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Total Factor Productivity
Decomposition and Unobserved
Heterogeneity in Stochastic
Frontier Models

Magnus A. Kellermann

This study examines in an empirical comparison how different econometric
specifications of stochastic frontier models affect the decomposition of total factor
productivity growth. We estimate nine stochastic frontier models, which have
been widely used in empirical investigations of sources of productivity growth.
Our results show that the relative contribution of components to total factor
productivity growth is quite sensitive to the choice of econometric model, which
points to the need to select the “right” model. We apply various statistical tests to
narrow the range of applicable models and identify additional criteria upon which
to base the choice of non-nested models.

Key Words: heterogeneity, panel data, stochastic frontier, TFP decomposition

In many empirical studies of total factor productivity growth, the question
of interest is focused on the relative importance of the various factors that
contribute to productivity growth. Results from such studies often are the
basis for recommendations on regulatory and support policies (e.g., Fan
1991, Briimmer, Glauben, and Thijssen 2002, Saal, Parker, and Weyman-Jones
2007, Key and McBride 2007, Goto and Sueyoshi 2009, Tovar, Ramos-Real,
and de Almeida 2011). Therefore, it is crucial to be aware of how potentially
sensitive those results can be to the particular methods chosen.

The focus in this study is on the econometric models used to estimate
parametric representations of production technologies in a stochastic frontier
framework and how different models influence the results related to sources of
productivity growth. Consequently, we elaborate not only on efficiency scores
but also on estimated representations of the production technology itself since
the corresponding production elasticities and return-to-scale measures are an
elementary part of every total factor productivity (TFP) decomposition. We also
call attention to the fact that we can draw inferences from the results of a TFP
decomposition only if the underlying estimate of the production technology
fulfills the requirements of microeconomic theory. These features distinguish
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our work from prior studies, which compared the results of different stochastic
frontier models mainly in terms of efficiency scores (e.g., Ahmad and Bravo-
Ureta 1996, Hallam and Machado 1996, Abdulai and Tietje 2007).

We compare a variety of the stochastic frontier models that have been most
widely applied in empirical TFP growth studies. In particular, we focus on how
models account for (unobserved) heterogeneity! in the data and distinguish
heterogeneity from inefficiency. It appears that there are no clear-cut criteria
available to guide researchers when choosing “the” appropriate model since
seemingly valid models are not all nested, which complicates the choice
purely based on econometric specification tests. However, we can provide
some guidance for choosing an appropriate econometric model for a specific
empirical application.

For our application, we use a data set of just under 1,000 dairy farms in an
unbalanced panel covering 2000 through 2008. A translog output-oriented
distance function is used to represent the production technology. To make
the results of the models comparable, we keep the data, the specification
of variables, and the functional form identical for all of the econometric
specifications. Based on the resulting estimated parameters and inefficiencies,
we decompose productivity growth into the three components most commonly
found in empirical applications: technical change, changes in technical
efficiency, and scale change effects.

Stochastic Frontier Models

Technical efficiency is the ability of a firm to produce the maximum possible
output from a given set and level of inputs.? A firm'’s potential inefficiency is the
shortfall in observed production relative to a best-practice frontier. Econometric
estimation of a function that represents this maximum possible expansion of
output for given inputs is the objective of all models discussed here. Several
excellent surveys of the concepts of (technical) efficiency and estimation of
stochastic frontier models exist (e.g., Greene 1993, Kumbhakar and Lovell
2000); hence, we limit our overview to a short description of the models we use
in our application and their main properties. Consequently, we focus mainly
on the assumptions the models impose on the residual error term, whether
they account for heterogeneity between the firms, and how the estimates of
inefficiency are derived. These properties are summarized in Table 1.

We start with the pooled model (our model I), which is based on the original
normal half-normal composed-error-term model proposed for cross-sectional
data by Aigner, Lovell, and Schmidt (1977) and which treats every observation
in a sample as independent of every other. Two examples of TFP studies
concerning the agricultural sector that used the pooled model are Fan (1991)
and Key, McBride, and Mosheim (2008).To keep the notation simple, we start
from a production function, a single-output special case of the output-oriented
distance function. Assuming a log-linear functional form, we can express this
model as

1 Models that take parameter or technological heterogeneity into account are excluded from

this work. In this regard, see works by Tsionas (2002), Orea and Kumbhakar (2004), and Greene
(2005) for random parameter and latent class models in the context of stochastic frontier models
and Emvalomatis (2012) for a recent application.

2 This statement corresponds to the concept of output-oriented technical efficiency. Input-
oriented efficiency aims for the minimal feasible use of inputs to produce a given level of output.
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(1) Yie=XB+e,

where e, = v, - u;, is a composed error term, y, is the log output, X is a
vector of log inputs, and B represents the vector of all of the technology-
related regression coefficients. The subscripts i and t denote firms and time
periods respectively. Model I contains a composed error term, e,, in which
u, ~ iid N*(0, 02) is a non-negative term representing inefficiency (u) while
v,, ~ iid N (0, 02) is a symmetric term that captures statistical noise (e.g., from
exogenous productivity shocks beyond the control of the analyzed units or
measurement errors). Both components of e, are assumed to be uncorrelated
with input quantities and each other. In particular, the assumption that the
firms’ inefficiency is not correlated with the input quantities used requires
further reasoning. Zellner, Kmenta, and Dreze (1966) argued that the quantities
of variable inputs are largely predetermined when none of the firms are aware
of their own technical inefficiencies at the time they make input decisions and
all of the firms maximize expected profit. Thus, the quantity of inputs is not
necessarily correlated with technical inefficiency. The individual efficiency
score of the ith analyzed unit can be obtained using the mean (or the mode) of
the conditional distribution of u,, given e, as a point estimator (Jondrow et al.
1982). However, since the variance from the mean (mode) of [u,, | e,] for each
unit is independent of the sample size, efficiency scores cannot be estimated
consistently using the pooled model.

