

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

AEK 459

MI

Agricultural Economics Report

REPORT NO. 459

NOVEMBER 1984

AN ANALYSIS OF INTEREST AND PRINCIPAL PAYMENTS, INTEREST RATES AND TIME IN COMMON AND UNCOMMON LOANS USING PRESENT VALUE TOOLS

By Lindon J. Robison Steven R. Koenig John R. Brake

Department of Agricultural Economics MICHIGAN STATE UNIVERSITY . East Lansing An Analysis of Interest and Principal Payments, Interest Rates and Time in Common and Uncommon Loans Using Present Value Tools

By

Lindon J. Robison Steven R. Koenig and John R. Brake*

*Lindon J. Robison and Steven R. Koenig are, respectively, Associate Professor and Graduate Research Assistant in the Department of Agricultural Economics, Michigan State University, East Lansing, Michigan. John R. Brake is Professor in the Department of Agricultural Economics, Cornell University, Ithaca, New York.

Michigan Agricultural Experiment Station Report #11454

MSU is an Affirmative Action/Equal Opportunity Institution

ABSTRACT

An Analysis of Interest and Principal Payments, Interest Rates and Time in Common and Uncommon Loans Using Present Value Tools

By

Lindon J. Robison Steven R. Koenig and John R. Brake

This report analyzes a variety of loan programs. After introducing basic concepts, definitions, and tools, present value formulas are used to compare different types of loans including fixed payment, balloon payment, moderated payment, blended rate, fixed principal payment, and disguised interest cost loans. The application of present value tools to the analysis of each type of loan is introduced and then illustrated by example. Because the sum of a uniform series appears repeatedly in the solutions, calculated values are provided in Table 1 at the end of the report.

Acknowledgements

Several individuals and organizations aided in the preparation of this report. Particularly helpful were valuable comments made on earlier drafts by Lester V. Manderscheid, Beverly Fleisher, and Gerald Schwab.

A report like this with nearly 90 equations is difficult to type and proofread. Debbie Greer at Michigan State University and the Faculty Support group at Brigham Young University provided outstanding typing services.

Finally, financial support for this project was supplied by the Michigan Agricultural Experiment Station.

To all those individuals and organizations mentioned above, we extend our grateful appreciation.

TABLE OF CONTENTS

		Page
Ι.	INTRODUCTION	1
II.	LOAN VS. INVESTMENT ANALYSIS	2
III.	INTEREST RATE CONCEPTS AND TERMINOLOGY	4
	Comparing the Actuarial, APR and Effective Interest Rates	5
IV.	TOOLS FOR SOLVING PRESENT VALUE MODELS	6
	Discounting	7 8 9
۷.	CONSTANT PAYMENT LOANS	12
	Constant Payment Loan Examples	13 14 19 21
VI.	BALLOON PAYMENT LOANS	22
	Balloon Payment Loan Examples	24
VII.	MODERATED PAYMENT LOANS	25
	Skip Payment Loan Examples of Skip Payment Loans Skip Principal Loan Examples of Skip Principal Loans Buy Down Loan Examples of Buy Down Loans Graduated Payment Loans An Example of a Graduated Payment Loan Concessionary Interest Rate Loans	25 26 27 28 29 31 31 34 34
	An Example of a Concessionary Interest Rate Loan	35

VIII.	WRAP AROUND LOANS WITH BLENDED INTEREST	RATES		•••			36
	An Example of a Blended Rate Loan	•••	•	•••	• •		38
IX.	CONSTANT PRINCIPAL PAYMENT LOANS	•••	•			•	40
Х.	DISGUISED INTEREST RATE LOANS	•••	•				41
	The Discount Loan		•	· · ·			41 42 43 43 44 45
XI.	SUMMARY	•••	•			·	45
XII.	TABLE 1, PRESENT VALUE OF A UNIFORM SER	IES OF	\$1	PA	YMEN	ITS	47
XIII.	APPENDIX 1, DEFINITIONS OF VARIABLE USER	D	٠	•••	• •	·	59
XIV.	REFERENCES	. <mark>.</mark> .	•				61

An Analysis of Interest and Principal Payments, Interest Rates and Time in Common and Uncommon Loans Using Present Value Tools

I. INTRODUCTION

Present value tools can be used to analyze numerous types of loans. The goal of this report is to bring together in one place the present value formulas which are relevant to loan analysis. In laying the groundwork for meeting this goal, several important topics are addressed. First, we examine the similarities between investment and loan analysis, which both use present value tools. Although the two types of analysis are similar in many respects, they differ in the selection of an appropriate discount rate. Investment analysis discounts future values with a discount rate which reflects an opportunity cost. Present value formulas used in loan analysis discount future values with a discount rate equal to an interest rate. Because of this difference, and the wide variety of terms commonly used in discussing interest rates, the terminology to be employed in this report is carefully defined.

The discussion of interest rates is followed by a discussion of geometric series and summation of geometric series. The formula for determining the present value of a uniform series of payments is developed and symbolized for later reference and application in discussing specific types of loans. Because of the importance of this formula in analyzing loans, numerical values for the formula are given in Table 1 at the end of the report.

The concepts, definitions, and tools developed in the first part of the report are used to analyze six major classes of loans: (1) constant payment loans; (2) balloon payment loans; (3) moderated payment loans; (4) wrap around loans with blended interest rates; (5) constant principal payment loans; and (6) disguised interest cost loans. The relevant present value tools for each type of loan are introduced and then illustrated with examples.

Many of the formulas presented here are available elsewhere, some are not. We hope that by combining a basic exposition of the tools with their application in different examples, this report will provide a basic handbook for decision makers facing financial decisions.

II. LOAN VS. INVESTMENT ANALYSIS

The basic premise for this primer is that loan analysis like investment analysis is performed using present value methods. The major similarity between loan and investment analysis is that only cash transactions are included in the analysis. Noncash transactions do not appear in present value models. In loan analysis, this fact is, of course, well known; loans are received as cash and are repaid as cash. In investment analysis, a purchase of a capital asset involves the transfer of cash in exchange for the asset. So the cash outlay is reported but the cash value of the machine is not recorded. What is recorded as a receipt is the cash earned by using the asset's services; this principle applies to capital gains as well. If the asset is appreciating in value, the appreciation does not enter the model until the asset is sold and its value converted to cash (Robison and Burghardt).

The other major similarity between loan and investment models is the method used to convert future costs and benefits to a common time period. Both in analysis models and in investment models, the

conversion is made by discounting future costs and benefits depending on the distance to the conversion period. The factor used to discount future benefits and costs is called the discount rate.

The essential difference between investment and loan analysis models, apart from the calculation of benefits and costs is the choice of the discount rate. In loan analysis, the discount rate is the interest rate associated with the loan. It is usually determined at the time of the loan. In investment models, the discount rate is the opportunity cost, the desired rate of return, or the rate of return the investor could earn in his next best investment alternative. Often, investment analysts suggest using appropriate interest rates as the discount rate in investment models, making the two models even more similar. However, it is important to realize that unused borrowing capacity has a value too. As a result, the interest rate which does not include the value of used-up borrowing capacity underestimates the true cost of borrowing and therefore cannot be generally used as the appropriate discount rate. Thus the interest rate and the discount rate should not be used interchangeably.

Finally, one can often distinguish between loan and investment models based on the pattern of cash flows. Loan payments are often constant amounts. Investment analysis usually imposes no pattern on the receipt of benefits and disbursement of costs. Yet in the development of analytic models, regularity is often imposed; the regularity most often required is that the series are geometrically related.

To summarize, the similarities between cash flow and investment models are that they both enter only cash payments, they are based on comparisons of cash units converted to common time periods, and they

convert cash values in distant time periods to equivalent values in some other period (usually current) through use of a discount rate. The differences between investment and loan analysis are the manner in which benefits and costs are calculated and the choice of a discount rate.

The similarities between loan and investment analysis outweigh the differences. This fact allows us to develop tools and concepts for loan analysis which are applicable in most cases to investment analysis. The next section begins by discussing interest rates. Since they are often the discount rate used in loan analysis, it is important that the interest rate concepts and terminology are understood.

III. INTEREST RATE CONCEPTS AND TERMINOLOGY

To understand the concept of the time value of money, it is essential that the language of finance be understood. The concepts and terminology of finance often are difficult to grasp and are sometimes used inconsistently within different areas of the business of finance. This section outlines the major concepts and terminology that are commonly encountered.

Various interest rate definitions can be found in finance literature. To avoid confusion, definitions from the mathematics of finance will be used here.

There are three major interest rate definitions which are essential to understanding interest rate calculations and present value techniques. These rates are closely related to each other and are often referred to by different names in the literature. The rates and their commonly used synonyms are listed below, with the underlined terms being used in this report. They are:

- 1. Actuarial rate, compound rate, true rate, or periodic rate;
- Annual percentage rate (APR), nominal rate, annual rate, nominal annual rate; and
- 3. Effective rate or effective annual rate.

Comparing the Actuarial, APR and Effective Interest Rates

In many types of financial transactions, interest is computed and charged more than once a year. For example, savings deposits placed in savings institutions usually receive monthly computing of earned interest and corporate bonds usually pay interest on a semiannual basis. The interest rate which is used in the computation for these periods of less than one year is called the actuarial rate. The actuarial rate may be best defined as the interest rate or discount rate per period of conversion or compounding. It is the rate at which the principle sum is charged during each successive conversion period. For example, a one percent actuarial rate charged monthly on \$1,000 means that in the first month of the loan, one percent of \$1,000 or \$10 of interest is computed.

Actuarial rates are usually converted to an APR rate so that comparison between different quoted rates can be simplified. The APR rate is determined by expressing the actuarial rate on an annual basis. This is accomplished by multiplying the actuarial rate by the number of conversion periods per year. In the previous example, the one percent per month is multiplied by 12 to convert the monthly rate to an annual percentage rate (APR) of 12 percent compounded monthly. When the compound period or conversion period is one year in length, then the actuarial rate and the APR rates are equivalent.

When APR rates have different numbers of compound periods per year, the different rates can be converted to their effective interest rates for comparison. The effective rate is obtained by compounding the actuarial rate for a period of one year. As the frequency of compounding periods increases, the difference between the APR and the effective rate increases. Also, as the actuarial rate increases, so does the relative difference between the APR rate and the effective rate.

These relationships can be easily summarized using some simple notation. Let "m" be the conversion periods per year, let "r" be the APR rate, then $\frac{"r"}{m}$ is the actuarial rate. Then "r_e" is the effective rate.¹ The relationship between effective rate r_e, APR rate r, and actuarial rate $\frac{r}{m}$ is:

(1) $r_{e} = [(1 + \frac{r}{m})^{m} - 1]$

It is, of course, true that when m equals 1, the APR rate r equals the effective rate r_e . To illustrate (1) numerically, let r be .12 and m be 4, then the effective rate is:

 $.1255 = [(1 + \frac{.12}{4})^4 - 1]$

And if m is increased to 12, the effective rate is:

 $.1268 = [(1 + \frac{.12}{12})^{12} - 1]$

IV. TOOLS FOR SOLVING PRESENT VALUE MODELS

Two tools are essential for present value modeling:² discounting and geometric summation. We begin by discussing discounting principles.

²This paper focuses on discrete time periods. Were the analysis to be converted to continuous time, the discounting tool remains fundamental to the analysis, but integration would replace the geometric summation method as the second tool.

¹Interest rates will be expressed as decimals in the body of this report. Table 1 expresses interest rates as percentages.

Discounting

The comparison between the value of dollars received next period and the dollars' value in the conversion or present period depends on what opportunities exist for investing in the present (or conversion) period. If the highest rate of return available is r percent, then A_t dollars invested in the tth year would be worth $A_t(1 + r)$ dollars one year later. Thus, the value of A_t in the year (t + 1) is:

(2)
$$A_{+}(1 + r) = A_{++1}$$
 o

(3)
$$A_{t} = A_{t+1}/(1 + r)$$

Similar substitutions for earnings received in more distant years, say in year (t + n), allow us to express the equivalent value in year t as:

(4) $A_t = A_{t+n}/(1 + r)^n$

provided the rate of return available between the t^{th} and the $(t + n)^{th}$ year remained at r percent per year.

To illustrate discounting, consider the situation where an investment is expected to return \$10,000 five years in the future. If the opportunity cost of money is expected to be 12 percent (r = 12%) during the period, the present value of the future return is computed using equation (4) as:

$$A_{t} = \frac{\$10,000}{(1 + .12)^{5}} = \$5,674.27$$

The difference between the undiscounted \$10,000 and the discounted amount of \$5,674.27 is \$4,327.73. This figure represents the size of the discount for the five years in which the receipt \$10,000 is delayed. The \$5,674.27 figure represents the present value of the \$10,000 and is the amount one should pay for the investment if their opportunity cost is 12 percent. Annual compounding of \$5,674.27 at 12 percent interest would yield \$10,000 after five years. Note that by increasing the discount rate to 13 percent the present value decreases to \$5,427.70; a decrease to an 11 percent discount rate increases the present value to \$5,934.37.

Often we are concerned with converting a series of payments A_1 , A_2 , A_3 , . . . received over time to their present value equivalent. Let V_0 be the present value of a series of future payments discounted to the current period. This relationship is expressed as:

(5)
$$V_0 = \frac{A_1}{(1+r)^1} + \frac{A_2}{(1+r)^2} + \dots + \frac{A_n}{(1+r)^n}$$

As an example, consider payments of \$1,000, \$2,000, and \$3,000 to be received one, two, and three years in the future. Using an APR discount rate of 12 percent, the present value of the future payments is:

$$4,622.63 = \frac{1,000}{(1+.12)^1} + \frac{2,000}{(1+.12)^2} + \frac{3,000}{(1+.12)^3}$$

Geometric Series

The discounting discussion leads naturally to the second question: Can the sum of distant period flows converted to a common period be conveniently summed? The answer is yes if the terms are geometrically related. Fortunately, many present value problems are geometrically related.

A geometric series takes the form:

(6) $S = ab + ab^2 + ab^3 + ... + ab^n$

where S is the sum of the series and where "a" and "b" are constants. It is called a geometric series because there is some constant factor of multiplication which if used to multiply the tth term produces the $(t + 1)^{st}$ term. In equation (6) the term is "b," which is called the geometric factor of the series.

A geometric series has a well defined sum in two cases: (1) when the series is of finite length and each term in the series is of finite size; and (2) when each term of the series is of finite size and the geometric series converges. The geometric series is said to converge if the sum of the series approaches a constant value as additional terms are added.³ Since "a" is a constant this requires -1 < b < 1 for the series in equation (6) to converge. Assuming the series does converge it can be solved in a convenient way.

Geometric Series Summation

To sum a geometric series, several algebraic manipulations must be used. First, multiply both sides of (6) by the inverse of the geometric factor b to obtain:

(7) $\frac{S}{b} = a + ab + ... + ab^{n-1}$

Next subtract equation (6) from equation (7) noticing that all but the first term of equation (7) and the last term of equation (6) cancel. The result is:

(8)
$$\frac{S}{b} - S = a - ab^{n}$$

or

 $\underset{n \to \infty}{\text{limit } ab}^{n} = 0$

³The mathematical definition of convergence is: an infinite series with partial sums S_1, \ldots, S_n is said to converge if, and only if, the limit of S_n exists as n becomes infinitely large. In our previous example this requires that:

(9)
$$S = \frac{ab[1 - b^n]}{1 - b}$$

If n is allowed to become large, remembering that |b| < 1, the solution to equation (9) is:

(10) $S = \frac{ab}{1 - b}$

To illustrate the geometric summation method, assume that an annuity A is to be received on an investment for n years and that the opportunity cost is r percent. The variables A, n, and r, of course, represent or stand in place of values which may be later substituted. For the present application let V_0 stand for the present worth of the n payments of amount A discounted at r percent. The equality is written as:

(11)
$$V_0 = \frac{A}{(1+r)} + \frac{A}{(1+r)^2} + \dots + \frac{A}{(1+r)^n}$$

The three dots in equation (11) stand in place of the missing terms and serve to simplify the notation. In equation (11) the term which appears in all the right-hand side rates is A while the geometric factor is $(\frac{1}{1+r})$. Letting A substitute for "a" and $(\frac{1}{1+r})$ substitute for "b" in equation (9), the present value V₀ can be written as:

(12)
$$V_0 = A[\frac{1 - (1 + r)^{-n}}{r}]$$

For example, if 20 annual payments of \$100 are to be received which are discounted at 12 percent their present worth is:

$$\frac{1-(1.12)^{-20}}{.12}$$

The expression $\left[\frac{1-(1+r)^{-n}}{r}\right]$ in equation (12) is the factor which converts the uniform series of annual payments A to their present value equivalent. Because this expression will appear often, a simple

expression will be used to represent it. Since it sums a uniform series of \$1 payments and converts them to their present or zero period equivalent, we write:

(13a)
$$US_0(r, n) = \frac{[1 - (1 + r)^{-n}]}{r}$$

In general, for any amount A, we write:

(13b) $V_0 = AUS_0(r, n)$.

