk  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Other 0.1 0.1 0.6 0.5 0.6 0.5 0.1 0.2 0.3

Curvature

Input 4.5 0.7 0.0 0.0 0.0 0.0 5.1 0.1 0.1

Output 31.3 31.5 9.3 13.6 9.2 12.3 26.3 40.9 38.2
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These differences lead to uncertainty in interpretation of the results. Unstable 
distance elasticities raise questions about the importance of particular inputs 
for the production process. In our results, returns to scale are almost constant 
for some models but strongly decreasing for others. For all of the models, 
technical change is positive and the rate of change is constant or increasing. 
There are large differences in average ef iciency and thus in the potential for 
productivity improvement. Individual ef iciency also varies widely. And while 
the ef iciency scores and ef iciency ranks of some models are highly correlated, 
the scores and ranks of others do not match at all. Considering the widespread 
application of various econometric models for analysis of productivity change 
(see preceding examples), we conclude that the methodology chosen has to it 
the characteristics and structure of the data set as well as the purpose of the 
analysis. If indings will be used to state recommendations for regulation and 
policy, it is crucial to be aware of the consequences of the choice of a particular 
econometric model. We also show how several statistical tests can be used to 
narrow the range of appropriate models and hence facilitate an effective choice. 
Finally, the purpose of each study has to be taken into account. Each model 
presents different virtues so the choice of model also depends on whether the 
focus is individual ef iciency scores and their development over time, the slope 
parameters, or (as in the case of an analysis of TFP change) both. Since the 
models are not altogether nested, it is not possible to ind the most appropriate 
model using formal statistical tests. However, it is possible to narrow the range 
of potential models and thereby facilitate the choice by combining statistical 
tests with other aspects.
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