Model II is an inefficiency-effects model following the concept initially
proposed by Kumbhakar, Ghosh, and McGuckin (1991) and Huang and Liu
(1994). Our specification was formulated by Battese and Coelli (1995) (BC95)
for panel data sets, which have been used extensively in analyses of productivity
growth. Examples are Yao, Liu, and Zhang (2001), Briimmer, Glauben, and
Thijssen (2002), Rae et al. (2006), and Jin et al. (2010). The main feature of
model II is incorporation of exogenous influences on the inefficiency term
in a one-step approach. Battese and Coelli (1995) achieved this by assuming
that the inefficiency term has a truncated normal distribution with a mean of
W, = Z;, ¢ and variance o2 (see Table 1). In this context, z, is a vector of observed
exogenous variables that may influence the firm'’s inefficiency and T is the
corresponding vector of additional parameters to be estimated. Although this
model was designed for use with panel data, it is not a panel-data treatment in
the classical sense because the inefficiency terms are assumed to be independent
over time (Battese and Coelli 1995) and observations of a single firm in various
time periods are treated as observations of separate firms (Abdulai and Tietje
2007) just as in model I. However, in contrast to model I, the distribution of
inefficiency in this model, u,, varies over z. Hence, inefficiency is not assumed to
be identically distributed. There is ongoing debate in the literature on efficiency
that traces back to a seminal paper on the topic by Deprins and Simar (1989)
about the “right place” for these exogenous z-variables. The question of “where
do we put the zs” (Greene 2008, p. 154) concerns whether these variables truly
explain part of the variation in inefficiency or whether they instead pick up
heterogeneity and misspecifications of the production technology.? An intuitive
example is use of variables related to the level of education and age of farmers
or to farm location that are found in many agricultural studies (e.g., Battese and

3 See Kumbhakar and Lovell (2000) for a literature review and a detailed summary of different

approaches to incorporating exogenous influences on efficiency.
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Coelli 1995, Tzouvelekas, Pantzios, and Fotopoulos 2001). It has been argued
that these variables instead should enter the production function as part of
efforts to reduce heterogeneity and create homogeneous measures of labor
and land inputs (Sherlund, Barrett, and Adesima 2002). We do not elaborate
further on this question, but it seems worthwhile to address such concerns
when specifying any stochastic frontier model.

Model Il is a fixed-effects panel specification and model IV is a random-effects
panel model, both developed by Schmidt and Sickles (1984) and extended to
allow for time-varying technical efficiency by Cornwell, Schmidt, and Sickles
(1990), who also proposed an efficient instrumental variable estimator as a
generalization of the Hausman and Taylor (HT) (1981) estimator. Wu (1995)
and Karagiannis, Midmore, and Tzouvelekas (2004) used the HT estimator to
decompose TFP growth. We do not use the HT estimator. Our models are closely
related to standard effects models commonly used in panel-data treatments.
In the initial specification of those panel models with time-invariant efficiency,
the term e, is assumed to be an identically and independently distributed (iid)
white noise term, iid (0, 02); the additional effect, designated 9, is a constant
firm-specific parameter in model Il and an iid (0, 03) random effect in model IV.
The fixed-effects model can be estimated by ordinary least squares (OLS) using
the “within groups” transformation. Then, slope coefficients are estimated
consistently as N or T = 400 and are unbiased from unobserved time-invariant
heterogeneity since all of the stable characteristics of the individual firms
are controlled. The random-effects model can easily be estimated by feasible
generalized least squares (FGLS). As is common in random-effects models, the
individual effects (9,) are assumed to be uncorrelated with the explanatory
variables. In case this assumption does not hold, however, we have to expect
biased slope parameters. Schmidt and Sickles (1984) relied on the firm-specific
means of the e, residuals from the within-groups and FGLS estimators to recover
estimates of the individual effects. From there, we obtain each firm’'s level of
inefficiency using the normalization u; = max(9,) - 9, However, the a priori
assumption of time-invariant inefficiency appears to be rather restrictive and
may even be implausible for a productivity growth analysis, especially if the
operating environment is competitive and the panel includes more than a few
time periods. To allow for time-varying inefficiency, Cornwell, Schmidt, and
Sickles (1990) adapted this model and replaced the constant firm effect,

1 T;
Y, = T_,-Zf=1 €ip

with 9, = 8, + 8,;t + 8,t? varying as a flexible function of time. Firm-specific
estimates of the respective parameters are derived by regressing the residuals
of the within-groups and the generalized least squares (GLS) estimator on
constants, ¢ and t* respectively, as in e, = 0, + 6,;t + 0;,t* + §,. Thereby, &, is
an additional error term that captures all of the remaining variance in the
residuals that is left unexplained by the flexible function of time. Again, we get
the firm’s level of inefficiency from u, = max(J,) - 9,, V t. The main feature of
models III and 1V is that they allow for time-varying estimates of inefficiency
that are consistent for all i and t as T — +oo (Cornwell, Schmidt, and Sickles
1990) without the need to make distributional assumptions.

An important issue regarding models III and IV is the lack of distinction
between unobserved heterogeneity and inefficiency. The inefficiency
estimates obtained from these models contain, by construction, the effects of
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all time-invariant differences between the analyzed units. This may lead to
overestimation of inefficiency for firms that are subject to unfavorable external
conditions. As Farsi, Filippini, and Greene (2005, p. 77) noted, this issue may
be even more serious for the fixed-effects model since “the firm-specific effects
do not follow a single distribution and thus can have a relatively wide range
of variation.” In the random-effects model, part of the heterogeneity, which
might be correlated with the explanatory variables (contrary to the respective
assumption), can be partly suppressed in biased slope coefficients, leading to
biased TFP decompositions.

Model V was proposed by Battese and Coelli (1992) (BC92) and extends
the maximum-likelihood random-effects panel model of Pitt and Lee (1981)
to allow for time-varying inefficiency. It is one of the most popular stochastic
frontier models used in empirical work on TFP growth (e.g., Kim and Han 2001,
Coelli, Rahman, and Thirtle 2003, Newman and Matthews 2006, Rasmussen
2010). Under an assumption that it has a truncated normal distribution,
N*(u, 02), the firm effect u, is modeled as time-variant inefficiency as

(2) u, = B(y;

where B(t) = exp(-n(t - T)). If inefficiency appears to be time-invariant (n = 0)
and u; is half-normal distributed (n = 0), this specification simplifies to the
model of Pitt and Lee (1981). Model V shares two important properties with
the GLS random-effects model (IV). Despite inefficiency being allowed to vary
over time, the firm-specific random effect (u,) is still time-invariant and includes
constant firm effects in the inefficiency term (Greene 2005). In addition, model
V relies on the assumption that the firm effects are not correlated with the
explanatory variables. Regarding use of this model in productivity analyses, two
more aspects are noted. First, the function (¢) that determines how inefficiency
varies over time is not very flexible and thus can only depict monotonous
patterns of efficiency change. Inefficiency increases at an increasing rate when
1 < 0, decreases at an increasing rate when n > 0, and remains constant when
n = 0. Second, unlike models III and IV, model V restricts the time path for
efficiency change as common to all firms.* As an advantage of its panel nature,
the model yields consistent estimates of u;, as T — +oo in equivalence to the Pitt
and Lee model, its time-invariant special case.