Were the common time period selected to be in the nth year instead of the current time, V_0 and $US_0(r, n)$ are multiplied by the compound factor $(1 + r)^n$ and:

(14) $V_n = (1 + r)^n AUS_n(r, n)$

It is often the case that annuities are received (or payments made) at intervals shorter than one year, say m times a year. In such cases the relevant interest rate is an actuarial rate $\frac{r}{m}$ and the number of periods is mn, where the payments are received m times a year for n years.

The expression which converts mn \$1 annuities discounted at rate $\frac{r}{m}$ for n years is:

(15)
$$US_{0}(\frac{r}{m}, mn) = \frac{\left[1 - (1 + \frac{r}{m})^{-mn}\right]}{\frac{r}{m}}$$

Numerical values, accurate to the fourth decimal place, for $US_0(\frac{r}{m}, mn)$ are calculated in Table 1 at the end of this report. The present value of mn constant payments A can be expressed as:

(16)
$$V_0 = AUS_0(\frac{r}{m}, nm)$$

Were the common time period selected in the nth year instead of the current time, V_0 and $US_0(\frac{r}{m}, mn)$ are multiplied by the compound factor $(1 + \frac{r}{m})^{mn}$ and

(17) $V_n = (1 + \frac{r}{m})^{mn} AUS_0(\frac{r}{m}, mn).$

Having introduced the tools and notation for solving a geometric series, and in particular for solving a geometric series of uniform payments, the first and most common loan is introduced: the constant payment loan.

V. CONSTANT PAYMENT LOANS

A constant payment loan is a loan repaid by a uniform series of equal payments made at equal time intervals. The present value of the payments is obtained by discounting at the loan interest rate and summing. The discounted sum of the payments equals the original amount of the loan. The fundamental relationship between the number of payments (the term of the loan), the discount rate, the constant payment, and the loan amount is:

(18) $V_0 = AUS_0(\frac{r}{m}, mn)$

Where V_0 is the value of the loan provided in the present period, A is the uniform payment, $\frac{r}{m}$ is the actuarial interest rate, and n is the term of the loan in years.

If the loan amount, interest rate and loan term are known, the payment, A, is:

(19) $A = V_0/US_0(\frac{r}{m}, mn)$

From equation (18), if $A, \frac{r}{m}V$, and are known, one can easily solve for the number of payments mn necessary to retire a borrowed sum of money.

If A, V_o and $\frac{r}{m}$ are known, mn can be determined using natural logarithms:

(20) mn =
$$\frac{-\ln(1 - \frac{r}{m}\frac{VO}{A})}{\ln(1 + \frac{r}{m})}$$

Constant Payment Loan Examples

Suppose a \$5,000 sum of money is borrowed from a bank for a period of 5 years. The loan is to be repaid with monthly installments at an actuarial rate of 1 percent. What is the payment or annuity necessary to retire the loan?

Solving by use of equation (19) obtains:

$$A = V_0/US_0(.01, 60)$$

= \$5,000/44.9550
= \$111.22

Notice that the number 44.9550, the $US_0(.01, 60)$ value, is from Table 1 at the end of this report (see page 48) or could be calculated directly using equation (13a).

Now suppose A is known to be \$111.22, $\frac{r}{m}$ is .01, and mn is 60. The loan supported by payments at these terms can be found using equation (18):

 $V_o = AUS_o(.01, 60)$ = (\$111.22)(44.9550) = \$5,000

Finally, assume $V_0 = \$5,000$, A = 111.22, $\frac{r}{m} = .01$, but mn is not known. To find mn use equation (20), or divide V_0 by A and scan Table 1 under the 1% column until the US₀(.01, mn) value corresponding to 44.9550 is found. The mn value at which that occurs is 60.

Total Interest Costs and the Rule of 78's

The tax deductibility of interest payments leads to another calculation of interest, total interest costs. In the case of the constant payment loan the total interest costs can be calculated by subtracting from total payments (mnA) the loan principle V_0 . Denoting total interest costs as TI, this subtraction equals:

(21) $TI = (mnA - V_0)$

Total interest cost in the previous example equals:

TI = [60(\$111.22) - \$5,000]

= \$1673.20

Besides determining total interest costs, there are many situations where it is important to be able to determine the accumulated interest and principal paid as of some date. Early loan repayment and the need to calculate the tax savings associated interest payments are examples which may necessitate such calculations.

The <u>Rule of 78's</u> provides an <u>approximation</u> for calculating how much interest and principal is paid in each period. The approximation recognizes the fact that more interest is paid at the beginning of a loan than at the end of the loan because as principal is reduced, so are interest costs. This allows a larger portion of each fixed payment to be allocated to repaying principal at the end of the loan than at the beginning of the loan repayment.

The approximation takes its name from the calculations associated with a one-year loan consisting of 12 payments. The sum of the digits associated with 12 payments are: $1 + 2 + \ldots + 12 = 78$. The formula allocates $\frac{12}{78}$ of the interest to be repaid in the first payment; $\frac{11}{78}$ of the interest to be repaid in the first payment; $\frac{11}{78}$ of the interest to be repaid in the 2nd and so on. Thus total interest

costs are allocated to periods according to the "sum of the year's digits" depreciation schedule.

The formula for calculating the sum of the digits for mn periods, SSD(mn) is:

 $(22) \quad SSD(mn) = \frac{mn(mn + 1)}{2}$

And the interest paid on the tth payment I(t) equals:

(23) I(t) = TI[(mn - t + 1)/SSD(mn)]

In our example, SSD (60) is 1,830 with total interest of \$1,673.20 to be repaid on the loan. Approximate interest costs included in the 16th payment would be \$1,673.20[(60 - 15)/1830] = \$41.14.

The formula for accumulated interest paid after t payments, AI(t), is:

(24) AI(t) = TI[1 -
$$\frac{(nm - t)(nm - t + 1)}{nm(nm + 1)}$$
]
AI(16) = \$1673.20[$\frac{1 - (60 - 16)(60 - 15)}{60(60 + 1)}$]
= \$768.03

Accumulated principal paid after t payments AP(t) is calculated as:

(25) AP(t) = tA - AI(t)

Substituting in the formula yields:

AP(16) = (16)(\$111.22) - \$768.03 = \$1,011.49

Finally, if after t payments, the loan is to be retired or repaid, principal due PD(t) is simply:

(26) $PD(t) = V_0 - AP(t)$

After the 16th payment, the outstanding principal is:

Therefore, the principal necessary to retire the remaining loan balance is approximately \$3,988.51.

The rule of 78's is a convenient method for approximating interest and principal paid and due. It was especially helpful in earlier times when widespread computing capacity was not available. It is important to keep in mind it is only an approximation; if the interest and principal calculation were computed using the $US_o(\frac{r}{m}, mn)$ formula from which payments were calculated, an exact interest and principal payment schedule could be obtained. The difference between the two methods is depicted in Figure 1. Panel a describes the differences in interest paid per period while Panel b describes the differences in accumulated interest paid. Notice that the Rule of 78's generates linear interest payment schedules while the US₀ formula does not.

For example, consider a loan for \$1125.51 which is repaid in 12 monthly installments of \$100 amount at a 1 percent actuarial rate. Since total payments equals \$1200, total interest paid must equal:

TI = \$1200.00 - \$1125.51

= \$74.49

Notice that in the first period, interest costs calculated according to the US_o($\frac{r}{m}$, mn) formula equal \$11.25; calculated according to the rule of 78's, interest costs equal \$11.46. And in the sixth period, interest costs become \$6.69 with the rule of 78's and \$5.80 with the US_o($\frac{r}{m}$, mn) method. In the final or 12th period the interest cost calculation results in \$0.96 with the rule of 78's, compared with \$0.99 using US_o($\frac{r}{m}$, mn).

The formula for calculating principal paid PP(t) in the tth period using the US₀($\frac{r}{m}$, mn) formula is:

Figure 1:

Comparison of Interest Costs Calculated Using the Rule of 78's and the US $_{\rm O}$ Formula.

(27)
$$PP(t) = \frac{A}{(1 + r)^{n-(t-1)}}$$

In our example, of the \$100 payment, (where $\frac{r}{12}$ = .01, and mn = 12), PP(1) equals:

(28)
$$PP(1) = \frac{\$100}{(1.01)^{12}} = \frac{\$100}{1.1268} = \$88.75$$

Obviously, the interest portion of the t payments, I(t) calculated using the US₀($\frac{r}{m}$, mn) formula is simply:

(29) I(t) = A - PP(t)

In the previous example I (1) is:

Accumulated principal AP(t) paid after t payments under the $US_0(\frac{r}{m}, mn)$ equation is:

(30) AP(t) = A[US₀(
$$\frac{r}{m}$$
, mn) - US₀($\frac{r}{m}$, mn - t)]
After six payments the result is:
AP(6) = \$100[US₀(.01, 12) - US₀(.01, 12 - 6)]
= \$100[11.2551 - 5.7955]
= \$545.96

Accumulated interest AI(t) payments formula follows:

(31) AI(t) = tA - AP(t)

After six payments the result is:

Finally, principal due PD(t) to retire the loan after t payments

$$(32) PD(t) = V_0 - AP(t)$$

is:

After six payments the result is:

PD(6) = \$1125.51 - \$545.96 = \$579.55

Comparing Term and Payment Size

Both borrowers and lenders are concerned with the relationship between the term of the loan and the payment size. To calculate the reduction in loan payment, ΔA , associated with a one period increase in the term of a loan from mn to mn + 1 periods we write:

(33)
$$\Delta A(mn) = \frac{V_0}{US_0(\frac{r}{m}, mn + 1)} - \frac{V_0}{US_0(\frac{r}{m}, mn)}$$

It can be shown that as mn becomes large, the payment A approaches the interest cost; i.e., the smallest payment possible equals the interest charged on the outstanding loan balance.⁴

One might ask: Is there an optimal term for loans? The answer is yes, but it depends on the goals and needs of the borrower and lender. If the borrower wished to minimize his payment, the optimal term is the one which permits the borrower to repay only interest. The shortest repayment period, on the other hand, is one. We now provide a formula which provides a value which is between these extremes which economists find useful in other settings.

⁴To see this take the limit of A after substituting in for $US_0(\frac{r}{m}, mn)$ the uniform series formula the result is:

$$\lim_{m \to \infty} A = \frac{\frac{r}{m}V_{o}}{\left[1 - \frac{1}{\left(1 + \frac{r}{m}\right)} - mn\right]}$$
$$= \frac{r}{m}V_{o}$$

We are interested in the sensitivity of the reduction in loan payment as the term increases. Obviously the absolute magnitude of the loan reduction decreases as the term increases; thus early increases in the term are more important than later. The percentage change in the loan payment size in response to a one percent increase in the term of the loan, however, is not a monotonic relationship. The term "n" at which the maximum percentage change in loan payment occurs in response to a one percent change in the term of the loan can be expressed as:⁵

(34) mn =
$$\frac{1}{\ln(1 + \frac{r}{m})}$$

It is interesting to note that as the interest rate in (34) goes up, the term which maximizes the elasticity of loan size reduction goes down:

$$(35) \quad \frac{d(mn)}{dr} = -(1 + \frac{r}{m})^{-1}(\ln(1 + \frac{r}{m}))^{2}(\frac{1}{m}) < 0$$

This result suggests as expected, that early repayment with high interest rates is more important than when interest rates are low.

Important to note is that equation (35) does not necessarily represent an optimum term. It may, however, provide a useful reference point for borrowers and lenders in deciding on an optimal loan term.

Borrowers and lenders may also wish to examine how total interest payments respond to increases in the term of a loan. Letting $\Delta TI(n)$ represent the increase in total interest payments as the term of a loan increases from mn to mn + 1 periods and A be the payment on an mn period loan we write:

⁵This expression is obtained by maximizing the elasticity of the loan payment A with respect to the term of the loan.

(36)
$$\Delta TI(mn) = (mn + 1)(A + \Delta A) - mnA$$

= $A + (mn + 1)\Delta A$
= $\frac{V_0}{US_0(\frac{r}{m}, mn)} + (mn + 1)V_0[\frac{1}{US_0(\frac{r}{m}, mn + 1)} - \frac{1}{US_0(\frac{r}{m}, mn)}]$

An Example of Term, Interest Cost and Loan Payment Trade-Offs

A landlord is financing the renovation of a property. The loan amount needed is \$28,000. The current interest rate is 15 percent. He asks: If the term of the loan is increased from 10 years to 11 years, what will be the reduction in the annual loan payment?

Using equation (33) he calculates:

$$\Delta A(10) = \frac{\$28,000}{\text{US}(.15,11)} - \frac{\$28,000}{\text{U.S.}(.15,10)}$$
$$= \$5349.94 - \$5579.02$$
$$= \$229.08$$

Thus the 10-year term payment of \$5579.02 is reduced by \$229.08 with a one-year increase in the term. Using equation (34) the term which finds the largest percentage change in the payment with respect to a one percent increase in term is:

$$n = \frac{1}{\ln(1.15)}$$

= 7.15 years

Finally, the increase in total interest associated with a one-year increase in the term of the loan is found using equation (36).

$$\Delta TI(10) = $5579.02 - (11)$229.08$$

= \$3059.14

VI. BALLOON PAYMENT LOANS

While the constant payment loan, or the installment loan, is by far the most frequently used, many other types of loans have been developed. One reason for their development is volatile interest rates and the need to fit repayment terms to situations. When interest rates are volatile, lenders assume greater risk by offering fixed rate loans, particularly on longer term loans. The risk they incur with fixed rate lending is from a future increase in interest rates above the existing rate. In this situation the lender is caught with fixed rate assets while his cost of funds are rising. Borrowers may also be at risk from volatile interest rates if leaders change fees to renegotiate loan terms.

One response to higher interest rate risk has been to offer balloon payment loans. The balloon payment loan is like the constant payment loan except for the last payment. It is used to pay off a loan before its normal term is complete and the last payment need not equal the amount of the other payments. The advantage to the lender (and borrower) is that it provides an opportunity to renegotiate the interest rate on the remaining balance shculd the borrower decide to refinance his balloon payment.

The questions to answer in connection with a balloon payment loan are the same questions answered for the constant payment loan: What payments (constant and balloon) are required to repay the loan? What loan amount can be supported by known (constant and balloon) payments? And how many constant payments and a known balloon are required to retire a balloon payment loan?