In an attempt to address the issue of (unobserved) heterogeneity between
firms in a stochastic frontier framework, Greene (2005) proposed so-called
“true” fixed-effects (TFE) and random-effects (TRE) models. Both true effects
models have been used in TFP growth applications. Saal, Parker, and Weyman-
Jones (2007), Wetzel (2009), and Filippini, Horvatin, and Zoric (2010) are
recent examples. Model VI is an TFE model that is a straightforward extension
of the pooled model (I); o, is a firm-specific fixed effect while v,, and u,, are
the components of the normal half-normal error term representing statistical
noise and inefficiency just as in the pooled model.> Maximum likelihood is
used to estimate the slope parameters and additional N dummy variables for
individual o, The virtue of this brute-force approach lies in the application
of a numerical maximization algorithm that can handle a large number of

4 Cuesta (2000) proposed a maximum-likelihood model that allowed the temporal pattern of

inefficiency to vary across firms.
5 See Polachek and Yoon (1996) for one of the first discussions of a fixed-effects model that
accounted for inefficiency using a composed error term.
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parameters. As Greene (2005) pointed out, maximum-likelihood estimators of
nonlinear models can be inconsistent in the presence of fixed effects due to
the problem of incidental parameters.® The main difference between model VI
and the conventional fixed-effects model (III) is in how inefficiency estimates
are derived. In the TFE model, «; represents time-invariant unobserved
heterogeneity while inefficiency is obtained as in the pooled model—from the
conditional mean of the inefficiency term as E[u, | e;,]. Thus, the TFE model is
a fixed-effects model that includes a composed error term with a normal half-
normal distribution. Despite the panel characteristic of the TFE model, technical
inefficiency is assumed to vary stochastically over time, and we cannot derive
consistent estimates of u;, even when N or T — +oo. Note that use of the TFE
model is appropriate only when the analyzed panel contains more than a few
time periods since individual efficiency scores rely on the variation of efficiency
within observations of an individual firm. If the observed period is short, some
firms may exhibit inertia in their inefficiency that would then mistakenly be
captured by the fixed effect. A feature of the TFE model is that it allows the
a, fixed effects to be correlated with the input quantities, x,. However, a; and
x,, are still assumed to be uncorrelated with both u;, and v;,.

Model VII is an TRE model in which the firm-specific effect is assumed to
be an iid normal distributed random term; that is, o, ~ N(0, 02). As in model
V], time-invariant effects are treated as heterogeneity and captured by o; while
technical inefficiency is estimated by the conditional mean of the inefficiency
term E[u, | o; + e;,].” As Greene (2008) noted, this model can be seen as a
special case of the random parameter model in which only the constant is a
random parameter. As with all random-effects models, the firm-specific effect
a, is “assumed to be uncorrelated with everything else in the model” (Greene
2008, p. 207). To overcome the problem of heterogeneity bias in the slope
parameters in case this assumption does not hold, Farsi, Filippini, and Greene
(2005) and Farsi, Filippini, and Kuenzle (2005) proposed incorporation of
Mundlak’s (1978) adjustment in the TRE and GLS models.® The underlying
assumption is that individual effects are a linear function of the group means
of input quantities. The effects are then expressed in an auxiliary equation as

(3) o,=Y%X.+9,.

In equation 3,y is an additional vector of parameters to be estimated and X; is a
vector of the group means of all input variables; that is,

_ 1 Ty
X;. = T_z Zt=1 Xigs

Let us briefly highlight the benefits of Mundlak’s adjustment applied in the
GLS and TRE stochastic frontier models. We consider its incorporation into
specification of stochastic frontier models based on the notion that firms adjust
their input decisions in response to the constant operating conditions to which

6 We refer the reader to Greene (2005) for a short discussion of the problem of incidental
parameters related to stochastic frontier models. Wang and Ho (2010) provided a within-
difference and first-difference transformation approach to estimate stochastic frontier models
with fixed effects that is not affected by the incidental parameter problem.

7 Kumbhakar and Hjalmarsson (1993) proposed a very similar model that is estimated in two steps.

8 Farsi, Filippini, and Kuenzle (2005) estimated a GLS model with time-invariant technical
inefficiency.
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they are subject. Thus, a way is introduced to improve econometricians’ ability
to take heterogeneity that is not observed by them but is observed by producers
into account.’

By substituting equation 3 into the specifications of models IV (GLS) and VII
(TRE), we add two models to our comparison: IV-M and VII-M. In these models,
the individual effect (a;) is decomposed in two components. The first part is
explained by the group-mean variables, and the remaining unexplained part,
9, is assumed to be orthogonal to the explanatory variables. The important
difference lies in the way the remaining component is treated. In the TRE
specification (model VII-M) as proposed by Farsi, Filippini, and Greene (2005),
9, is treated as residual heterogeneity that cannot be explained by the
group mean of input use. Then, as intended by the TRE model, this residual
heterogeneity is captured by the firm-specific random effect: 9, ~ N(0, 03). In
the augmented GLS random-effects model (IV-M), we assume that the group-
mean variables explain all heterogeneity between the firms in the sample.
Thus, the term 9, becomes part of the GLS random-effects model’s iid error
term. As a consequence of the following procedure to derive the inefficiencies,
9, is treated as part of the time-varying inefficiency.

We incorporate the [V-M and VII-M models in our comparison because they
are useful in two ways. First, their estimated slope parameters are free from
heterogeneity bias to the extent that equation 3 can capture correlations
between the random effects and the explanatory variables. As previously noted,
this is important to our estimates of production and scale elasticities. Second,
by modeling an individual effect (o) through a function of observed variables,
we can mitigate the heterogeneity bias in the estimates of inefficiency. This is
especially appealing in the case of model IV-M, which provides an alternative
way to derive (consistent) time-varying estimates of inefficiency while taking
unobserved heterogeneity into account.'®

Empirical Application

We apply the models discussed to a set of panel data on specialized German
dairy farms. Based on the resulting estimates of technology parameters and
inefficiency, we calculate rates of TFP growth. Our use of farm data for the
empirical application is beneficial in two ways. First, the methodology we
analyze has been used in numerous empirical studies of the agricultural sector
(e.g., Briimmer, Glauben, and Thijssen 2002, Newman and Matthews 2006, Key,
McBride, and Mosheim 2008, Rasmussen 2010) and many other sectors, which
demonstrates its relevance. Second, farms are natural candidates to represent
firms that operate under heterogeneous production conditions that affect
the feasible output (Sherlund, Barrett, and Adesima 2002, Abdulai and Tietje
2007).

9 It is undisputed that this approach does not relieve the researcher from having to make

assumptions. For example, how realistic it is to assume that firms adjust to operating conditions
but do not know their degree of inefficiency is debatable.

10 We did not include the “fixed management model” proposed by Alvarez, Arias, and
Greene (2005) in our comparison. That model was also an attempt to account for unobserved
heterogeneity and is closely linked to the TRE model. We applied the model to our data set using
the Mundlak specification as suggested by Alvarez, Arias, and Greene, and the results (available
from the authors) were almost identical to those obtained from model VII-M.
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Table 2. Summary Statistics of Input and Output Variables by Year

Milk Other Labor Land Intermediate Capital

Output Output Input Input Inputs Input
thousand thousand man working thousand thousand

euros euros units hectares euros euros

2000 56.69 30.59 1.52 40.08 4491 206.62
(25.30) (15.63) (0.44) (22.52) (25.01) (110.89)

2001 59.96 30.04 1.54 41.14 45.34 208.56
(28.26) (15.70) (0.44) (23.19) (26.85) (117.87)

2002 60.36 31.16 1.54 42.02 46.32 206.94
(28.61) (16.10) (0.43) (23.69) (26.36) (120.55)

2003 62.07 31.98 1.53 42.76 47.28 204.15
(30.34) (17.35) (0.44) (24.99) (27.32) (121.63)

2004 64.26 31.19 1.54 43.42 48.87 202.94
(31.32) (16.18) (0.45) (25.09) (27.45) (121.65)

2005 65.81 31.63 1.54 44.85 48.58 202.18
(32.56) (17.58) (0.46) (26.07) (26.62) (124.02)

2006 66.72 32.92 1.55 45.32 48.78 198.96
(33.64) (18.84) (0.46) (26.54) (27.56) (123.03)

2007 69.86 35.10 1.54 46.74 49.94 195.15
(35.28) (21.27) (0.46) (28.08) (27.71) (121.51)

2008 69.50 33.70 1.55 47.71 49.64 195.51
(36.39) (21.19) (0.44) (29.17) (28.41) (128.50)

Note: The summary statistics are reported as mean values. The standard deviation for each is shown
within parentheses.

Data

The data set for our empirical application is taken from bookkeeping records
for German farms maintained by the Bavarian State Research Center for
Agriculture (Bayerische Landesanstalt fiir Landwirtschaft (LfL-Bayern)). It
is an unbalanced panel with 7,465 observations of 974 farms covering the
years 2000 through 2008. We consider only specialized dairies—farms that
generated at least 66 percent of total revenue from dairy production. Farms
for which there were less than four consecutive observations are also excluded
to improve the panel character of the data set. In particular, models Il and
IV make this restriction necessary. The observations are evenly distributed
over the period with 7.7 observations per farm on average. We consider two
outputs, milk and other output, and four inputs, labor, land, intermediate inputs,
and capital. Descriptive statistics by year are presented in Table 2. The output
milk is measured in total revenue from milk and milk products. This allows
us to account for quality differences since the price that the individual farmer
receives from the processor varies depending on the fat and protein content
of the delivered milk. The variable other output contains revenue from beef,
crops, and other commodities produced. The input variable labor subsumes
family and hired labor in man working units (MWUs), and the variable land
measures total cultivated land in hectares. The intermediate inputs variable
includes expenses for forage and crop production (e.g, seed, fertilizer,
pesticides, fuel, and contractors) and animal production (e.g., veterinary
services and concentrates). The capital variable is the end-of-year value of the
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farm’s buildings, technical facilities, machinery, and livestock.!! We use price
indices from the German Federal Bureau of Statistics to deflate the aggregated
monetary input and output variables using year 2005 as the base year. We use
regional dummies representing the nine agricultural production areas in the
data set as z-variables for the inefficiency effects in model II.

Specification

Dairy farms are a commonly used example of multi-product firms. Even
specialized dairy farms usually do not solely produce milk; they often also
produce beef, veal, and field crops as part of integrated production processes.!?
We model this multi-input multi-output technology using an output-oriented!3
distance function, DO(x, y, t), in which X = (x;, X, . . ., x,) € RX refers to a
non-negative vector of inputs used to produce a non-negative vector of outputs,
y=0ypYy---,Yn) € R, and t denotes an exogenous time trend, t =1, 2, ..., T.
We choose the common, flexible translog functional form that limits the a priori
restrictions on the relationships among inputs and outputs. Therefore,

M K M M
1
(4) In D(i)t(x' Yy t) = BO + Z am lnymit +ZBR In int + E Z Z amn lnymitlnym't
m=1 k=1 m=1n=1

1 K K M K 1
+ EZZ By In x;; In x;;, + Z ZSmk Iny,.Inx,+tt+ > Tt
le=1j=1

m=1j=1

M K
+ Z St INY e +kat tIn X,
m=1 k=1

The parameters of this function must satisfy the symmetry restrictions: a,,, = «
and B,; = . In addition, homogeneity of degree one in the output quantities,

nm

M M K M
Zam=1and Zamn= ZS’”": ngt:O,
m=1 m=1 k=1 m=1

isimposed by normalizing the function by an arbitrarily chosen output quantity:

(5) In(DY(y, X, t) / ¥3i) = TLY', X, ) With i = Vouie / Vi

where TL indicates translog and TL(y', X, t) is the righthand side of equation 1
after dividing all of the output quantities by y,.!* The dependent variable In DY,

11 We use this measure of the capital stock to approximate the true flow value of the capital input
(e.g, Newman and Matthews 2006).

12" A farm that outsources all calf and heifer rearing and all cereal and forage production might
provide such an example. However, there were no such farms in our sample.

13 The choice of orientation has to be made individually for each application. For our case, we
assume that the farms in our sample are less flexible in adjustment of inputs than in output. The
labor input, which largely contains the family workforce, is one example of a rather inflexible
input. On the other side, a well-established system for quota trading exists in Germany. Hence,
output can be considered as unrestricted.

14 Despite the common use of distance functions as representations of multi-input multi-output
production technologies, there are concerns associated with the exogeneity of the ratio of outputs
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is unobservable so we rearrange the distance function for the estimation in
a stochastic frontier framework. We add a random error term, v,, and since
DY < 0, we replace In DY with -u such that

(6) -Iny,,=TL(Y', x, t) + u+v,.

To allow the results to be compared with those of the standard stochastic
production frontier, we adapt equation 3 slightly by multiplying both sides
by -1. Hence, we use In y,, as the dependent variable and reverse the signs
of the regressors and of the one-sided inefficiency term u. How u is modeled
depends on the applied econometric model (see Table 1).

Calculation and Decomposition of TFP Growth

Based on the estimated parameters and inefficiency estimates from models
[-VII, we use the derivative-based approach to calculate and decompose
TFP growth.’> See Denny, Fuss, and Waverman (1981) and Bauer (1990) for
applications of production and cost functions and Briimmer, Glauben, and
Thijssen (2002) and Karagiannis, Midmore, and Tzouvelekas (2004) for
applications of output and input distance functions.'® Keeping our application
simple and comparable to the production-function one-output special case
of the output distance function, we assume allocative efficiency and perfect
competition of input and output markets.!” In this set-up we obtain the
following expressions for technical change, efficiency change, and the scale
change effect by taking the total differential of equation 3 and relating it to the
Divisia index of TFP growth.
Technical change is calculated by

M K
TCy=(0Iny,,) /ot=1 + Tt + Z St lnYmit+Z‘7kt In X,
m=1 k=1
(Morrison Paul, Johnston, and Frengley 2000). This expression is firm- and
time-specific according to the translog functional form of equation 3.
Calculation of the effect of changes in technical efficiency varies according
to the econometric model. For models III, IV, and IV-M, we follow Fecher and
Pestieau (1993) and obtain farm-specific estimates for the change in technical
efficiency from TEC, = 99, / ot = 8,, + 8,,t.!® For model V from Battese and
Coelli (1992), we use

when used as a dependent variable in the estimation. Based on findings by Schmidt (1988)
and Mundlak (1996), Coelli (2000) argued that the ratio form of outputs does not suffer from
endogeneity when expected profit maximization is assumed. Kumbhakar and Lovell (2000) also
discussed this issue.