Consider the relationship between the amount of a loan V_0 to be retired using a series of payments A made at regular intervals over

(mn-1) periods at an interest rate of $\frac{r}{m}$ percent, with a final balloon payment B made in the mnth period. The equality between the borrower loan (V₀) and the present cost (discounted series of payments A plus the balloon) is:

(37)
$$V_0 = \frac{A}{(1 + \frac{r}{m})} + \dots + \frac{A}{(1 + \frac{r}{m})^{mn-1}} + \frac{B}{(1 + \frac{r}{m})^{mn}}$$

Since the n payments A constitute a uniform series, equation (37) can be written as:

(38)
$$V_0 = AUS_0(\frac{r}{m}, mn-1) + \frac{B}{(1 + \frac{r}{m})^{mn}}$$

To illustrate the formula, suppose a borrower could afford payments of \$150 per month for 9 years and 11 months at an actuarial rate of 1 percent. After 119 payments the borrower could then make a balloon payment of \$5,000. What loan would such a payment arrangement support? The answer is obtained by substituting the appropriate values into equation (38). Substitute 150 for A, 69.3975 for US₀(.01, 119), \$5000 for B, and .3030 for $\frac{1}{(1 + .01)^{120}}$. The answer is:

11,924.63 = (150)(69.3975) + (5,000)(.3030)

If the amount of the loan is known as well as the size of the balloon payment, then the regular payment to be made over n periods at interest rate r can be found by solving for A in equation (38). It equals:

(39) A =
$$\frac{V_o - B(1 + \frac{r}{m})^{-mn}}{US_o(\frac{r}{m}, mn-1)}$$

And if A and V are known, the balloon payment can be easily found. It equals:

(40)
$$B = [V_0 - AUS_0(\frac{r}{m}, mn-1)](1 + \frac{r}{m})^{mn}$$

Finally suppose V_0 , A, B, and $\frac{r}{m}$ are known. Can we find mn? The answer is yes! It equals:

(41) mn =
$$\ln \left[\frac{B - A(\frac{r}{m})^{-1} (1 + (\frac{r}{m}))}{V_0 - A(\frac{r}{m})^{-1}} \right] / \ln(1 + \frac{r}{m})$$

Thus total interest paid under the terms of a balloon loan is: (42) $TI = mnP + B - V_0$

Balloon Payment Loan Examples

A loan is taken out for \$75,000 which has a balloon payment of \$25,000 due in 11 years. The loan terms include quarterly payments for 10 years and 9 months (43 payments) at an actuarial rate of 3 percent or 12 percent APR. What is the payment necessary to meet these restrictions? The payment is found using equation (39) and Table 1 and is equal to:

$$A = \frac{\$75,000 - \$25,000 (1 + .03)^{-44}}{US_0(.03,43)} = \frac{\$75,000 - \$25,000 (.2724)}{23.9819}$$

= \$2,843.40

A loan agreement calls for a \$50,000 loan to be repaid with \$900 payments every month for four years and 11 months (59 payments) at an actuarial rate of 1 percent plus a balloon payment at the end of five years. What will be the balloon payment or principal remaining after five years?

Solving using equation (40) yields: $B = [\$50,000 - \$900 US_0(.01, 59)](1 + .01)^{60}$ = \$18,232.11 If one wanted to determine total interest paid after five years, equation (42) is used to give:

TI = (59)(\$900) + \$18,232.11 - \$50,000

= \$21,332.11

VII. MODERATED PAYMENT LOANS

Another category of loans which is designed for the cash flow problems of borrowers is the moderated payment loans. Such loans are designed to reduce cash flow requirements of the borrower in early periods of the loan in anticipation of increased payment ability later on in the life of the loan. Inflationary expectations tend to add to the cost of borrowing money by increasing interest rates. This relationship between inflation and interest rates on loans creates somewhat of a problem for borrowers. With a constant payment loan, interest costs are a large percentage of the loan, especially during the early payment periods. But if the loan is for the purchase of an investment whose earnings will also benefit from inflation, cash flows later on may be more than adequate for the constant payment.

Skip Payment Loan

One type of moderated payment loan is the "skip payment" loan. As its name implies, payments are not made during the first t periods of the loan. The relationship between the loan amount V_0 , the payments A, the actuarial interest rate on the loan $\frac{r}{m}$, the term of the loan mn, and the $(t + 1)^{st}$ period in which the first payment occurs is:

(43)
$$V_0 = \frac{A}{(1 + \frac{r}{m})^{t+1}} + \dots + \frac{A}{(1 + \frac{r}{m})^{mn}}$$

$$\frac{1}{(1+\frac{r}{m})^{t}} \left[\frac{A}{(1+\frac{r}{m})} + \cdots + \frac{A}{(1+\frac{r}{m})^{mn-t}}\right]$$

Since the bracketed series is a uniform series equal to $US_{C}(\frac{r}{m}, mn - t)$, (43) can be written as:

(44)
$$V_0 = \frac{A}{(1 + \frac{r}{m})^{t}} US_0(\frac{r}{m}, mn - t)$$

From this relationship the payment A can be found. It equals:

(45) A =
$$\frac{V_0(1 + \frac{r}{m})^t}{US_0(\frac{r}{m}, mn - t)}$$

The term of the loan given V_0 , A, r, and t can easily be found. It equals:

(46) mn =
$$\frac{-\ln[1 - (\frac{r}{m})(\frac{V_0}{A})(1 + \frac{r}{m})^{t}]}{\ln(1 + \frac{r}{m})} + t$$

Total interest costs are calculated much as before, namely, total payments (mn - t)A less principal.

(47)
$$TI = (mn - t)A - V_0$$

Examples of Skip Payment Loans

The purchasers of a home could afford monthly payments of \$500.00 a month but will not be able to begin payments for one year. If the lender agrees to forego the first year's payments and loan terms include an interest rate of 14 percent APR for 20 years, how large a loan can the purchaser afford?

Solving using equation (44) yields:

$$V_{0} = \left[\frac{\$500}{(1 + .14/12)^{12}}\right] \left[US_{0}(.14/12, 240 - 12)\right]$$

= [434.8582][79.6257]
= \\$34,625.89

The purchaser of a car is not required to make the first six monthly payments on the loan. If the loan is for \$10,000 at 18 percent APR for four years, what is the monthly payment amount necessary to retire the loan?

Solving using equation (45) yields:

$$A = \frac{\$10,000(1 + .015)^6}{US_0(.015, 42)}$$
$$= \frac{\$10,000(1.0934)}{30.9941}$$

= \$352.79

Skip Principal Loan

A loan similar to the skip payment loan is the skip principal loan. This loan requires interest payments for the first few t periods but does not require principal payments. After t periods, payments include both principal and interest. The relationship between the original loan V_0 , the payment A, the term of the loan mn, the interest rate on the loan $\frac{r}{m}$ and the period of the first principal and interest payment t + 1 is:

(48)
$$V_0 = \frac{\frac{r}{m}V_0}{(1+\frac{r}{m})} + \dots + \frac{\frac{r}{m}V_0}{(1+\frac{r}{m})^t} + (1+\frac{r}{m})^{-t} \frac{A}{(1+\frac{r}{m})} + \dots + \frac{A}{(1+\frac{r}{m})^{mn-t}}$$

Since the first braced sum is a uniform series of payments $\frac{r}{m}V_0$ made for t periods at interest rate $\frac{r}{m}$, and the second braced series is the one associated with the skip payment loan, V_0 can be written as:

(49)
$$V_0 = \frac{rV_0}{m} US_0(\frac{r}{m}, t) + \frac{AUS_0(\frac{r}{m}, mn - t)}{(1 + \frac{r}{m})^t}$$

Solving for V in equation (49) obtains:

(50) $V_0 = AUS_0(\frac{r}{m}, mn - t)$

From the above equation A can be easily found, equal to:

(51) $A = V_0/US_0(\frac{r}{m}, mn - t)$

The term of the loan can best be solved for using equation (51). Assuming V_0 , r, A and t are all known, mn can be expressed as:

(52) mn =
$$\frac{-\ln(1 - \frac{r}{m} \frac{V_0}{A})}{\ln(1 + \frac{r}{m})} + t$$

or using the $US_0(\frac{r}{m}, mn)$ approach as:

(53)
$$US(\frac{r}{m}, mn - t) = \frac{V_0}{A}$$

When mn - t is found from the above expression t is added to obtain mn. Finally, total interest costs can be calculated as:

(54)
$$TI = t\frac{r}{m}V_{0} + (mn - t)A - V_{0}$$

Examples of Skip Principal Loans

In order to moderate cash flow problems in the early part of a five-year loan, the principal portion of the loan payment is skipped for two years. If the terms of the \$20,000 loan include monthly payments at 13 percent APR, or an actuarial rate of 1.08 percent, what is the payment necessary to retire the loan?

Solving using equation (51) gives:

$$A = \frac{\$20,000}{US_0(.0108, 36)}$$
$$= \$673.88$$

For 24 months of the loan, payments are \$216.00 $(\frac{r}{m} \times V_0)$. Payments for

the next 36 periods are \$673.88. A payment of \$673.88 is, of course, larger than \$455.06, the payment necessary to retire the loan if no skips were made in the five-year amortization.

The purchaser of a new home can afford monthly payments of \$500 <u>after</u> the first year of the loan. Suppose the lender agrees to permit the borrower to pay only interest costs the first year of his loan and principal and interest payments of \$500 per month for the next 19 years. At an APR rate of 14 percent, how large a loan can the borrower obtain?

The question is solved using equation (50) so that:

 $V_0 = $500 \text{ US}_0(.0117, 228)$

= \$39,812.85

Buy Down Loan

A third loan in the moderated payment class is the "buy down loan." This type of loan moderates or reduces the interest charged on early payments. For example, assume the APR rate of interest is r percent. The lender offering a "buy down" loan agrees to place in escrow a fund which pays part of the first t payments sufficient to reduce the actual interest rate charged during the first t periods to an APR rate of $(r - \Delta r)$ percent.

The relationship between the principal amount borrowed V_0 , the APR interest rate r, the subsidized rate $(\frac{r - \Delta r}{m})$, the terms of the loan mn, the subsidized payment A_s and the regular payment A is:

(55)
$$V_{o} = \frac{A_{s}}{(1 + \frac{r - \Delta r}{m})} + \dots + \frac{A_{s}}{(1 + \frac{r - \Delta r}{m})^{t}} + \frac{A}{(1 + \frac{r}{m})^{t+1}} + \dots + \frac{A}{(1 + \frac{r}{m})^{mn}}$$

Since the sum obviously contains two uniform series, it can be rewritten as:

(56)
$$V_0 = A_s US_0 (\frac{r - \Delta r}{m}, t) + AUS_0 (\frac{r}{m}, mn - t)/(1 + \frac{r}{m})^t$$

If the interest rate over mn periods remained at $(r - \Delta r)$, a constant payment of A_s would fully amortize the loan. Similarly, if the interest rate remained at r, a constant payment of A would fully amortize the loan. Thus A_s and A can be calculated using equation (19):

(57)
$$A_s = V_o/US_o((\frac{r - \Delta r}{m}), mn)$$

and

(58)
$$A = V_0 / US_0(\frac{r}{m}, mn)$$

One may also be interested in the present value of the subsidy required to reduce the APR rate from r to $r - \Delta r$. The answer can be easily found by comparing the present value of annuity payments equal to the difference between A and A_s . The present value of that subsidy, V_s , is:

(59) $V_{s} = (A - A_{s})US_{o}(\frac{r}{m}, t)$

The term of the loan can be found using either equation (57) or (58) above. But for the latter, mn can be found equal to:

(60) mn =
$$\frac{-\ln(1 - \frac{r}{m} \frac{V_0}{A})}{\ln(1 + \frac{r}{m})}$$

or using the $US_o(\frac{r}{m}, mn)$ formula where

$$US_o(\frac{r}{m}, mn) = \frac{V_o}{A}$$

Finally, total interest costs can be calculated as:

(61)
$$TI = tA_{s} + (mn - t)A - V_{o}$$

Examples of Buy Down Loans

A lender offers a buy down loan to moderate cash flow problems on a new business. Suppose the lender deposits sufficient funds in an escrow account to lower the stated APR interest rate of 12 percent to 6 percent for a period of two years. If the new loan is for \$100,000 and is to be repaid with monthly payments for 10 years, what will be the payments necessary to fully amortize the loan?

Solving using equations (57) and (58) gives:

$$A_s = $100,000/US_0(.005, 120)$$

= \$1,110.20

and

$$A = $100,000/US_0(.01, 120)$$
$$= $1,434.71$$

The present value of the subsidy provided by the lender can be found

using equation (59):

$$V_s = (\$1,434.71 - \$1,110.20) US_o(.01, 24)$$

= \$6,893.70

Now consider a similar situation in which the subsidized payment amount is \$2,500 and the unsubsidized amount is \$3.000. Using the same payment schedule and interest rates as described in the previous example, what is the loan amount these payments will support?

Solving using equation (56) gives:

$$V_0 = $2,500 \text{ US}_0(.005, 24) + $3,000 \text{ US}_0(.01, 96)/(1 + .01)^{24}$$

= \$201,782.75

24

Graduated Payment Loans

Still another loan which moderates early payments is the graduated payment loan (GPL). GPL's have payments increasing at the end of each

year or each payment period. Unlike regular loans, GPL's early payments do not necessarily cover interest costs. If early payments do not cover interest costs, the loan balance increases until payments exceed interest costs.

Several different versions of GLM's can be considered. The most general GPL form however, has payments increasing by g percent every m periods or every year until the loan is repaid after nm periods. The relationship between V_0 , the present value of the loan, r, the interest rate, m, payments per year, mn, the term of the loan and A, the initial payment is:

(62)
$$V_0 = \frac{A}{(1+\frac{r}{m})} + \dots + \frac{A}{(1+\frac{r}{m})^m} + \frac{A(1+g)}{(1+\frac{r}{m})^{m+1}}$$

+ $\dots + \frac{A(1+g)}{(1+\frac{r}{m})^{2m}} + \dots + \frac{A(1+g)^{n-1}}{(1+\frac{r}{m})^{(n-1)m+1}}$
+ $\dots + \frac{A(1+g)^{n-1}}{(1+\frac{r}{m})^{nm}}$

To solve for V_o as a function of A, r, g, n, and m consider the first braced expression. It is simply the uniform series $AUS_o(\frac{r}{m}, m)$. The second braced series is also a uniform series when the $(1 + g)/(1 + \frac{r}{m})^m$ term is factored out. The same relationships hold for all other braced expressions. So equation (62) is simplified as:

(63)
$$V_0 = AUS_0(\frac{r}{m}, m) + \frac{A(1+g)}{(1+\frac{r}{m})^m} US_0(\frac{r}{m}, m)$$

+ . . . + $\frac{A(1+g)^{n-1}}{(1+\frac{r}{m})^{(n-1)m}} US_0(\frac{r}{m}, m)$
= $AUS_0(\frac{r}{m}, m)[1 + \frac{(1+g)}{(1+\frac{r}{m})^m} + . . . + \frac{(1+g)^{n-1}}{(1+\frac{r}{m})^{(n-1)m}}]$

Equation (63) is simplified by finding the geometric sum of the bracketed expression in equation (58). While it is not the same geometric series solved in most loan formulas, it is a geometric formula and can be solved using equation (9) using $(1 + g)/(1 + \frac{r}{m})^m$ as the geometric factor. Letting W equal the bracketed expression in equation (63), it can be expressed as:

(64)
$$W = \frac{(1+r)^m}{(1+r)^m - (1+g)} \left[1 - \frac{(1+g)^n}{(1+r)^{nm}}\right]$$

which finally allows us to write $V_{\rm O}$ as:

(65)
$$V_0 = AUS_0(\frac{r}{m}, m)W$$

Meanwhile, the first m payments equal:

(66)
$$A = V_o/US_o(\frac{r}{m}, m)W$$

Payments in the 2nd m periods are A(1 + g), etc.; payments in the last m periods are $A(1 + g)^{n-1}$. Total interest costs can be found equal to:

(67) $TI = mA + mA(1 + g) + ... + mA(1 + g)^{n-1} - V_0$

which is another geometric sum equal to:

(68) TI =
$$\frac{mA}{g} [(1 + g)^n - 1] - V_0$$

For the special case where each payment is subject to growth, the formula for $\rm V_{_{O}}$ collapses to:

(69)
$$V_0 = \frac{A}{\frac{r}{m} - g} \left[1 - \frac{(1 + g)^{mn}}{(1 + \frac{r}{m})^{mn}}\right]$$

and

(70) A =
$$\frac{V_{0}(\frac{r}{m} - g)}{\left[1 - \frac{(1 + g)^{mn}}{(1 + \frac{r}{m})^{mn}}\right]}$$

An Example of a Graduated Payment Loan

Suppose a business project expects a future increase in repayment capacity, but currently is encountering cash flow difficulties. To moderate the current cash flow requirements, a bank agrees to make an increasing payment loan. The lender provides a loan amount of \$100,000, with semiannual payments amortized for five years at an APR of 14 percent with 3 percent increases in the payment amount every six months. What is the amount of the first and last payments of the loan plan? What is the total interest paid?