15 Many empirical studies have used the Malmquist TFP index developed by Caves, Christensen,
and Diewert (1982). That alternative approach to decomposing TFP growth is based on the same
estimates of technology parameters and inefficiency. Hence, we expect qualitatively identical
results from our analysis.

16 Lovell (1996) provides an overview that includes the nonparametric approach to efficiency
measurement.

17 Hence, we exclude from this primal framework any contributing factors to TFP growth that are
“connected to market” and concentrate on those “connected to technology” (Briimmer, Glauben,
and Thijssen 2002, p. 632).

18 This approach implies that technical change is associated with the trend variable in the
technology part of the distance function and is common to all of the firms in a sector. In contrast,
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TEC, = ~(9u, / 90) = G exp( (- T) ).

The other models do not explicitly specify how technical inefficiency is
allowed to vary over time. On the contrary, they include the assumption that
inefficiency is independent across farms and time. Thus, for these models the
change in technical efficiency is measured by discrete changes in it from period
ttot+ 1; in other words, TEC,, = u;, - u,,,. Karagiannis and Tzouvelekas (2005)
showed that the marginal effects of time-varying variables in the inefficiency
part of model Il have to be taken into account in a decomposition of TFP growth.
In our application, however, only time-invariant variables enter the inefficiency
part of the model. In the decomposition described by Zhu and Lansink (2010),
this relates to a case in which all of the discrete changes in technical efficiency
over time are ascribed to “unspecified factors.”

Based on the distance elasticities with respect to the inputs, the scale
elasticity, and changes in input usage, we calculate the scale change effect:
SC,, = (&, — 1)y, In(Xyy, / Xirea1)- In this expression,

€= ) (@InD°/0ox)ands,= (dInD°/dx,) / dln D% / ox, ).
kZl k k Kk (; )

We observe a positive (negative) contribution to productivity change (i) when
€ > 1 and input usage is expanded (reduced) or (ii) when € < 1 and input
usage is reduced (expanded). In the case of constant returns to scale (€ = 1) or
constant input quantities, SC becomes zero.

Empirical Results

We present the estimated parameters of the nine models in Table Al in an
appendix (available from the authors) to conserve space. Models I, 11, V, VI, VII,
and VII-M were estimated using LIMDEP 9.0 (Greene 2007). Models IlI, IV, and
IV-M were estimated using EViews 6 (Quantitative Micro Software 2007). The
percentages of slope parameters that are significantly different from zero at
the 5 percent level range from 54.2 percent in model IV-M to 80.0 percent in
model VIl with an average of 68.5 percent. Comparing the estimated coefficients,
we find apparent variation for some of the models while others are similar.
The variation in the technology parameters carries over to the respective
distance elasticities. Table 3 shows the average elasticities of inputs and
outputs as well as average return-to-scale measures for all of the models. The
average elasticities have the right signs on the input and output sides, and some
patterns in the calculated average elasticities can be noted. For all models,
intermediate inputs has the highest average output elasticity and the return-
to-scale measure is less than one. On the output side, the elasticities reflect
the high share of milk output in total production. Based on similarities in the
average elasticities, we can identify three groups of models. The first consists
of the pooled (1), BC95 (1I), and TFE (VI) models, which produce relatively high
average scale elasticities that are close to one, high elasticities for intermediate
inputs, and relatively low elasticities (close to zero) for the land input. However,
standard errors of the average elasticities calculated using the delta method

change in efficiency is individual to producers. See Lovell (1996) for a short discussion of various
interpretations.
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Table 3. Average Distance Elasticities

Labor Land Intermed. Capital Milk Other Return

Input Input Inputs Input Output Output to Scale
[ -pooled 0.174 0.018 0.628 0.134 -0.725 -0.275 0.953
II-BC95 0.165 0.057 0.611 0.128 -0.724 -0.276 0.961
III - fixed effects  0.058 0.111  0.335  0.057 -0.801 -0.199 0.560
IV-GLS 0.093 0.163 0436 0.092 -0.790 -0.210 0.783
IV-M - GLS+M 0.058 0.110 0335 0.056 -0.801 -0.199 0.559
V-BC92 0.090 0.165 0417 0.085 -0.790 -0.210 0.757
VI-TFE 0.177 0.013 0.632 0.134 -0.718 -0.282 0.955
VII - TRE 0.088 0.174 0399 0.092 -0.801 -0.199 0.752
VII-M - TRE+M 0.056 0.103 0317 0.062 -0.814 -0.186 0.539

show that all are significantly different from zero at least at the 1 percent level.
Model II presents a slight variation; the output elasticity for the land input
is low but is significantly higher than the same elasticity in models I and VI
as confirmed by a Welch test. We assign this finding to the incorporation of
the regional dummy variables in the inefficiency-effects model. In that case,
(observed) information about heterogeneous production conditions, which is
basically related to the productive potential of used acreage, is included in the
model and leads to a more reliable estimate.?

The second group is composed of the three random-effects models: IV, V, and
VII. All produce highly similar elasticities on the input and output sides. The
average scale elasticity is lower in this group than in the first group and ranges
from 0.752 to 0.783. Once again, intermediate inputs has the highest average
elasticity; land has the next highest, followed by labor and then capital. These
models share the assumption that the firm-specific component (specified as
9; (IV), u; (V), and «; (VII) in Table 1) is not correlated with the explanatory
variables.

Models I1I, IV-M, and VII-M make up the third group and are connected by the
fact that they either assume that the individual effects are correlated with the
explanatory variables (as in fixed-effects model I1I) or take possible correlation
explicitly into account using Mundlak’s (1978) adjustment. This group
generates the smallest scale elasticities, which range from 0.539 to 0.560. The
similarities in the distance elasticities for these models indicate that the group-
mean variables pick up a large fraction of the correlation between the firm-
specific effects and the explanatory variables. In fact, the fixed-effects model
(IIT) and augmented GLS model (IV-M) are assumed to be identical (Mundlak
1978).2° This relationship does not hold for maximum-likelihood stochastic
frontier models such as VII-M. However, to the extent that the group-mean

19 As previously noted, one could argue that information about land quality should be
incorporated directly into the distance function.