Solving using equation (70) gives:

$$A = \frac{\$100,000(.07 - .03)}{[1 - \frac{(1 + .03)^{10}}{(1 + .07)^{10}}]}$$

= \$12,626.26

The first payment is \$12,626.26 while the last payment equals $$12,626.26 \text{ times } (1 + .03)^{10-1} \text{ or } $16,474.74.$

Total interest paid is solved using equation (68) giving:

$$TI = \frac{\$12,626.26}{.03} [(1 + .03)^{10} - 1] - \$100,000$$
$$= \$44,739.03$$

Concessionary Interest Rate Loans

A concessionary interest rate loan is one whose stated interest rate is below the market rate of interest. Often concessionary interest rates are exchanged for other considerations. For example, a seller may offer a concessionary rate to a buyer in exchange for a higher purchase price. In the case of land, this converts interest income to capital gains which are taxed at a lower interest rate. There are, however, legal restrictions limiting the extent to which this conversion can occur.

In connection with a concessionary interest rate loan, there are several questions to consider. First, what is the present value of a loan amount V_0 with a term of mn periods issued at a contract rate of $\frac{r^*}{m}$ when the current interest rate is $\frac{r}{m}$ percent?

To answer this question, consider the payment A* associated with the constant payment concessionary rate loan. Using equation (18), it can be written as:

(71)
$$A^* = V_0 / US_0(\frac{r^*}{m}, mn)$$

The term, interest costs and other calculations associated with A* and V_0 are the same as for the constant payment loan.

The present value of mn payments of A*, discounted at the market rate of interest $\frac{r}{m}$ percent can be written as V_o* equal to:

(72)
$$V_0^* = \frac{A^*}{(1 + \frac{r}{m})} + \dots + \frac{A^*}{(1 + \frac{r}{m})^{mn}}$$

= A* US₀(r, mn)

and substituting for A* using equation (71) obtains:

(73)
$$V_0^* = V_0 US_0(\frac{r}{m}, mn)/US(\frac{r^*}{m}, mn)$$

An Example of a Concessionary Rate Loan

A parcel of land is offered for sale with two different selling terms. The first includes a \$50,000 purchase price with \$30,000 being financed for 10 years with monthly payments at the market rate of interest, an APR of 12 percent. The second includes a \$55,000 purchase price with \$35,000 being financed for 10 years with monthly payments and an APR of 11 percent, a concessionary interest rate. Assuming the market rate of interest continues at 12 percent during the life of the loan, what is the present value of both offers?

The present value of the loan discounted at the market interest rate is \$50,000. The present value of the concessionary rate loan is found using equation (73) plus the \$20,000 down payment:

> $V_0^* = $35,000 \text{ US}_0(.01, 120)/\text{US}_0(.0092, 120) + $20,000$ = (\$35,000)(69.7005)/72.5953 + \$20,000 = \$53,604.35

The present value of the concessionary loan is greater than \$50,000, the present value of the first option discounted at the market interest rate. Thus, ignoring taxes, the first option is preferred.

VIII. WRAP AROUND LOANS WITH BLENDED INTEREST RATES

A blended or consolidated rate loan may be offered when a borrower holds an existing mortgage but desires additional financing. If the interest rates have not changed, the additional loan request may be granted at the same interest rate. But if the new interest rate is different, a new loan may be made to the borrower that blends the lower interest rate on the existing mortgage with the higher market rate on new loans. With a wrap around loan, the borrower makes one payment to the new lender and the new lender assumes responsibility for repaying the old loan. In many instances, both the old and the new loan may be to the same institution.

The wrap around mortgage in essence consolidates the borrowers debt requirements under a single loan. The question is: What is a "fair" interest rate to charge on the new loan? A fair rate would be one which allows the borrower to retain the lower interest rate benefit associated with his old loan while allowing the lender to earn the current return on the new funds provided.

To calculate, let the (now) concessionary interest rate on the old loan balance be V_o with a remaining term of mn* at a concessionary rate of $\frac{r^*}{m}$. The present value of this loan was calculated as V_o* in equation (73). Let the new extension be \hat{V}_o which is extended for mn periods at the market interest rate of $\frac{r}{m}$ on a constant payment loan.

The lender now desires to find a blended rate $r_{b/m}$ to offer on a new loan balance of $V_0 + \hat{V}_0$ for mn periods. One requirement is that the present value of the blended rate payments, discounted at the market rate $\frac{r}{m}$, equal the present value of the concessionary rate loan plus the extension. This is written as:

(74) $A_b US_o(\frac{r}{m},mn) = V_o^* + \hat{V}_o$

where A_b is the blended interest rate loan payment.

The second requirement is that the present value of the blended rate payments discounted at the blended rate $r_{b/m}$ equal the sum of the concessionary interest rate loan balance plus the extension. This second requirement is expressed as:

(75) $A_{b}US_{o}(r_{b/m}, mn) = V_{o} + \hat{V}_{o}$

Dividing (75) by (74) and rearranging terms produces the result:

(76)
$$US_{o}(r_{b/m}, mn) = \left[\frac{V_{o} + \hat{V}_{o}}{V_{o}^{*} + \hat{V}_{o}}\right] US_{o}(\frac{r}{m}, mn)$$

From this expression the blended rate can be determined by interpolating values from Table 1. Once the blended rate is determined, the blended rate payment can be found using equation (75):

(77)
$$A_{b} = (V_{o} + V_{o})/US_{o}(r_{b/m}, mn)$$

Solving for the blended rate allows the lender to find the "break even," blended rate. This rate earns a return on the additional loan \hat{V}_0 equal to the rate of return on a separate new loan. If the lender wanted to earn a return more than an APR rate of r_b on the new loan amount \hat{V}_0 , a rate higher than r_b must be charged. Suppose that rate is $r_b + \Delta r_b$. The question is: What would the higher payment A_b equal? The answer can be obtained easily from equation (72). It equals:

(78) $A_b = (V_o + \hat{V}_o)/US_o(r_b + \Delta r_b)/m, mn)$

Having once calculated A_b and r_b and knowing mn, all of the interest and principal calculations performed for the constant payment loan can be repeated.

Suppose the borrower in the wrap around loan just described is offered a blend rate $r_{b/m}$. He asks: What interest rate $\frac{r}{m}$ applied to the extension and term adjustment is implied by the blend rate $r_{b/m}$? This implied interest rate can be found using (76) and the right-hand side of (73) substituted for V_o^* . It equals:

(79)
$$US_{o}(\frac{r}{m}, mn) = \frac{\hat{V}_{o}US(r_{b/m}, mn)}{\left[V_{o} + \hat{V}_{o} - \frac{V_{o}US_{o}(r_{b/m}, mn)}{US_{o}(\frac{r^{*}}{m}, mn)}\right]$$

An Example of a Blended Rate Loan

Due to an increase in sales volume, company A decides to increase production capacity. The expansion would require additional borrowings of \$100,000 for five years. The company already has \$71,000 borrowed at 8 percent APR with 10 semiannual payments remaining. New loans terms offered by the lender include semiannual payments and a five-year amortization at 14 percent APR. What will be the blended interest rate?

To find the blended interest rate requires the present value of the concessionary interest rate loan be calculated. Using equation (73),

 V_0^* is calculated to equal \$61,482. Then equation (76) allows us to express US₀($r_b/2$, 10) as:

 $US_{0}(r_{b}/2, 10) = \left[\frac{\$71,000 + \$100,000}{\$61,482 + \$100,000}\right] US_{0}(.07, 10)$ = (1.0589)(7.0236)= 7.4373

Scanning Table 1 along the 10 period row, 7.4373 is found to be between 5 percent and 6 percent. By interpolation the blended actuarial rate equals 5.79 percent or an APR of 11.58 percent.⁶

Suppose from the previous example the lender was not satisfied with the 5.79 percent actuarial blended rate and required a blended actuarial rate one percent higher. What would the higher blended payment be?

Solving using equation (73) gives:

 $A_{b} = (\$71,000 + \$100,000)/US_{0}(.0579 + .01, 10)$

= \$171,000/7.0923

= \$24,110.65

Suppose the borrower in the previous example asks: For the blended rate of 6.79 percent, what acturial rate is implied on the extension and firm adjustment on the concessionary rate loan?

= 5% + [(7.7217 - 7.4373)/(7.7217 - 7.3601)](6% - 5%)

= 5.7865%

⁶Interpolation procedure can be demonstrated for this example. Using the uniform series present value table find the mn = 10 column and then look across the table until a value near 7.4373 is found. This value lies between 7.7217 and 7.3601 which correspond to 5 percent and 6 percent. Using the difference between US₀(.05, 10) and US₀(.06, 10) to weight the difference between US₀(5, 10) and US₀(r_b/m , 10), the following interpreted value is obtained:

Using equation (79) obtain the result:

$$US_{0}(\frac{r}{2}, 10) = \frac{(\$100,000)(7.0923)}{[\$71,000 + \$100,000 - \frac{(\$71,000)(7.0923)}{8.1109}]}$$

= 6.5117

Scanning the 10 period row in Table 1 locates a US ($\frac{r}{2}$ 10) equal to 6.5117 between 8 and 9 percent. Extrapolating and multiplying by 2 gives an implied interest rate of 17.4 percent.

IX. CONSTANT PRINCIPAL PAYMENT LOANS

Another type of loan is the constant principal payment loan. Like its name implies, it requires a constant principal payment each period. As a result, interest costs and total loan payment decrease over time.

The principal payment in each period is V_0/mn ; the interest cost in the tth payment is $r(V_0 - \frac{(t-1)V_0}{mn})$. Thus the payment in the tth period is:

(80) $A_t = \frac{V_o}{mn} + rV_o [1 - \frac{(t-1)}{mn}]$

To illustrate, suppose a \$50,000 loan offers annual constant principal payments for 20 years at 14 percent APR. The principal payment each year is:

 $V_{o}/n = $50,000/20 = $2,500$

To determine the interest cost in the 8th period use:

$$r[V_{0} - \frac{(t - 1)(V_{0})}{n}] = .14[\$50,000 - \frac{(7)(\$50,000)}{20}]$$

= \$4,550

so that the payment in the eighth period equals:

A₈ = \$2,500 + \$4,550 = \$7,050

X. DISGUISED INTEREST RATE LOANS

A final category of loans we call disguised interest rate loans. We call them disguished because interest rates are increased by methods other than increasing the interest rate associated with the loan. Various methods can be employed to increase the interest rate on the loan. For example, interest costs can be subtracted in the initial period, reducing the actual loan amount received by the borrower (a discounted loan). Interest can be charged as though the original loan balances were outstanding throughout the life of the loan (an add-on loan). Alternatively, the lender can charge "points" to close a loan, reducing the actual loan balance received by the borrower. Or, the interest can compound more frequently than loan payments occur. Each of these methods will increase the interest rate above the stated interest rate. Several types of disguised interest cost loans are now discussed.

The Discount Loan

A borrower approaches his lender for a loan of V_0 for mn periods. The borrower learns that the stated interest rate is "i" percent. When the borrower picks up the check for his loan, the amount he receives equals only:

(81)
$$V_d = V_o(1 - in)$$

The amount of loan actually received has had the interest cost subtracted in advance. The discount was the stated interest times the number of years for which the loan will be outstanding. The periodic loan payments, meanwhile, are calculated as:

(82)
$$A = V_{0}/mn$$

To calculate the APR interest rate r associated with this loan, treat payments A as if they were associated with a constant payment loan which retires a principal amount of V_d equal to $V_0(1 - in)$. The relationship is expressed as:

(83)
$$V_d = AUS_o(\frac{r}{m}, mn)$$

Next, substitute for A using equation (82) to obtain the expression:

(84)
$$\text{mnV}_{d}/\text{V}_{o} = \text{US}_{o}(\frac{r}{m}, \text{mn})$$

The APR interest rate r in equation (84) will always be higher than the stated interest rate i because: one, the interest costs are subtracted at the beginning of the loan; and two, the interest cost for the loan term is calculated on the original loan balance.

An Example of a Discount Loan

A consumer obtains an installment loan for \$10,000 from which \$2,500 is deducted for interest costs. The loan is to be repaid over two years with monthly payments equal to \$416.67 (\$10,000/24). Using equation (84) $US_0(\frac{r}{12}, 24)$ associated with this loan is calculated to equal:

> $US_{O}(\frac{r}{m}, mn) = (24)(\$7,500)/\$10,000$ = 18.0000

Using Table 1, and scanning across the row when mn equals 24, the $US_0(\frac{r}{m}, 24)$ value of 18.0000 lies between the values 18.9139 and 16.9355 which are associated with actuarial interest rates of 2 percent and 3 percent respectively. The actuarial rate after interpolation equals:

$$.0246 = \frac{18.9139 - 18.0000}{18.9139 - 16.9355} (.03 - .02) + .02$$

The actuarial rate is converted to an APR rate by multiplying by 12 which equals:

r = .295

or 29.5 percent.

The Add-On Loan

The "add-on loan" like the discount loan, calculates interest costs in an inappropriate manner. It adds interest costs as though the entire loan was to be outstanding for the life of the loan. To illustrate, the borrower applies for a loan of V_0 for n periods at a stated interest rate of i percent. In this case, the borrower actually receives the loan amount of V_0 , but loan payments are calculated as:

$$(85) \quad A = \frac{(1 + in)V_0}{mn}$$

The actuarial rate $\frac{r}{m}$, however, is calculated from the relationship:

(86)
$$V_0 = AUS_0(\frac{r}{m}, mn)$$

from which one can find $US_o(\frac{r}{m}, mn)$ equal to:

(87)
$$US_o(\frac{r}{m}, mn) = V_o/A$$

The interest rate corresponding to $US_O(\frac{r}{m}, mn)$ can be found from Table 1 by finding a value corresponding to the value calculated in (87) along the row mn.

An Example of an Add-On Loan

A bank offers a personal loan that uses an add-on method of interest calculation with a stated interest rate of 10 percent. On a \$2,000 loan the borrower repays the loan in 24 monthly installments. What is the APR for this loan plan?

The payment is determined by equation (85) and equals:

$$A = \frac{[1 + in]V_0}{mn} = \frac{[1 + (.10)(2)] \$2,000}{24}$$

= \$100.00

The US₀ $(\frac{r}{12}, 24)$ value is calculated using equation (87):

 $US_{0}(\frac{r}{12}, 24) = \$2,000/\$100$

= 20.000

By interpolating values in Table 1 along the row equal to 24, 20.00 yields an actuarial rate of .0151. The APR rate then equals .0151 x 12 or 18.2 percent.

Points Added Loan

Sometimes lenders charge "points" to close a loan. For example let "p" be the percent of the loan charged as a closing fee. This has the effect of increasing the interest rate on the loan since the borrower earns more than the stated rate suggests. The APR rate for such a loan can be calculated by first computing the payment which retires the loan plus points at the stated interest rate i. It equals:

(88)
$$A = \frac{(1 + p)V_o}{US_o(\frac{r}{m}, mn)}$$

Next express the relationship between the payment A, the APR rate r and the actual amount of the loan received as:

(89)
$$US_0(\frac{r}{m}, mn) = V_0/A$$

= $\frac{US_0(\frac{i}{m}, mn)}{(1 + p)}$

An Example of a Points Added Loan

A bank offers a loan rate of 12 percent with monthly payments for three years with a 3 percent loan closing fee. What is the APR?

Using equation (88), $US_o(\frac{r}{m}, mn)$ is found to equal:

 $US_{0}(\frac{r}{m}, mn) = \frac{30.1075}{1.03}$

= 29.2306

Using Table 1, a value of 29.2306 corresponds approximately to an actuarial interest rate of 1.17 percent, an APR rate of (12×1.17) equals 14.04 percent.

XI. SUMMARY

This report has introduced and analyzed major types of loans using present value techniques. Loan types included in the analysis were: constant payment loans, moderated payment loans, blended rate loans, constant principal loans, and disguised interest rate loans. Because of the importance of constant payment loans, this type of loan was discussed in the most detail.

Moderated payment loans are designed to reduce the size of loan payments during the early periods of the loan. Different loan plans achieve this objective. Several plans, including skip payment and skip principal loans, graduated payment loans, concessionary interest rate loans, and pay down loans, were analyzed. Other unique types of loans analyzed using present value tools were wrap-around loans and constant principal loans.

Another class of loans are disguised interest cost loans. Discounted, add-on, and points added loans all have one feature in common: they increase the APR rate of interest above the stated interest rate.

Fortunately, federal truth in lending laws require reporting of the APR interest rate.