20 In our case, model IV-M (GLS+M) is not entirely identical to the fixed-effects model because
we leave out the group-mean variables for inputs interacted with the trend variable. The results of
a specification that included the additional variables were almost identical. Hence, we prefer the
present, more parsimonious specification.
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Table 4. Descriptive Statistics of the Efficiency Scores

Standard
Mean Deviation Maximum Minimum
[ - pooled 0.868 0.058 0.977 0.522
I1-BC95 0.869 0.059 0.980 0.538
III - fixed effects 0.492 0.121 1.00 0.128
IV -GLS 0.588 0.112 1.00 0.225
IV-M - GLS+M 0.614 0.099 1.00 0.264
V-BC92 0.741 0.130 0.994 0.256
VI-TFE 0.842 0.032 0.962 0.506
VII - TRE 0.918 0.045 0.991 0.544
VII-M - TRE+M 0.916 0.048 0.990 0.504

variables capture correlations between the firm-specific random effects and
the explanatory variables, we can mitigate heterogeneity bias in the estimated
technology parameters.?!

A summary of the estimated efficiency scores from each model is presented
in Table 4. As previously noted, efficiency scores obtained from models III,
IV, and V contain the effects of firm-specific unobserved characteristics. This
leads to downward-biased efficiency scores for farms that have competitive
disadvantages that are beyond the control of the farm manager, such as
unfavorable natural conditions. The fact that these models produce the lowest
efficiency scores suggests that unobserved heterogeneity cannot be ignored
in our data set. Model III produces the lowest efficiency scores; the mean
efficiency for that model is less than 0.5. This would imply that, on average,
all of the observed dairy farms could double their output without altering
their inputs if they were fully efficient, a clearly unrealistic result. Compared
to model III, the mean efficiencies obtained from models IV and V are higher—
in the range of 0.59 to 0.74. As Farsi, Filippini, and Kuenzle (2005) noted, the
higher efficiencies can be attributed to correlation between the explanatory
variables and the firm-specific effects such that the heterogeneity is partly
captured in the slope parameters.

The TFE and TRE models (VI and VII) produce rather high efficiency
scores—0.842 and 0.918 respectively at the mean. These models explicitly
account for all time-invariant firm-specific effects so the efficiency scores
depend solely on within-variation of the firms and any potential time-
invariant inefficiency is suppressed in the firm-specific effect. Given that the
European dairy sector cannot be assumed to be highly competitive, we cannot
rule out the possibility that farms that have a certain amount of inertia in
their inefficiency remain in the sector. On the other side, the data set also

21 The Mundlak adjustment certainly is not a panacea for all problems associated with
estimation of production and distance functions when heterogeneity is unobserved. Griliches and
Mairesse (1998) elaborated on the benefits and difficulties arising from use of panel techniques
for estimation of production functions. They also discussed the frequently documented reduction
in estimated scale elasticities that are also found in our empirical application. However, especially
in the context of stochastic frontier analysis, the Mundlak adjustment has appealing features.
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has features that agree with use of the “true” effects models. The panel
encompasses data for 2000 through 2008, a reasonably sized timeframe.
More importantly, dairy farmers had to adapt to several severe changes
in operating conditions during this period, such as policy changes and
fluctuations in factor and output prices. This case of potential upward bias
in the efficiency estimates illustrates the analog to the predictable downward
bias in models III, IV, and V, which do not account for heterogeneity. Models
IV-M (denoted as GLS+M) and VII-M (denoted as TRE+M), which incorporate
the Mundlak variables, show the expected results. The GLS+M specification
accounts for heterogeneity as specified in Table 1 and can therefore reduce
contamination of the efficiency scores. This leads to an increase in the mean
and a reduction in the standard deviation of the efficiency scores. In the case
of the TRE model (VII), incorporation of the group-mean variables has a
different effect since this model already attempts to capture heterogeneity in
its basic specification. Hence, any time-invariant differences between the firms
are captured in the random constant anyway and the efficiency estimates are
free of time-invariant heterogeneity. The random constant is specified to be
normally distributed with an additional parameter, o, in the TRE model and o
in the TRE-M model, that is the standard deviation of the random parameter.
This additional parameter is a measure of unaccounted-for variation between
farms. By including the Mundlak variables in the TRE model, we partly account
for this unobserved heterogeneity, and, as expected, unaccounted variation
between the firms is reduced from o, = 0.2327 to oy = 0.1459.

The correlation between the efficiency scores obtained from different models
(see Table 5) supports our interpretation of the varying results shown in
Table 4. The efficiency scores from models I and II are highly correlated (0.93)
and show considerable correlation with scores from all of the other models
(0.47-0.79). Neither model takes the panel structure of the data into account.
Hence, the efficiency scores from models I and II contain time-varying and time-
invariant components. This explains the apparent correlation of the efficiency
scores with both the conventional and the “true” effects models. We find strong
correlations between the “conventional” panel models (111, IV, and V): 0.87-0.92.
This is not surprising. These models commonly feature inefficiency estimates
that include a time-invariant fixed effect (III) or a random effect (IV, V) that
also contains firm-specific heterogeneity. The correlation with efficiency scores
obtained from the Mundlak specification of model IV is lower—between 0.52
and 0.70. This finding is also expected since the Mundlak adjustment accounts
for part of the unobserved heterogeneity and removes it from the efficiency
scores.

Correlation between scores from the “true” effects models (VI, VII, and
VII-M) is also fairly high. The models, which control for heterogeneity, show a
similar ability to identify time-varying inefficiencies. Correlation between the
“conventional” and “true” panel models is rather low—between 0.02 and 0.35,
confirming that how heterogeneity is handled has a strong influence on the
resulting efficiency estimates.

Our findings for the efficiency scores and correlations between the scores
obtained from different models generally agree with findings of previous
studies that compared stochastic frontier models (e.g., Farsi, Filippini, and
Greene 2005, Farsi, Filippini, and Kuenzle 2005, Abdulai and Tietje 2007).

Based on the estimates from the econometric models, we measure and
decompose TFP for the observed dairy farms. We report average values for



140 April 2015 Agricultural and Resource Economics Review

Table 5. Correlation Matrix of the Efficiency Scores from the Models
I

1 II Fixed 1\" IV-M \" VI VII VII-M
Pooled BC95 Effects GLS GLS+M B(C92 TFE TRE TRE+M
Pooled 1.00
BC95 0.93 1.00

Fixed effects = 0.60  0.57 1.00

GLS 0.75 075 092 1.00

GLS+M 078 074 052 0.70 | 1.00

BC92 070 071 087 092 0.65 | 1.00

TFE 0.54 047 015 020 019 0.03 1.00

TRE 056 050 024 029 030 013 @ 087 1.00

TRE+M 054 048 023 028 035 011 @ 080 097 1.00

Note: Spearman rank correlation coefficients are highly similar to the displayed coefficients. Shades of
gray denote the extent of correlation from high (dark) to low (light).

changes in TFP, technical change, technical efficiency, and productivity changes
due to changes in the scale of operations and their percentage shares of the
change in TFP. The results, presented in Table 6, show that technical change has
the strongest influence on TFP. In all of the models, it has a positive effect on
productivity throughout the observed time period. We also find that technical
change can be slightly increasing over time for models I, II, VII, and VII-M but
has a more or less linear growth rate in the other models. The average annual
productivity growth induced by technical change ranges from 1.19 percent in
model IV to 1.64 percent in model V.