One loan plan not reviewed is the adjustable rate mortgage (ARM). The essential feature of ARMs is that the interest rate changes according to some previously agreed upon signal. Unfortunately, there is such a wide variety of ARMs that they are difficult to typify.

Hopefully, the formulas, examples, and accompanying tables provided in this report will provide a useful reference of up-to-date tools which will help those facing financial decisions to analyze the implications of selecting one of the various types of loans discussed.

Table 1

Present Value of a Uniform Series of Payments

					Int	erest F	late Pe	r Perio	d $\frac{r}{m}$				
mn	0.50%	0.58%	0.67%	0.75%	0.83%	0.92%	1.00%	1.08%	1.17%	1.25%	1.33%	1.42%	1.50%
1	0.9950	0.9942	0.9934	0.9926	0.9917	0.9909	0.9901	0.9893	0.9885	0.9877	0.9868	0.9860	0.9852
2	1.9851	1.9826	1,9802	1.9777	1.9753	1.9728	1.9704	1.9680	1.9655	1.9631	1.9607	1.9583	1.9559
3	2.9702	2,9653	2.9604	2.9556	2.9507	2.9458	2.9410	2.9362	2.9313	2.9265	2,9217	2.9170	2.9122
4	3,9505	3.9423	3.9342	3.9261	3.9180	3.9100	3.9020	3.8940	3.8860	3.8781	3.8701	3,8622	3.8544
5	4.9259	4.9137	4.9015	4.8894	4.8774	4.8654	4.8534	4.8415	4.8297	4.8178	4.8061	4.7943	4.7826
6	5.8964	5.8794	5.8625	5.8456	5.8288	5.8121	5.7955	5.7789	5.7624	5.7460	5.7297	5.7134	5.6972
7	6.8621	6.8395	6.8170	6.7946	6.7724	6.7502	6.7282	6.7063	6.6844	6.6627	6.6411	6.6196	6.5982
8	7.8230	7,7940	7.7652	7.7366	7.7081	7.6798	7.6517	7.6237	7.5958	7.5681	7.5406	7.5132	7.4859
9	8.7791	8.7430	8.7072	8.6716	8.6362	8.6010	8.5660	8.5313	8.4967	8.4623	8.4282	8.3943	8.3605
10	9.7304	9.6865	9.6429	9.5996	9.5565	9.5138	9.4713	9.4291	9.3872	9.3455	9.3041	9.2630	9.2222
11	10.6770	10.6245	10.5724	10.5207	10.4693	10.4183	10.3676	10.3173	10.2674	10.2178	10.1686	10.1197	10.0711
12	11.6189	11.5571	11.4958	11.4349	11.3745	11.3146	11.2551	11.1960	11.1375	11.0793	11.0216	10.9643	10.9075
13	12.5562	12.4843	12.4130	12.3423	12.2722	12.2027	12.1337	12.0653	11.9975	11.9302	11.8634	11.7972	11.7315
14	13.4887	13.4061	13.3242	13.2430	13.1626	13.0828	13.0037	12.9253	12.8476	12.7706	12.6942	12.6185	12.5434
15	14.4166	14.3225	14.2293	14.1370	14.0455	13.9549	13.8651	13.7761	13.6879	13.6005	13.5140	13.4282	13.3432
16	15.3399	15.2337	15.1285	15.0243	14.9212	14.8190	14.7179	14.6177	14.5185	14.4203	14.3230	14.2267	14.1313
17	16.2586	16.1395	16.0217	15.9050	15.7896	15.6753	15.5623	15.4503	15.3396	15.2299	15.1214	15.0140	14.9076
18	17.1728	17.0401	16.9089	16.7792	16.6508	16.5239	16.3983	16.2740	16.1511	16.0295	15.9093	15.7903	15.6726
19	18.0824	17.9355	17.7903	17.6468	17.5050	17.3647	17.2260	17.0889	16.9533	16.8193	16.6868	16.555/	16.4262
20	18.9874	18.8257	18.6659	18.5080	18.3520	18.1979	18.0456	17.8950	17.7463	17.5993	17,4541	17.3105	1/.1686
21	19.8880	19.7107	19.5357	19.3628	19.1921	19.0235	18.8570	18.6925	18.5301	18.3697	18.2112	18.0547	17.9001
22	20,7841	20.5906	20.3997	20.2112	20.0252	19.8416	19.6604	19.4815	19.3049	19.1306	18,9585	18.7886	18.6298
23	21.6757	21.4654	21.2579	21.0533	20.8514	20.6523	20.4558	20.2620	20.0/07	19.8820	19.6959	19.5121	17.3307
24	22.5629	22.3351	22.1105	21.8891	21.6709	21.4556	21.2434	21.0341	20.8277	20.6242	20.4235	20.2256	20-0304
25	23.4456	23.1998	22.9575	22.7188	22.4835	22.2516	22.0232	21./980	21.5/60	21.35/3	21,141/	20.9291	20./196
26	24.3240	24.0594	23.7988	23.5422	23.2894	23.0404	22.7952	22.5536	22.315/	22.0815	21.8503	21.6228	21.3786
27	25.1980	24.9141	24.6346	24.3595	24.0887	23.8221	23.3346	23.3012	23.0468	22.1953	22.347/	22.3008	22.00/0
28	26.06//	25./638	25.4648	23.1/0/	24.8813	24.3766	24.3104	24.0408	23./673	23.3023	23.2378	22.7012	22.1201
29	26.9330	26.6986	26.2870	20.9/09	23.00/4	23.3041	23.0030	24.//24	24.4000	24.2000	22.7200	20.0402	23.3/01
50	27.7941	2/,4483	27.1988	20.//01	20,44/0	20.1240	23.80//	23:4702	23.1700	24.0007	24. 3747	24.2017	24.9100
31	20.0308	20.1177	20 7710	27.3003	27.0070	20.0/02	20. 3423	20,2122	23.00/7	20.0070	75 0107	24.7403	15 0471
32	27.3033	27.113/	20./312	20.3337	27.70/0	27.0230	27.2070	20.7200	20.3777	74 0050	23.7107	26.0000	25 8790
20	3V=3313 71 1055	27.7370	27.3343	27.13/1	20.7474	20.3030	28 7077	28 3146	77 9779	27.5605	27.1940	26.8345	26.4817
75	31.1733	11 5754	30.3320	30 4827	30 2495	29 8749	29.4086	29.0004	28.6003	28.2079	27.8231	27.4457	27.0756
74	32.0334	72 7845	71 9118	31 4448	30 9912	30.5449	30,1075	29.6789	29.2589	28.8473	28.4438	28.0483	27.6607
37	33.7025	33, 1928	32.6938	32.2053	31.7268	31.2583	30.7995	30.3501	29,9100	29.4788	29.0564	28.6426	28.2371
38	34.5299	33.9945	33.4707	32.9581	32.4564	31.9653	31.4847	31.0141	30.5535	30.1025	29.6609	29.2285	28.8051
39	35.3531	34.7916	34.2424	33.7053	33.1799	32.6659	32.1630	31.6710	31.1896	30.7185	30.2575	29.8062	29.3646
40	36.1722	35.5840	35.0090	34.4469	33.8974	33.3601	32.8347	32.3209	31,8184	31.3269	30.8462	30.3759	29.9158
41	36.9873	36.3718	35.7706	35,1831	34.6090	34.0480	33.4997	32.9638	32.4399	31,9278	31.4272	30.9376	30,4590
42	37.7983	37.1551	36.5270	35.9137	35.3147	34.7296	34,1581	33.5998	33.0543	32.5213	32.0005	31.4915	30,9941
43	38.6053	37.9338	37.2785	36.6389	36.0146	35,4051	34.8100	34.2290	33.6616	33.1075	32.5663	32.0376	31,5212
44	39,4082	38,7080	38.0250	37,3587	36.7087	36.0744	35,4555	34,8514	34.2619	33.6864	33,1246	32,5761	32.0406
45	40.2072	39.4777	38.7666	38.0732	37.3970	36.7376	36.0945	35,4672	34.8552	34,2582	33.6756	33,1071	32.5523
46	41.0022	40,2430	39.5032	38.7823	38.0797	37.3948	36,7272	36.0764	35.4417	34.8229	34,2194	33,6307	33.0565
47	41.7932	41.0038	40.2350	39.4862	38.7567	38.0461	37.3537	36.6790	36.0215	35.3806	34.7559	34.1469	33.5532
48	42.5803	41.7602	40.9619	40.1848	39.4282	38.6914	37.9740	37.2752	36.5945	35,9315	35.2855	34.6560	34.0426
49	43.3635	42.5122	41.6840	40.8782	40.0940	39.3309	38.5881	37.8650	37.1610	36.4755	35.8080	35.1579	34.5247
50	44,1428	43.2599	42.4013	41.5664	40.7544	39.9645	39.1961	38.4485	37.7209	37.0129	36,3237	35.6528	34.9997

Table 1 (cont.)

m'n	0.50%	0.58%	0.67%	0.75%	0.83%	0.92%	1.00%	1.08%	1.17%	1.25%	1.33%	1.42%	1.50%
51	44.9182	44.0032	43.1139	42.2496	41.4093	40.5924	39.7981	39.0257	38.2744	37.5436	36.8326	36.1408	35.4677
52	45.6897	44.7422	43.8218	42.9276	42.0589	41.2146	40.3942	39.5967	38.8215	38.0677	37.3348	36.6220	35.9287
53	46.4575	45.4769	44.5249	43.6006	42.7030	41.8312	40.9844	40.1616	39.3622	38.5854	37.8304	37.0965	36.3830
54	47.2214	46.2074	45.2235	44.2686	43.3418	42.4421	41.5687	40.7205	39.8968	39.0967	38.3195	37.5643	36.8305
55	47.9814	46.9336	45.9173	44.9316	43.9754	43.0475	42.1472	41.2734	40.4252	39.6017	38.8021	38.0256	37.2715
56	48.7378	47.6556	46.6066	45.5897	44.6037	43.6474	42.7200	41.8203	40.9474	40.1004	39.2784	38.4805	37.7059
57	49.4903	48.3734	47.2913	46.2429	45.2268	44.2419	43.2871	42.3614	41.4637	40.5930	39.7484	38,9290	38.1339
58	50.2391	49.0871	47.9715	46.8912	45.8447	44.8309	43.8486	42.8967	41.9740	41.0795	40.2123	39.3712	38.5555
59	50.9842	49.7966	48.6472	47.5347	46.4576	45.4146	44.4046	43.4262	42.4784	41.5600	40.6700	39.8073	38,9710
60	51.7256	50.5020	49.3184	48.1734	47.0654	45,9930	44.9550	43.9501	42.9770	42.0346	41,1217	40.2373	39.3803
61	52.4632	51,2033	49.9852	48.8073	47.6681	46.5662	45.5000	44.4684	47.4699	42.5033	41.5675	40.6612	39.7835
62	53,1973	51.9006	50.6475	49.4365	48.2659	47.1341	46.0396	44.9811	43.9570	42.9662	42.0074	41.0793	40.1808
63	53,9276	52.5938	51.3055	50.0611	48.8588	47.6969	46.5739	45.4883	44.4386	43. 4234	42.4415	41,4915	40.5722
64	54.6543	53, 2829	51,9591	50.6810	49.4447	48.2546	47,1029	45.9901	44 9144	43.8750	42 8499	41.8979	40.9579
65	55.3775	53.9681	52.6084	51.2963	50.0298	48.8072	47.6266	46. 4865	45. 3851	44.3210	43.2927	42.2987	41.3378
66	56.0970	54.6493	53,2534	51,9070	50.6081	49.3547	48.1452	46.9775	45.8502	44.7615	43.7099	42.6939	41.7121
67	56.8129	55.3266	53,8941	52.5131	51,1815	49.8973	48.6586	47.4633	46.3099	45.1965	44.1216	43.0835	42.0809
68	57.5253	55 9999	54 5305	53,1147	51.7503	50.4350	49.1669	47.9440	46.7643	45 6262	44.5279	43.4677	47.4442
69	58.2341	56.6694	55.1628	53.7119	52.3143	50.9678	49.6702	48.4194	47.2135	46.0505	44.9288	43.8466	42.8022
70	58 9394	57 1749	55 7909	54.3046	52.8737	51 4958	50.1685	48.8898	47 4575	46 4697	45.3245	44.2201	43.1549
71	50 6412	57 9944	54 4148	54 8929	51 4285	52 0189	50 6619	49 3551	48 0964	46 9836	45 7150	44 5885	47 5027
72	60 7795	58 4544	57 0345	55 4749	57 9787	52 5373	51 1504	49 8154	48 5302	47 2925	46 1003	44.9516	47.8447
73	61 0343	59 3085	57 6502	56.0564	54.5743	53.0510	51 . 6341	50 2708	48.9590	47.6963	46 4805	45 3097	44.1819
76	41 7057	50 9597	59 2419	54 4717	55 6454	57 5401	52 1120	50 7217	40 7970	49 0951	44 8558	45 4479	44.1017
75	67 6136	60 6052	58 8493	57 2027	55 6021	54 0645	52 5871	51 1670	49.8018	48,4890	47.2261	46.0110	44.8416
74	17 0000	41 9470	50 /730	57 7404	54 1747	54 5443	57 0545	51 6070	50 2140	49 9790	47 5914	44 3543	45 1441
70	41 7701	41 0040	40 0723	50 1710	56 6621	55 0594	57 5217	52 0441	50 6257	49 2622	47 9522	46.3343	45 4819
78	44 4570	42 5222	40 4479	58 8907	57 1854	55 5504	57, 9815	52.4756	51.0300	49 6417	49 3081	47.0267	45.7950
79	65.1313	63.1538	61.2595	59.4444	57.7047	56.0367	54.4371	52.9025	51.4300	50.0165	48.6593	47.3558	46.1034
80	45 8023	41 7917	41 8472	50 0044	59 2105	54 5184	54 8882	57 7049	51 8257	50 3847	49 0059	47 4803	46 4073
81	66 6700	64 4040	67 6710	40 5404	58 7301	54 9942	55 1149	53.3240	52 2162	50 7523	49 7479	48.0003	46.7067
82	67.1343	65.0267	63.0109	61.0823	59.2365	57.4694	55.7771	54.1559	52.6025	51.1133	49.6854	48.3158	47.0017
83	67.7953	65.6438	63.5870	61.6201	59.7386	57.9383	56.2149	54.5648	52.9843	51.4700	50.0185	48.6270	47.2923
94	49 4570	46 2573	44 1597	12 1540	10 2147	58 4029	54 4495	54 9497	57 3419	51 8222	56 3472	48 9337	47.5784
85	69 1075	66.8672	64.7277	62.6838	60.7306	58.8633	57.0777	55.3695	53.7349	52.1701	50.6716	49.2362	47.8607
86	69.7587	67.4736	45.2925	63.2098	61.2204	59.3196	57.5026	55.7454	54.1036	52.5136	50.9917	49.5345	48.1386
87	70.4067	68.0765	65.8534	63.7318	61.7062	59.7717	57.9234	56.1570	54.4682	52.8530	51.3076	49.8286	48.4125
88	71 0514	48 4759	66 4107	44 2499	42 1880	60 2196	58.3400	56.5444	54.8285	53,1881	51.6194	50.1186	48.6822
80	71 4930	49 2718	14 9447	46 7667	12 1457	60 6636	58 7525	56.9277	55,1847	53, 5191	51,9270	50.4045	48.9480
90	72 7717	49 8443	67 5147	45 2744	67.1796	61 1034	59.1609	57.3069	55.5368	53.8461	52.2306	50.6864	49.2099
91	72.0010	70 4513	AR 0404	45 7812	63.6095	61.5797	59.5652	57.6820	55.8848	54.1689	52.5302	50.9644	49.4678
02	77 5985	71 0799	49 4031	44 2841	6. 0755	41 9713	59 9454	58.0531	56.2288	54.4879	52.8258	51.2386	49.7220
07	74 2271	71 6211	49 1421	46 7872	64 5177	62 3001	60.3620	58.4202	56.5688	54.8028	53.1176	51.5088	49.9724
01	76 0571	72 2000	49 4774	47 2797	LL Q011	62 8274	60.7544	58.7874	56.9049	55.1139	53.4055	51.7754	50.2191
05	75 4757	72 7754	70 2004	67 7704	45 4507	63 7437	61 1430	59.1427	57.2371	55.4211	53.6897	52.0382	50.4622
73	74 6050	72 7/74	70 7700	10 2501	45 0015	67 6601	61 5077	5" 4001	57 5455	55 7344	53.9701	52.2977	50.7017
07	76 7117	77 01//	71 2420	48 7430	66 7494	64 0720	61 9094	59.8497	57,8900	56.0243	54.2448	52.5528	50.9376
00	77 7250	74 4010	71 7047	40 2017	44 7920	64 6917	62 2959	60 1976	58 2110	56.3203	54.5199	52.8047	51,1701
00	77 9154	75 0442	72 7027	69.7009	67.2317	64.9869	62.6592	60.5417	58.5282	56.6126	54.7893	53.0531	51.3991
100	78.5426	75,6031	72.8169	70.1746	67.6678	65,2884	63.0289	60.8822	58,8417	56.9013	55.0553	53.2981	51.6247

		/
Tab	0 1	(cont)
1 dD	16 1	LCOIL.
100		100.001

mn	0.502	0.58%	0.67%	0.75%	0.83%	0.92%	1.00%	1.08%	1.17%	1.25%	1.33%	1.42%	1.50;
										C7 10/5		E7 E70/	E1 0/74
101	79.1469	76.1589	73.3280	70.6448	68.1003	65.6863	63.3949	61.2190	37.1310	37.1803	33.31//	33,3370	J1.04/V
102	79.7482	76.7114	73.8358	71.1115	68.5292	66.0806	63.7574	61.5522	59.45/9	57.4682	33.3/8/	33.1111	32.0000
103	80.3464	77.2607	74.3402	71.5746	68.9546	66.4712	64.1162	61.8818	59.7607	57.7463	55.8322	54.0126	32.2818
104	80.9417	77.8068	74.8412	72.0344	69.3765	66.8584	64.4715	62.2079	60.0600	58.0211	56.0844	34.2441	32.4744
105	81.5341	78.3498	75.3390	72.4907	69.7949	67.2420	64.8232	62.5304	60.3559	58.2924	56.3333	54.4/24	52.7038
106	82.1234	78.8896	75.8334	72.9436	70.2098	67.6221	65.1715	62.8496	60.6483	58.5604	56.5789	54,6975	52,9102
107	B2.7099	79.4263	76.3246	73.3932	70.6213	67.9988	65.5164	63.1653	60.9374	58.8251	56.8213	54.9195	53.1135
108	83.2934	79.9598	76.8125	73.8394	71.0294	68.3720	65.8578	63.4776	61.2231	59.0865	57.0605	55,1384	53.3137
109	83.8741	80.4903	77.2972	74.2823	71.4341	68.7419	66.1958	63.7866	61.5055	59.3447	57.2966	55.3542	53.5111
110	84.4518	81.0177	77.7787	74.7219	71.8354	69.1084	66.5305	64.0922	61.7847	59.5997	57.5295	55.5670	53.7055
111	85.0267	81.5421	78.2569	75.1582	72.2335	69.4716	66.8619	64.3946	62.0607	59.8516	57.7594	55.7768	53.8970
112	85.5987	82.0634	78.7321	75.5912	72.6283	69.8315	67.1900	64.6938	62.3335	60.1003	57,9862	55.9837	54.0858
113	86.1678	82.5816	79.2040	76.0211	73.0198	70.1881	67.5149	64,9897	62.6031	60.3460	58.2101	56.1877	54.2717
114	86.7342	83.0969	79.6729	76.4477	73.4080	70.5414	67.8365	65.2825	62.8696	60.5886	58.4310	56.3889	54.4549
115	87,2977	83.6092	80.1386	76.8712	73.7931	70.8915	68.1549	65.5721	63.1331	60.8283	58.6490	56.5872	54.6353
116	87.8584	84.1185	80.6013	77.2915	74.1750	71.2386	68.4702	65.8587	63.3935	61.0650	58.8642	56.7828	54.8131
117	88,4163	84.6248	81.0609	77.7087	74.5537	71.5824	68.7824	66.1421	63.6509	61.2987	59.0765	56.9757	54.9883
118	88.9714	85.1283	81.5174	78.1228	74.9293	71.9231	69.0915	66.4226	63.9053	61.5296	59.2860	57.1658	55.1609
119	89.5238	85.6288	81.9710	78.5338	75.3018	72.2607	69.3975	66.7000	64.1568	61.7576	59.4928	57.3533	55.3309
120	90.0735	86.1264	82.4215	78.9417	75.6712	72.5953	69.7005	66.9744	64.4054	61.9828	59.6968	57.5382	55.4985
121	90.6204	86.6211	82.8690	79.3466	76.0375	72.9268	70.0005	67.2459	64.6512	62,2053	59.8982	57.7205	55.6635
122	91.1645	87.1129	83.3136	79.7485	76.4008	73.2553	70.2975	67.5145	64.8941	62.4250	60.0969	57.9002	55.8261
123	91.7060	87.6019	83.7552	80.1474	76.7612	73.5808	70.5916	67.7802	65.1342	62.6419	60.2930	58.0775	55.9863
124	92.2448	88.0880	84.1939	80.5433	77.1185	73.9033	70.8828	68.0431	65.3715	62.8562	60.4865	58.2522	56.1442
125	92.7809	88.5714	84.6297	80.9363	77.4729	74.2230	71.1711	68.3031	65.6061	63.0679	60.6775	58.4245	56.2997
126	93.3143	89.0519	85.0627	81.3263	77.8244	74.5397	71.4565	68.5604	65.8380	63.2769	60.8659	58.5944	56.4529
127	93.8451	89.5297	85.4927	81.7135	78.1729	74.8535	71.7391	68.8149	66.0672	63.4834	61.0519	58.7620	56.6038
128	94.3732	90.0046	85.9199	82.0977	78.5186	75.1645	72.0189	69.0667	66.2938	63.6873	61.2354	58,9272	56.7525
129	94.8987	90.4768	86.3443	82.4792	78.8614	75.4727	72.2960	69.3158	66.5177	63.8887	61.4165	59.0901	56.8990
130	95.4216	90.9463	86.7658	82.8577	79.2014	75.7780	72.5703	69.5622	66.7391	64.0876	61.5953	59.2507	57.0434
131	95.9419	91.4131	87.1846	83.2335	79.5386	76.0806	72.8419	69.8059	66.9579	64.2840	61.7716	59,4091	57.1856
132	96.4596	91.8771	87.6006	83.6064	79.8730	76.3805	73.1108	70.0471	67.1742	64.4781	61.9457	59,5652	57.3257
133	96.9747	92.3385	88.0138	83.9766	80.2046	76.6776	73.3770	70.2857	67.3880	64.6697	62.1175	59.7192	57.4638
134	97.4873	92.7972	88.4243	84.3440	80.5335	76.9720	73.6406	70.5217	67.5994	64.8590	62.2870	59.8710	57.5998
135	97.9973	93.2532	88.8321	84.7087	80.8597	77.2638	73.9016	70.7552	67.8083	65.0459	62.4542	60.0207	57.7338
136	98.5048	93.7066	89.2372	85.0707	81.1831	77.5529	74.1600	70.9862	68.0148	65.2305	62.6193	60.1683	57.8658
137	99.0097	94.1573	89.6396	85.4299	81.5039	77.8394	74.4158	71.2147	68.2189	65.4128	62.7822	60.3139	5/.9958
138	99.5122	94.6055	90.0394	85,7865	81.8221	78.1232	74.6691	71.4407	68.4206	65.5929	62,9430	60.45/4	58.1240
139	100.0121	95.0510	90.4364	86.1405	82.1376	78.4045	74.9199	71.6644	68.6201	65.7708	63.1016	60.5789	58.2502
140	100.5096	95.4939	90.8309	86.4918	82.4505	78.6833	75.1682	71.8856	68.8172	65.9465	63.2582	60.7385	58.3/46
141	101.0045	95.9343	91.2228	86.8405	82.7609	78.9595	75.4141	72.1045	69.0121	66.1200	63.412/	60.8/61	58.49/1
142	101.4971	96.3722	91.6120	87.1866	83.0686	79.2332	75.6575	72.3210	69.2047	66.2913	63.5651	61.011/	58.61/9
143	101.9871	96.8075	91.9987	87.5301	83.3738	79.5044	/5.8985	72.5352	67.3951	66.4606	63./106	61.1455	38./368
144	102.4747	97.2402	92.3828	87.8711	83.6765	79.7731	76.1372	72.74/1	69.5833	66.6277	65.8641	81.2//4	38.8340
145	102.9599	97.6705	92.7644	88.2095	83.9767	80.0394	76.3734	12.9567	69.7693	66.7928	64.0106	61.4075	38.7675
146	103.4427	98.0982	93.1434	88.5454	84.2744	80.3033	76.6073	/3.1641	69.9532	66.9559	64.1552	61.535/	39.0832
147	103.9231	98.5235	93.5199	88.8788	84.5697	80.5648	76.8390	73.3693	70.1349	67.1169	64.2979	61.6622	37.1933
148	104.4011	98.9463	93.8940	89.2098	84.8625	80.8239	77.0683	15.5/23	/0.3146	67.2750	64.438/	61./868	37.303/
149	104.8767	99.3667	94.2656	89.5382	85.1529	81.080/	11.2953	13.7/30	70.4922	07.4330	04.3///	01.9098	37.4143
120	105.3500	77./846	74.634/	87.8642	83.4409	81.3331	11.3201	13.9/1/	/0.00//	01.3882	04./148	02.0310	37.321/

Table 1 (cont.)

mr	0.50	X 0.58	0.671	x 0.75%	0.83%	0.92%	1.00%	1.08%	1.17%	1.25%	1.33%	1.42%	1.50%
151	105 8209	100 2001	95 0013	90 1978	85 7265	81 5872	77 7427	74 1492	70 8612	47 7616	44 8502	42 1504	50 4077
152	106.2894	100.6132	95.3655	90.5090	86.0098	81 8370	77 9631	76 3676	71 0128	67 8928	44 9917	42 2484	50 7717
153	106 7556	101 0239	95 7774	90 8278	86 2907	97 0844	78 1813	74 5540	71 1977	49 0472	45 1155	17 1044	50 0770
154	107 2195	101.0237	94 0849	91 1442	84 5493	92 10010	79 7077	71 7150	71.1023	40 1000	15 9454	17 1007	50 0710
155	107 AR11	101 9791	94 4438	01 4587	94 8455	82 5736	78 6112	76 9776	71 5155	40 1157	45 1770	42 4122	10 07/0
154	109 1404	102 3417	04 7005	01 7700	07 1105	02.0/30	70.0112	75 1104	71 1707	10 1707	45 5004	42 7774	LA 1777
157	100 - 1404	102 4470	97 1500	02 070/	07 1017	02.0137	70.0227	75 7670	71 0/13	10 1910	45 1751	12 0715	44 2200
150	100.0770	107 0410	07 5000	02 70/5	07.3713	07 2001	70 0/00	75.3030	72 0011	10 7171	15 7/00	17 0/10	40 7040
150	107.0322	107 6705	07 0/05	72.3003	07.0000	03.2071	70 //50	75 1117	72.0011	10 0011	03./907	02.7910	CV.324V
140	100 0510	103.4303	00 1010	02.0715	00 1071	07 7557	70 1107	75 0//7	72.1373	10 6701	45 0007	17 15/0	DV. 41//
101	110 1000	102.0320	70.1707	72.7737	00.1731	03./33/	70.0500	71 094/	72.3130	07.0301	03.770/	03.1349	10.3101
101	110 0/0/	104.2240	70.33/0	73:2742	00.1J0V	03.7030	17.03V0	70.0211	72.4/91	07.1/33	00.1073	03.23/0	00,0010
102	111.0400	105 0001	70.0//0	73.3722	00./10/	04.2130	00.0303	76.173/	12.0220	07.3V/1	00.2203	03.3002	00.070/
100	111.2722	105.7077	77.2103	70.0001	00.7/J2	04.4370	00.24/0	76.3003	72.0070	10 5/05	11 /55/	03.4012	10 0/17
115	111./000	105 7707	77,3320	74.101/	07.2310	04.003/	04 4433	76.3372	77 4745	07.J07J	00.9330	03.300/	0V.000V
101	112.1/20	103.7703	100 0104	74.4/32	07.4037	04.0010	00.03/0	74 0754	73.01/03	07.0703	00.3001	03.0307	01.731/
147	117 04/4	104 5207	100.2100	05 ALDL	07./301	05 7777	01 0105	77 0/07	73.2104	40 0511	00.0/7V	47 0511	41 110/
140	117 4770	100.3277	100.0400	73.0770	07.7002	05.5200	01.VIOJ	77 2011	73.3003	07.7J11 70 0751	00./00J	03.0J11 17 0/57	01.1174
140	117 0075	107 2001	101 2011	05 1171	00 1000	03.3372	01.2004	77 7449	73.3027	70.0731	47 AATS	11 A70A	41 2021
170	114 7758	107 4507	101.2011	05 0000	00 7041	05.7552	01.5723	77 5044	71 7070	70.1777	47 1001	44 1205	61.2021
171	114.3330	100.0323	101 8457	96 1760	20 9491	Q4 1752	01.3/0/	77 1919	71 0201	70.3107	47 2122	14 9107	41 4401
177	115 1840	100.0222	102 1442	01 4515	01 2000	00.1/32	Q1 0700	77 8415	74 0544	70.5510	47 3147	44 1007	41 5174
177	115 4090	100.3077	102.1042	01 7000	01 4450	04 5004	01./5/0	77 0015	74.0000	70 4750	47 4150	11 TOLL	41 5074
176	111 0000	100.7000	102 - 1010	07 0005	01 2010	04 70/0	02.1100	70 1/00	74.1710	70.0720	47 5154	11. 1000	L1 LL0/
175	110.02/7	107.1170	107 1007	07 971A	71.0017 01 01 LA	00.//40	02.2730	70.1477	74.3237	70.7000	47 11/1	11 51027	41 7/77
174	112.4430	107.4003	103.1003	07 570/	71.7100	00.1703	07 1115	70.3010	74.4000	71 0140	0/ +0171 17 7117	04.J002	21 0151
1/0	110.0010	110 10/0	107 7077	77.3374	72.1401	07.17/2	02.044	70.931/	74.3031	71.0140	47 0070	04.0323	11 0010
170	117 2025	110-1700	103./2/3	7/ . OV J7	72.3/02	07 50701	02.0103	70.0002	74.7134	71.1230	0/ .0V/2	04./JJL LL 017A	01.0000
1/0	110 0010	110.0050	104.0330	70.0/04	72.0V0J	07.3732	07 1540	70 0025	74.0403	71 7/30	17 0055	4.01/0	12 0270
100	110 5075	111 2540	101 1/02	00 5071	07 057/	07.0010	03.1347	70.0723	75 0007	71.3420	10 0071	LL 0771	12 0051
101	110.0000	111.2000	104.0400	70.J734 00 053A	73.03/4	00 1777	03.3217	70 1705	75 2122	71 5550	40 1707	45 0555	62.0730
101	110.7070	111.0047	105 2704	00 1007	07 5000	00.1/3/	03.4000	70 7100	75 7777	71 4505	10 2691	45 1727	42.1031
107	110 7170	111.7317	105 5750	00 7475	07 7100	00.5037	03.0303	70 1501	75 4570	71 7494	40 7547	45 2090	17 2052
103	117.7130	112.2700	105.3330	00 1111	07 0771	88 7385	83.0122	79 5961	75 5713	71 8661	68 4441	65 2841	42 1598
185	120.5107	112.9807	106.1228	99.8673	94.1525	88.9234	84.1311	79.7323	75.6883	71.9646	68.5304	65.3582	62.4235
194	120 9042	113 3197	106 4134	100 1165	94. 3661	89.1044	84. 2883	79.8671	75.8039	72.0638	68.6155	65.4312	62.4862
187	121 2997	113.4547	106.7020	100.3637	94.5780	89,2881	84.4438	80.0004	75.9182	72.1618	68.6995	65.5033	62.5480
188	121 6912	113 9917	104 9888	100 6092	94.7881	89.4680	81.5978	80.1323	76.0312	72.2585	68.7824	45.5743	62.6088
190	122 0808	114 7749	107 2774	100 8528	04 0044	89 4442	R4 7503	80 2628	76 1429	72 3541	48 8447	45 4443	62 6688
100	122.0000	114 4540	107 5544	101 0944	95 2071	99 9229	84 9013	80 1919	74 2532	72.5541	48 9449	65 7176	42 7279
101	122.4005	0052	107 8377	101 3346	95 4080	89 9979	85 0508	80.5196	76. 3623	72.5417	69.0246	65.7815	62.7861
102	127 2700	115 7124	100 1140	101 5728	95 4117	90 1713	85 1988	80 4440	74 4702	72 4338	49 1032	45 8484	62.8435
197	123.2300	115.5120	108 1042	101 8092	95 8128	90 7471	85.7454	80.7709	76.5768	72.7247	69.190R	65.9149	62.9000
104	123.0177	115 0414	108 4400	102 0/10	96 0120	90 5174	85. 4905	80.8944	76.4822	72.8144	69.2574	65.9801	62.9556
105	126 1700	116 2077	108 0475	102 0740	96 2110	90 4922	85 4741	81 0140	76.7847	72.9077	69.3329	66.0445	63.0105
104	124.3/00	116 4071	100 2154	102 5080	96 4074	90 8494	85 7744	81 1379	76.8997	72.9909	69 4075	66.1080	63.0645
197	125 1284	116 0031	109 4955	102.7775	96.6025	91.0151	85.9172	81.2574	76.9911	73.0774	69.4811	66.1706	63.1177
100	125.1200	117 2772	100 7510	102 0452	04 7050	91 1707	84 0544	81 3740	77 0917	73 1429	49 5537	66.2727	63.1702
199	125.8719	117.5514	110.0207	103, 1917	96.9877	91.3420	86.1947	81.4932	77.1911	73.2473	69.6254	66.2931	63.2218
200	126.2404	117.8639	110.2851	103.4157	97.1779	91.5032	86.3314	81.6091	77.2894	73.3306	69.6961	66.3531	63.2728
AL 10 10		a a r I V V V /											