Average rates of technical efficiency change also vary considerably across
the specifications. The highest absolute change rate (-0.51) is found for
model V (BC92). The exact reason for the comparably high rate of technical
efficiency change in this model is not clear. One possible explanation is that
the specification of time-varying inefficiency is rather inflexible. Low levels
of efficiency are associated with high rates of efficiency change subject to
the parameter 1, which is common to all firms. We find that the high rates of
negative technical efficiency change are offset by proportional higher rates of
positive technical change. The change rates obtained from the other models
are quite low, ranging between -0.06 percent and -0.15 percent per year. Scale
changes also have a rather small negative impact on productivity for all models.
The magnitude of this effect depends heavily on the returns to scale and is
greatest for models III, IV-M, and VII-M, in which the return to scale ranges
between 0.54 and 0.56.

Average annual growth rates of TFP also vary across models. Looking at the
extreme cases, the growth rate from model VI (TFE) is more than 20 percent
higher than the rate from models at the lower end of the range.

Table 6 also reports the share that each component contributes to TFP, and
the differences are striking in some cases. This finding is especially relevant to
empirical applications, which base regulatory and policy recommendations on
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Table 6. Total Factor Productivity Change for Models

III
I II Fixed IV IV-M \"/ VI VII VII-M
Pooled BC95 Effects GLS GLS+M BC92 TFE TRE TRE+M

Average Annual Change Rate (percent)

TFP Change 1.24 1.20 1.03 1.07 1.03 111 1.28 1.03 1.03

Technical 136  1.29 1.24 119 1.24 164 141 1.25 130
change
Technical -0.09 -0.06 -0.08 -0.06 -0.08 -051 -0.09 -0.11 -0.15

effic. change

Scale change -0.04 -0.03 -0.13 -0.05 -0.13 -0.02 -0.04 -0.10 -0.12
effect

Share of Technical Change, Technical Efficiency Change, and Scale of Operations on TFP
Change (percent)

Technical 109.86 108.02 120.65 110.65 120.86 147.81 110.17 120.76 126.26
change
Technical -690 -536 -780 -564 -796 -4634 -7.16 -11.09 -14.64

effic. change

Scale change -295 -266 -1284 -501 -1290 -147 -3.01 -9.68 -11.62
effect

calculations of TFP growth. As Grosskopf (1993, p. 169) pointed out, “aslowdown
in productivity growth due to increased inefficiency suggests different policies
than a slowdown due to lack of technical change.” A low rate of technical change
can be interpreted as an indication of an insufficiently innovative sector lacking
investment, which suggests the need for expenditures through governmental
policies. Decreasing efficiency, meanwhile, points to growing heterogeneity in
firms’ productive performance. What often is recommended in those cases is
investment in extension services and consulting as well as resolving incentive
problems to bring the firms back to the frontier (Fan 1991, Bayarsaihan and
Coelli 2003, Aiello, Mastromarco, and Zago 2011). Special attention also should
be given to interpretation of the return-to-scale measure and the resulting
scale effect on productivity growth; for instance, Key, McBride, and Mosheim
(2008) recommended revising legislation that limits the size or growth of
hog farm enterprises. For our application, the substantial differences in the
relative importance of the TFP-growth components among the econometric
models could lead to significantly different and even contradictory policy
advice.

Evaluating the Models

Our empirical application shows that the results of a productivity growth
analysis depend to a large degree on the choice of econometric model used
to estimate the representation of the frontier production technology. That
different econometric models (that impose different assumptions on the data
and the data-generating process) lead to different results is not new. However,
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this is only a problem if we cannot reliably choose the most accurate models. In
the case of the stochastic frontier models presented in this study, we find that
some of the models are not nested so formal testing cannot reveal the “one”
right model for each data set. We attempt to reduce the number of appropriate
models by rejecting as many models as possible based on statistical tests and
discuss additional options of interest to empirical researchers to reduce the
number of models.

We start with a test of the pooled model (I) against the inefficiency-effects
model (I, BC95), which can be done because model I is nested in model II.
The likelihood ratio test of these two models gives a statistic of 241.12,
thus exceeding the critical value at the 1 percent level (Xz(g) = 21.67), which
indicates that model II is preferable to model 1. We also check whether
inefficiency is present in our empirical data set by testing model I against a
simple OLS model. The hypothesis of no inefficiency is clearly rejected. In the
specifications of models I and II (pooled, BC95), the panel structure of the
data is ignored, representing an assumption that no firm-specific effects are
present. We approach this question using the Baltagi and Li (1990) form of the
Breusch-Pagan Lagrange multiplier statistic for unbalanced panel data.?? The
null hypothesis of “no group effects” is clearly rejected with a test statistic of
9,293.65 against a critical value of x{,) = 6.64. Models I and II both incorporate
an assumption that the two error components, technical inefficiency and
statistical noise, are independently distributed. Hence, these results contradict
the specifications and have to be taken into account for use of models I and II.

Another way of identifying the presence of firm-specific effects in the datais to
test the pooled model (I) against the “true” effects models (VI and VII). Model I
is a special case of the TFE model (VI) for a, = 8, V i. The hypothesis that there
are no firm-specific effects is rejected; the likelihood ratio test gives a statistic
of 2,071.28, which is much higher than the critical value of X%y, = 1,078.55%
(Greene 2008). Finally, we compare the log-likelihood of the TRE model (VI)
against the pooled model (Greene 2008). The resulting likelihood ratio test
statistic is 6,615.32 against a critical value of x{,) = 6.64.**

For a straightforward check whether the explanatory variables are correlated
with existing firm-specific effects (E[x,9;] # 0), we perform a Hausman test on
the GLS random-effects model. The test rejects the hypothesis of no correlation
between the effects and the used variables with a test statistic of 900.25 against
a critical value of x%,;,) = 46.96.% This is a strong indication that all of the
models that assume no such correlation (IV, V, and VII) produce biased slope
parameters. Similarly, we test the random-effects models (IV and VII) against

22 The test statistic is calculated based on the residuals (e,) of a pooled OLS model:
LM = [(NTY/ (2T9 - NT][(2(Z.e)?/ ;) - 1]* where T = N / £(1/ T).

23 The validity of this test is unclear. The incidental parameter problem can prevent the TFE and
pooled models from converging under the null hypotheses.

24 We note that this is also a nonstandard test. Under the null hypotheses (variance of the
random constant equals zero), the test statistic is not asymptotically x?-distributed because the
tested value is on the border of the feasible parameter space. However, for our application the
issue is negligible since we only restrict a single parameter and the calculated likelihood ratio
statistic is about one thousand times greater than the critical value. For more on this topic, see Self
and Liang (1987).