Table 1 (cont.)

mr	n 0.	50%	0.582	0.6	7% 0.	57	0.837	0.92%	1.002	1.08%	1.17%	1.25%	1.33%	1.42%	1.50%
201	126.60	75 11	8.1746	110.548	103.63	34 9	7.3665	91.6630	86.4667	81.7238	77.3865	73.4130	69.7659	66.4123	63.3229
202	126.97	27 11	8.4834	110.809	103.85	4	7.5535	91.8213	86.6007	81.8372	77.4826	73.4943	69.8348	66.4706	63.3723
203	127.33	60 11	8.7905	111.068	104.07	88	7.7390	91.9781	86.7334	81.9494	77.5775	73.5746	69.9027	66.5281	63.4210
204	127.69	75 11	9.0957	111.326	104.29	6 4	7.9230	92.1336	86.8647	82.0604	77.6713	73.6540	69.9698	66.5848	63.4690
205	128.05	72 11	9.3992	111.582	3 104.51	28	8.1055	92.2876	86.9948	82.1702	77.7641	73.7323	70.0360	66.6408	63.5162
206	128.41	51 11	9.7010	111.837	104.72	13	8.2864	92.4402	87.1235	82.2789	77.8558	73.8097	70.1013	66.6959	63.5628
207	128.77	13 12	0.0010	112.090	104.94	3	8.4659	92.5915	87.2510	82.3864	77.9464	73.8861	70.1657	66.7503	63.6087
208	129.12	56 12	0.2992	112.341	105.15	6	8.6438	92.7414	87.3772	82.4927	78.0360	73.9616	70.2294	66.9039	63.6539
209	129.47	82 12	0.5958	112.590	5 105.36	4	8.8203	92.8899	87.5022	82.5979	78.1245	74.0361	70.2921	66.8567	63.6984
210	129.82	91 12	0.8906	112.8382	105.56	16	8.9954	93.0370	87.6260	82.7019	78.2121	74.1098	70.3541	66.9089	63.7422
211	130.17	82 12	1.1837	113.0843	\$ 105.77	3	9.1690	93.1828	87.7485	82.8049	78.2986	74.1825	70.4152	66.9603	63.7855
212	130.52	56 12	1.4751	113.3280	105.98	5	9.3411	93.3273	87.8698	82.9067	78.3841	74.2543	70.4755	67.0109	63.8280
213	130.87	12 12	1.7648	113.571	5 106.18	i1 9	9.5118	93.4705	87.9899	83.0075	78.4686	74.3252	70.5351	67.0609	63.8700
214	131.21	52 12	2.0528	113.8129	106.38	2 9	9.6812	93.6124	88.1088	83.1072	78.5522	74.3953	70.5938	67.1102	63.9113
215	131.55	74 12	2.3391	114.0525	5 106.58	18	9.8491	93.7530	88.2265	83.2058	78.6348	74.4645	70.6518	67.1588	63.9520
216	131.89	79 12	2.6238	114.2900	106.78	9 10	0.0156	93.8923	88.3431	83.3033	78.7164	74.5328	70.7090	67.2067	65.9922
217	132.23	67 12	2.9069	114.527	106.98	15 11	0.1808	94.0304	88.4585	83.3998	78.7971	74.6003	70.7655	67.2539	64.031/
218	132.57	38 12	3.1883	114.7620	107.18	16 10	0.3446	94.1672	88.5728	83.4953	78.8769	74.6670	70.8212	67.3005	64.0706
219	132.90	93 12	3.4680	114.995	107.37	13 11	0.5070	94.3028	88.6859	83.5897	78.9557	74.7328	/0.8/62	01.3464	64.1VYV
220	133.24	31 12	3.7462	115.2272	2 107.56	15 1(0.6681	94.4371	88.7979	83.6832	79.0337	74,7978	70.9304	57.391/	64,1468
221	133.57	52 12	4.0227	115.457	5 107.76	13 11	0.8279	94.5702	88.9089	83.7756	79.1107	74.8621	70.9840	67.4364	64.1840
222	133.90	57 12	4.2977	115.6862	2 107.95	17 10	0.9863	94.7021	89.0187	83.8670	79.1869	74.9255	/1.0368	6/.4804	64.2207
223	134.23	45 12	4.5710	115.913	5 108.13	17 11	1.1435	94.8328	89.1274	83.9575	79.2621	74.9882	/1.0890	67.5238	64.2369
224	134.56	17 12	4.8427	116.1393	108.32	2 10	1.2993	94.9623	89.2350	84.0470	79.3366	75.0500	/1.1404	6/.3666	64.2923
225	134.88	72 12	5.1129	116.363	108.51	14 11	1.4539	95.0906	89.3416	84.1355	/9.4101	/5.1111	/1.1/12	67.0068	64.32/0
226	135.21	12 12	5.3815	116.5862	108.69	1 10	1.6071	95.2178	89.4472	84.2231	/9.4828	/5.1/15	/1.2413	67.6304	04.3521
227	135.53	35 12	5.6486	116.807	108.88	5 10	1.7592	95.3438	89.5516	84.3097	79.5547	/5.2311	71.2908	6/.6913	64.5762
228	135.85	42 12	5.9141	117.0273	109.06	5 1	1.9099	95.4687	89.6551	84.3955	79.6257	75.2900	/1.3396	67.7319	64.4297
229	136.17	34 12	6.1780	117.245	109.24	2 10	2.0594	95.5924	89.7575	84.4803	19.6959	/5.3481	/1.38//	0/.//10	04.4020
230	136.49	09 12	6.4405	117.4620	109.42	5 10	2.20/7	95./150	89.8589	84.3641	19.1635	/0.4000	/1.4303	0/.0112	04.4734
231	136.80	69 12	6.7014	117.678	109.60	5 10	2.3547	95.8365	89.9593	84.64/1	79.8559	15.4625	/1.4822	01.8300	64.32/3
232	13/.12	13 12	6.9608	117.8921	109.//	12 10	12.5005	95.9369	90.058/	84.7292	/9.901/	/3.3183	/1.3283	07.0002	04.3371
255	13/.43	41 12	1.218/	118.104	104.40	JJ 11	2.0432	70.V/02	90.13/2	04.0000	/7.7000 00 0750	/3.3/30	71.3/91	0/ .72J7	04.J7V2
234	13/./4	34 12	7.4/31	110.316	110.12	0 11	2./000	70.1744	70.2340	04.0700	00.0330	75 4022	71 4477	17 0000	64.6207
230	138.00	31 12	7.7300	118.3230	110.30	0 1/	7 4710	70.3110	70.3311	05 0/00	00.1/57	75 7754	71.0007	10 A750	11 1000
230	138.36	00 12	0 975/	110./34	110.4/	0 10	3.0/19	70.42//	00 5410	03.0407	00.1000	75 7002	71 7500	48 0714	44 7107
23/	170 07	51 12	0.2334	110.741.	110.04	0 1/	7 7544	01 1517	00 4140	03.1207	80 2025	75 8402	71 7917	68 1048	66.7392
230	170 27	97 12	0.1037	110 751	110.01	5 10	17 6000	94 7404	90 7074	85 2799	80 7550	75 8014	71 8759	69.1414	64.7677
240	139.58	08 12	8.9825	119.5543	111.14	0 10	3.6246	96.8815	90.8194	85.3551	80.4168	75.9423	71.8775	68.1756	64.7957

Table 1 (cont.)

mn	2.002	3.00%	4.00%	5.00%	6.002	7.00%	B.00Z	9.00%	10.002	11.00%	12.00%	13.00%	14.00%
1	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772
2	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833	1.7591	1.7355	1.7125	1.6901	1.6681	1.6467
3	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771	2.5313	2.4869	2.4437	2.4018	2.3612	2.3216
4	3.8077	3.7171	3.6299	3.5460	3.4651	3.3872	3.3121	3.2397	3.1699	3.1024	3.0373	2.9745	2.9137
5	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908	3.6959	3.6048	3.5172	3.4331
6	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229	4.4859	4.3553	4.2305	4.1114	3.9975	3.8887
7	6,4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064	5.0330	4.8684	4.7122	4.5638	4.4226	4.2883
8	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466	5.5348	5.3349	5.1461	4.9676	4.7988	4.6389
9	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469	5.9952	5.7590	5.5370	5.3282	5.1317	4.9464
10	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446	5.8892	5.6502	5.4262	5.2161
11	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052	6.4951	6.2065	5.9377	5.6869	5.4527
12	10.5753	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137	6.4924	6.1944	5.9176	5.6603
13	11.3484	10.6350	9.9856	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034	6.7499	6.4235	6.1218	5.8424
14	12 1062	11 2961	10.5631	9 8986	9,2950	8.7455	8.2442	7.7862	7.3667	6.9819	6.6282	6.3025	6.0021
15	10 0401	11 9179	11 1104	10 3797	0 7122	9 1079	8 5595	8 0607	7 4041	7 1909	6 8109	6 4624	6 1627
14	17 5777	12 5411	11 4507	10 0770	10 1050	0 4444	0.0514	9 7124	7 9277	7 3792	6 9740	6 67029	6 2651
17	14 2010	17 1141	12 1/57	11 27/1	10.1037	0 7470	0 1014	Q 5474	R 0214	7 5498	7 1194	6 7291	4 3729
10	11.0070	17 7575	12:100/	11.2/71	10 0071	10 0501	0 7710	0.3430	0 7012	7 7014	7 3207	1 0700	6.5727
10	14.7720	10./000	17 1770	12 0057	11 1501	10 7754	0 1011	0./330	0.2014	7 0101	7 7450	6.0377	6 5504
17	10.0/00	14.0200	13.1337	12,0000	11.1301	10.3330	0 0101	0.7301	0.0047	7.0373	7.3030	0.730V 7 A940	6.3304
20	10.3314	14.0//J	13.3703	12,9022	11.9077	10. 0755	7.0101	7.1203	0.1130	0 0751	7.4074	7.1014	6.0231
21	1/.V112	13.4130	14.0272	12:0212	11./091	14.0000	10 2007	0 4494	0.040/	0.0/J1	7.1020	7 1405	0.00/V
22	10.0000	13.7307	14,4311	13.1030	12.0910	11.0012	10.2007	7.9929	0.//13	0.1/3/	7.0440	7.1075	0./12/
23	10.2722	10.4430	14.8368	13.4000	12.3034	11.2/22	10.0/11	7.JOV2	0.0032	0.2004	7 70/7	7 2020	0:/721
24	18.7137	16.7333	13.24/0	13./700	12.0004	11.4073	10.0200	7./000	0.704/	0.3401	1./043	7 1766	6.0331
20	17.3233	17.4131	10.0221	14.0737	12./834	11.0000	10.0/48	7.0220	7.0//0	0.4217	7 :0931	7.3300	0.0/27
26	20.1210	1/.8/68	15.9828	14.3/32	13.0032	11.8238	10.8100	9.9290	9.1009	0.4001	7.070/	7.3/1/	0.7001
21	20./069	18.32/0	16.3296	14.6430	13.2100	11.986/	10.9332	10.0266	9.23/2	8.34/8	7.7420	7.4080	0.7332
28	21.2813	18./641	16.0031	14.8981	13.4062	12.13/1	11.0311	10.1161	9.3000	8.5015	1.7844	7.4412	6.960/
29	21.8444	19.1885	16.983/	13.1411	15.390/	12.2/1/	11.1084	10.1983	9.3676	8.6301	8.0218	7.4/01	0.7030
30	22.3965	19.6004	17.2920	13.5/25	13./648	12.4090	11.23/8	10.2/3/	9.4207	8.6738	0.0050	7.473/	7.002/
31	22.9311	20.0004	17.5885	15.3928	15.9291	12.5318	11.3478	10.3428	9.4/90	8./331	8.0830	7,0183	7.0177
52	23.4685	20.3888	1/.8/36	15.802/	14.0840	12.0400	11.4330	10.4062	9.3264	8./000	0.1110	7.0000	7.0330
55	23.9886	20./658	18.14/6	16.0025	14.2302	12./338	11.5139	10.4044	7.2074	8.8000	8.1334	7.3360	7.0482
54	24.4986	21.1318	18.4112	16.1929	14.5681	12.8540	11.5867	10.51/8	9.6086	8.8293	8.1366	7.3/1/	7.0399
35	24.9986	21.48/2	18.6646	16.3/42	14.4982	12.94//	11.6346	10.3668	9.6442	8.8552	8.1/00	1.3830	7.0/00
36	25.4888	21.8323	18.9083	16.5469	14.6210	13.0352	11./1/2	10.6118	9.6/65	8.8/86	8.1724	1.39/9	7.0/90
37	25.9695	22.1672	19.1426	16./113	14./368	13.11/0	11.//52	10.6530	9.7059	8.8776	8.20/5	/.608/	7.0868
38	26.4406	22.4925	19.3679	16.8679	14.8460	13.1935	11.8289	10.6908	9.7527	8.9186	8.2210	7.6185	1.093/
39	26.9026	22.8082	19.5845	17.0170	14.9491	13.2649	11.8786	10.7255	9.7570	8.9357	8.2330	7.6268	7.0997
40	27.3555	23.1148	19.7928	17.1591	15.0463	13.3317	11.9246	10.7574	9.7791	8.9511	8.2438	7.6344	7.1050
41	27.7995	23.4124	19.9931	17.2944	15.1380	13.3941	11.9672	10.7866	9.7991	8.9649	8.2534	7.6410	7.1097
42	28.2348	23.7014	20.1856	17.4232	15.2245	13.4524	12.0067	10.8134	9.8174	8.9774	8.2619	7.6469	7.1138
43	28.6616	23.9819	20.3708	17.5459	15.3062	13.5070	12.0432	10.8380	9.8340	8.9886	8.2696	7.6522	7.1173
44	29.0800	24.2543	20.5488	17.6628	15.3832	13.5579	12.0771	10.8605	9.8491	8.9988	8.2764	7.6568	7.1205
45	29.4902	24.5187	20.7200	17.7741	15.4558	13.6055	12.1084	10.8812	9.8628	9.0079	8.2825	7.6609	7.1232
46	29.8923	24.7754	20.8847	17.8801	15.5244	13.6500	12.1374	10.9002	9.8753	9.0161	8.2880	7.6645	7.1256
47	30.2866	25.0247	21.0429	17.9810	15.5890	13.6916	12.1643	10.9176	9.8866	9.0235	8.2928	7.6677	7.1277
48	30,6731	25.2667	21.1951	18.0772	15.6500	13.7305	12.1891	10.9336	9.8969	9.0302	8.2972	7.6705	7.1296
49	31.0521	25.5017	21.3415	18,1687	15.7076	13.7668	12.2122	10.9482	9.9063	9.0362	8.3010	7.6730	7.1312
50	31,4236	25.7298	21.4822	18.2559	15.7619	13.8007	12.2335	10.9617	9.9148	9.0417	8.3045	7.6752	7.1327