25 The test statistic is given by H = [BY- B T-1[BY - B ¢S] where Il = Var(B" - B (Greene
2003).
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their respective Mundlak specifications. Using a Wald test, we can reject the
hypothesis that the additional group-mean variables in the GLS+M specification
are jointly equal to zero with a test statistic of F = 48.15 against a critical value
of F(30,6444) = 2.38. The same applies to the TRE+M specification; the hypothesis
is rejected based on a likelihood ratio statistic of 1,028.66 against a critical
value of x?,,) = 37.57. Based on the described statistical tests, we exclude five of
the nine models (I, II, IV, V, and VII), leaving us with the fixed-effects model (I1I),
the TFE model (VI), and the two Mundlak specifications (IV-M and VII-M).26

Since numerous models remained, we then looked for alternative ways
to determine which of those models best fit the data. For the widely used
translog functional form, we advise taking a closer look at how well the
estimated representations of the production technology are in line with the
requirements implied by microeconomic theory—namely, monotonicity and
quasi-concavity in inputs and concavity in outputs. Several authors (e.g.,
O’Donnell and Coelli 2005, Sauer, Frohberg, and Hockmann 2006, Henningsen
and Henning 2009) have pointed out how important this theoretical
consistency is for correct interpretation of the obtained parameters and
efficiency scores and, accordingly, for the results of the decomposition of
TFP growth. As shown in Table 3, the distance elasticities resulting from
all of the models show correct signs and therefore fulfill the monotonicity
requirement at the sample mean. According to Sauer, Frohberg, and
Hockmann (2006), this is the minimum requirement that has to be fulfilled
in any case to obtain meaningful results. Monotonicity violation on the input
side, for example, would imply that a reduction in inputs given a fixed level
of output would reduce productivity. After checking for monotonicity for all
of the observations we find some violations for all of our models. However,
as reported in Table 7, the share of observations with present violations of
monotonicity is more severe for some models than for others. For example,
we find that 40.3 percent of the observations show the wrong sign on the
distance elasticity of the land input when the TFE model (VI) is used. This high
share of incorrectly signed elasticities can hardly be accepted. To check the
curvature conditions of quasi-convexity in inputs and convexity in outputs,
we construct a (bordered-) Hessian matrix for each data point and report the
percentage of violations in Table 7.

On the input side, almost all of the models are perfectly in line with the
curvature requirements. We find some curvature violations, however, on the
output side for all of the models. The violations are prominent in the TRE
(40.9 percent) and TRE+M (38.2 percent) models. We therefore can challenge
two more of the econometric models based on how consistent the estimated
production technologies are with microeconomic theory.

Additional factors that should be taken into account when choosing
an econometric model involve the distinction between inefficiency and
heterogeneity. Expert knowledge about the sector under investigation should
be considered when determining which assumptions are reasonable. Are the
analyzed firms actually working under heterogeneous production conditions
that should be controlled? Can the existence of time-invariant inefficiency be
ruled out generally, e.g., by a competitive operating environment, changes in

26 Another issue that invites further statistical testing is the manner in which technical efficiency
is specified to vary over time. Karagiannis and Tzouvelekas (2010) provide some insights on this
topic.
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Table 7. Percent of Violations of Monotonicity and Curvature Conditions

I

I II Fixed 1\ IV-M A" VI VII VII-M
Pooled BC95 Effects GLS GLS+M BC92 TFE TRE TRE+M
Monotonicity
Labor 0.0 0.0 6.6 0.3 6.5 0.5 0.0 0.9 4.6
Land 37.0 14.4 0.2 0.0 0.2 0.0 40.3 0.0 0.3

Intermediate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
inputs

Capital 0.0 0.0 0.6 0.0 0.6 0.0 0.0 0.1 0.1
Milk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other 0.1 0.1 0.6 0.5 0.6 0.5 0.1 0.2 0.3
Curvature

Input 4.5 0.7 0.0 0.0 0.0 0.0 5.1 0.1 0.1
Output 31.3 31.5 9.3 13.6 9.2 12.3 26.3 40.9 38.2

the operating and management conditions (e.g., policy and regulation), and a
sufficient number of time periods? These considerations argue against use of
the fixed-effects model (III) with our data set. As noted, model III includes all
unaccounted-for time-invariant effects in the inefficiency term, resulting in an
unrealistically low average efficiency of less than 0.5.

The criteria we use for choosing a suitable stochastic frontier model for a given
data set have narrowed the range of applicable models from nine to only one,
the GLS+M (IV-M) model. Not that this choice is utterly irrefutable. However,
taking our tests into consideration combined with knowledge of the production
process should allow empirical researchers to make educated choices based on
the general operating environment in the sector and the characteristics of the
data set at hand.?’

Concluding Remarks

We compare the results of decompositions of TFP growth using estimates from
nine commonly used stochastic frontier models and focus on the models’ ability
to take unobserved heterogeneity into account. The basic conclusion drawn
from this comparison is not surprising: different econometric specifications
can lead to quite different results. For an unbalanced panel of 974 dairy
farms observed for 2000 through 2008, we find substantial differences in the
estimated slope parameters of input, output, and trend variables in the resulting
distance elasticities and individual efficiency scores of the observed firms.

27 In a similar situation, Karagiannis and Tzouvelekas (2010) recommended constructing
averages of the results from competing models. This approach was noted by Coelli and Perelman
(1999) in regard to efficiency analysis.
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These differences lead to uncertainty in interpretation of the results. Unstable
distance elasticities raise questions about the importance of particular inputs
for the production process. In our results, returns to scale are almost constant
for some models but strongly decreasing for others. For all of the models,
technical change is positive and the rate of change is constant or increasing.
There are large differences in average efficiency and thus in the potential for
productivity improvement. Individual efficiency also varies widely. And while
the efficiency scores and efficiency ranks of some models are highly correlated,
the scores and ranks of others do not match at all. Considering the widespread
application of various econometric models for analysis of productivity change
(see preceding examples), we conclude that the methodology chosen has to fit
the characteristics and structure of the data set as well as the purpose of the
analysis. If findings will be used to state recommendations for regulation and
policy, it is crucial to be aware of the consequences of the choice of a particular
econometric model. We also show how several statistical tests can be used to
narrow the range of appropriate models and hence facilitate an effective choice.
Finally, the purpose of each study has to be taken into account. Each model
presents different virtues so the choice of model also depends on whether the
focus is individual efficiency scores and their development over time, the slope
parameters, or (as in the case of an analysis of TFP change) both. Since the
models are not altogether nested, it is not possible to find the most appropriate
model using formal statistical tests. However, it is possible to narrow the range
of potential models and thereby facilitate the choice by combining statistical
tests with other aspects.
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