Table 1 (cont.)

mn	2.00%	3.00%	4.002	5.00%	6.00Z	7.00%	8.002	9.00%	10.00%	11.00%	12.007	13.00%	14.007
E4	71 7070	25 0512	21 4175	10 7700	15 0171	17 9725	12 2572	10 9740	9 9226	9.0465	8.3076	7-6772	7.1339
31	21./0/0	21.7312	21.01/5	10.0010	15.0131	17 8421	12 2715	10.9853	9.9296	9.0509	8.3103	7.6789	7.1350
52	70 /050	20.1002	21./4/0	10.4101	15 0070	13 9898	12 2884	10.9957	9.9360	9.0549	8.3128	7.6805	7.1360
33	32.4730	20:3/30	21.0/2/	10.4734	15 0500	17 9157	12.2004	11 0053	9.9418	9.0585	8.3150	7.6818	7.1368
24	32.0303	20.3///	21.7730	10.3031	15 0005	17 0700	12 3186	11 0140	9 9471	9.0617	8.3170	7.6830	7.1376
22	23:1/90	20.//99	22:1000	10.0005	14 0200	17 0101	12 7721	11 0220	9 9519	9.0646	8.3187	7.6841	7.1382
57	77 0001	20:70JJ 27 1500	22.2170	10.0705	14 0449	17 9877	12 3445	11.0294	9.9563	9.0672	8.3203	7.6851	7.1388
3/	33.0201	27.1307	22,320/	10.7003	14 0000	14 0075	12.3440	11 07/1	0 9603	9.0695	8.3217	7.6859	7.1393
30.	34.1432	27.3310	22:9270	10.0175	14 1711	14 0000	12.3300	11.0301	9 9479	9.0717	8.3229	7.6866	7.1397
39	34.4301	27.3030	22. 3204	10.0/00	14 1414	14.0702	12.3007	11 0480	9 9472	9.0736	8.3240	7.4873	7.1401
40	39./OV7	27.0/30	22.0233	10.7275	16.1014	14 0553	12 3760	11 0532	9 9701	9.0753	8.3250	7.6879	7.1404
10	3J.VJ7/	20 0007	22:/197	10.7000	10.1700	11 0701	12.3037	11 0500	0 0720	9 0749	R 3259	7.4884	7.1407
17	33.3320	20.0003	22.0020	10 0751	14 2425	14 0045	12.3742	11 0624	9 9753	9.0782	8.3267	7.6888	7.1410
03	33.0370	20.133/	22.00/0	17.0/01	16:2425	14.0013	12:4020	11 0444	0 0774	0 0795	9 3274	7 6892	7.1412
04	33.7214	20.3003	22.700J	17:1171	10.2003	14.0770	17 1110	11 0701	0 0704	9 0804	8 7281	7 6896	7.1414
63	30.17/3	20.4327	20.040/	17.1011	10:2071	14:1077	17 /722	11.0775	0 0015	9 0914	8 7284	7 6899	7.1414
00	30.4001	20.3730	23.1210	10 2701	14 7767	14.1214	12.9222	11.0711	0 0071	9 0824	8 3291	7 6902	7 1418
0/	30./334	20./330	23.1740	17.2071	10.330/	14 1/22	12:420V	11.0700	0 00/7	0 1011	g 3004	7 4904	7 1419
68	30.7730	20.0071	23.2033	17.2/35	10.347/	14.1422	12.9333	11.0774	0 0041	9 0941	8 3300	7.6906	7.1420
07	3/.2400	28.77/1	23.3303	17.3070	10.30/0	14.1310	12.4302	11.0020	0 0077	0 1041	9 1701	7 4908	7 1421
70	3/.4780	27.1234	23.3743	17.342/	10.3043	14.1094	12.9920	11.0017	0 0005	0 0054	0.3303	7 4010	7 1400
/1	3/ ./43/	29.2460	23.4305	17.3/40	10.4003	14.1000	12.44/1	11.0007	7.7005	0 0010	9 7710	7 4011	7 1621
12	3/.7841	29.3031	23.3130	17.4030	10.4130	14.1/02	12:4010	11.000/	7.707J 0.00A5	0 0044	0.3310 0.7719	7 4017	7 1424
/3	30.2177	27.400/	23.3/2/	17.4022	10.4270	14.1004	12.4340	11.0703	0 001/	0 0010	0.0012	7 4014	7 1656
74	38.430/	29.3929	23.02/6	17.4372	10.4932	14.1701	13 1111	11.9722	0 0001	0 0077	0.3314	7 4015	7 1425
10	30.0//1	27./010	23.0004	17.90JV	10.4330	14,1704	12.9011	11.0750	0 0070	0 0074	0 1710	7 4014	7 1425
/6	38.8771	27.80/6	23./312	17.3073	10.40/0	14.2022	12:4040	11.0732	7 . 7727	0 0000	0.3310	7 1017	7 1606
11	39.1166	29.9103	23./800	17.3329	10.4/70	14.2017	12.4000	11.0703	7:7733	7.0000	0.0020	7 2010	7 11720
/8	39.3302	30.0100	23.8207	17.3331	10.407/	14.2120	12.4071	11.07//	7 . 77 11	7.0003	0.0021	7 (010	7 11720
14	39.3394	30.1068	23.8/20	17.3/05	10.477/	14.21/3	12.4/14	11.0700	7.7740	7.0000	0.3020	7 2010	7 11920
80	37./440	30.2008	23.9134	17.3763	16.3071	14.2220	12.4/33	11.0770	7.77.31	7.0000	0.3324	7 1010	7 11.2721
81	39.9430	30.2920	23.93/1	17.613/	10.3180	14.2202	12.4/33	11.1000	7.77.00	0 0000	0.3023	7 4020	7 1627
82	40.142/	30.3806	23.99/2	17.0340	10.3203	14.2301	12:4//0	11.1010	7 . 770V	0 0007	0.3320	7 40720	7 1657
83	40.5560	30.4666	24.0338	17.0314	10.3344	14.233/	12.4/79	11.1024	7 = 7703	7.0073	0.3320	7 1000	7 1207
84	40.0200	30.3301	24.0/29	10 1070	14 5/00	14.23/1	12.4000	11.1031	7.770/ 0.007A	0 0001	0.332/	1.0720	7 1429
80	40./110	30.0312	24.1000	10 /000	10.3407	1/ 0/77	12.1020	11.1000	0 0071	0 0000	0.33	7 4071	7 1429
80	40.0734	30./079	24.1420	17.0707	10.3330	14.2433	12.4033	11 1050	0 0075	0 0000	0 1770	7 4021	7 1479
8/	41.0/20	30./803	24.1/30	17./132	10.3017	14.2900	12.9043	11.1030	7.77/3	0 0000	0.3327	7 2021	7 1629
88	41.24/0	30.8003	24.20/0	17,/207	10.30/0	14.2900	12.403/	11 1050	0 0070	0 0001	0.3327	7 40721	7 1420
67	41.410/	30.9323	24.2300	17./377	10.3/34	14.2311	12.4000	11.1037	0 0001	0 0000	0.3330	7 10722	7 1/20
90	41.3867	31.0024	24.20/3	17./323	10.3/0/	14.2333	12.40//	11.1004	7.7701	7.0702	0.3330	7 (099	7 1/20
91	41./319	31.0/03	24.2933	19./041	10.383/	14.2004	12.4000	11.100/	7.7700	7.0702	0.3331	7.0722	7 1/20
92	41.9136	31.1362	24.3226	19.7/55	16.3884	14.23/4	12.4893	11.10/1	9.9984	9.0903	8.3331	7.0922	7.1420
75	42.0/22	31.2002	24.3480	17./860	10.3728	14.2375	12.4703	11.10/4	7.7700	7.0704	0.3331	7 (000	7 1420
74	42.22/6	31.2623	24.3/3/	17./762	10.37/0	14.2010	12.4710	11.10//	7.770/	7.0704	0.3331	7 /0722	7 11420
95	42.3800	31.3227	24.39/8	17.8057	10.6009	14.2020	12.471/	11.1080	7.7788	7.0903	0.3332	7.0722	7.1428
96	42.5294	31.3812	24.4209	17.8151	10.004/	14.2641	12.4923	11.1085	7.7787	7.0705	0.3332	7.0722	7 1/20
9/	42.0/39	31.4381	24.4452	17.8239	10.0082	14.2000	12.4928	11.1085	7.9990	9.0903	0.3332	7.0723	7.1428
98	42.8195	31.4733	24.4040	17.8323	10.0113	14.2069	12.4734	11.108/	7.7771	7.0706	0.3332	7 10923	7.1420
44	42.9603	31.3467	24.4832	17.0403	10.0140	14.2001	12.4737	11.1009	7.7772	7.0700	0.3332	7.0723	7.1420
100	43.0784	21.2484	24.3030	17.84/9	10.01/3	14.2073	12.4745	11.1071	7.7773	7.0700	0.3332	1.0723	1.1420

Table 1 (cont.)

		7	/	E 448	/ ^^*	7. 44.	0 AA#	5 44W				17	47 000
mn	2.00%	3.00%	4.00%	5.00%	6.002	/.00%	8.00%	9.002	10.00%	11.002	12.00%	13.00%	14.002
101	17 9777	71 4404	24 5240	10 0550	14 4207	1/ 2707	17 6067	11 1007	0 0007	0 0007	0 1772	7 4007	7 1/20
103	17 7111	71 2005	27: 3270	10 0/01	10.0293	11. 5717	10 /051	11 1070	0 000/	0 0007	0.3332	7 1077	7 1/20
102	43.3004	31.0703	24.3423	17.0021	10.0227	14.2/13	12.4731	11.1074	7.7774	7.070/	0.3333	7 4007	7.1420
100	43.4704	31./901	24.3377	17.0000	10.0234	14.2/23	12.4733	11.1070	7.7773	9.0907	0.3333	7.0723	7 1/20
104	43.6237	31.7723	24.3/07	17.0/47	10.02/0	14.2/32	12.4730	11.107/	7.7773	9.070/	0.3333	7 4007	7.1420
100	43./470	31.83/2	24.3731	19.8808	10.0300	14.2/40	12.4701	11.1078	9.9993	9.0908	0.3333	7.0723	7.1420
196	43.8/10	31.8808	24.6088	17.8860	10.0320	14.2/4/	12.4704	11.1099	9.7770	9.0908	8.3333	7.0723	7.1427
107	43.991/	31.9231	24.6238	19.8919	16.6340	14.2/00	12.490/	11.1100	7.7770	9.0908	8.3333	7.0923	7.1429
108	44,1095	31.9642	24.6383	19.89/1	16.6358	14.2/61	12.4769	11.1101	9.999/	9.0908	8.3333	1.6923	1.1429
109	44.2250	32.0040	24.6522	19.9020	16.63/6	14.2768	12.4972	11.1102	9.9997	9.0908	8.3333	7.6923	7.1429
110	44.3382	32.0428	24.6656	19.9066	16.6392	14.2//3	12.4974	11.1103	9.9997	9.0908	8.3333	7.6923	7.1429
111	44.4493	32.0803	24.6785	19.9111	16.6408	14.2//9	12.4976	11.1103	9.9997	9.0908	8.3333	7.6923	7.1429
112	44.5581	32.1168	24.6908	19.9153	16.6423	14.2784	12.4977	11.1104	9.9998	9.0908	8.3333	7.6923	7.1429
113	44.6648	32.1523	24.7027	19.9193	16.6436	14.2789	12.4979	11.1105	9.9998	9.0908	8.3333	7.6923	7.1429
114	44.7694	32.1867	24.7141	19.9232	16.6449	14.2793	12.4981	11.1105	9.9998	9.0908	8.3333	7.6923	7.1429
115	44.8720	32.2201	24.7251	19.9268	16.6462	14.2797	12.4982	11.1106	9.9998	9.0909	8.3333	7.6923	7.1429
116	44.9725	32.2525	24.7357	19.9303	16.6473	14.2801	12.4983	11.1106	9.9998	9.0909	8.3333	7.6923	7.1429
117	45.0711	32.2840	24.7459	19.9336	16.6484	14.2805	12.4985	11.1106	9.9999	9.0909	8.3333	7.6923	7.1429
118	45.1677	32.3145	24.7557	19.9368	16.6495	14.2808	12.4986	11.1107	9.9999	9.0909	8.3333	7.6923	7.1429
119	45.2625	32.3442	24.7651	19.9398	16.6504	14.2812	12.4987	11.1107	9.9999	9.0909	8.3333	7.6923	7.1429
120	45.3554	32.3730	24.7741	19.9427	16.6514	14.2815	12.4988	11.1108	9.9999	9.0909	8.3333	7.6923	7.1429
121	45.4465	32.4010	24.7828	19.9454	16.6522	14.2817	12.4989	11.1108	9.9999	9.0909	8.3333	7.6923	7.1429
122	45.5357	32,4281	24.7911	19.9480	16.6530	14,2820	12.4990	11.1108	9.9999	9.0909	8.3333	7.6923	7.1429
123	45.6233	32.4545	24.7992	19.9505	16.6538	14.2822	12.4990	11.1108	9.9999	9.0909	8.3333	7.6923	7.1429
124	45.7091	32,4801	24.8069	19.9528	16.6545	14,2825	12.4991	11.1109	9.9999	9.0909	8.3333	7.6923	7.1429
125	45.7932	32.5050	24.8143	19.9551	16.6552	14.2827	12,4992	11.1109	9.9999	9.0909	8.3333	7.6923	7.1429
126	45 8757	32.5291	24.8215	19.9572	16.6559	14,2829	12,4992	11,1109	9,9999	9.0909	8.3333	7.6923	7.1429
127	45 9544	72 5525	74 8283	19 9591	16.6565	14.2831	12.4993	11,1109	9,9999	9.0909	8.3333	7.6923	7.1429
128	44 0359	77 5757	74 8349	19 9612	16 6571	14 2832	12 4993	11.1109	9 9999	9.0909	8.3333	7.6923	7.1429
120	46 1176	72 5077	24 8413	19 9471	16 6576	14. 2834	12.4994	11,1109	10.0000	9.0909	8.3333	7.6923	7.1429
170	40.1100	79 1100	74 0415	10 0449	14 4581	14 2034	10 6006	11 1110	10 0000	9 0909	8.3333	7.6923	7.1429
171	40.1070	77 1701	24.04/4 2/ 0577	10 0445	14 4504	14 2030	12 4995	11 1110	10 0000	9 0909	8 1117	7 6923	7.1429
177	10.201J	32.0370	24.0333	10 0201	14 4501	14 2037	12 4995	11 1110	10 0000	9 0909	8 1777	7 6923	7 1429
132	40.00/0	77 1701	24.0307	10 0404	14 4505	16 2020	10 4094	11 1110	10.0000	9 0909	8 1117	7 6923	7.1429
100	90 - 9V70	32.0/74	24.0040	17.7070	14 4500	11 2021	10 2002	11 1110	10 0000	0 0000	0.0000	7 4923	7 1470
134	40.9000	32.0703	24.0075	17.7/19	10.0377	1/ 20/2	12 4770	11.1110	10.0000	0 0000	0.3333	7 60723	7 1400
130	40.3470	32./107	24.0/40	17.7/24	10.0000	14.2042	12.4770	11.1110	10.0000	0 0000	0.0000	7 2007	7 1/20
130	40.010/	32./347	24.0/74	17.7/3/	10.0090	14.2093	12.4770	11.1110	10.0000	0 0000	0.3333	7 2007	7 1470
13/	46.6830	32./323	24.8840	19.9/00	10.0010	14.2044	12.497/	11.1110	10.0000	7.0707	0.3333	7.0723	7 1/20
138	46./480	32.7693	24.8885	19.9762	16.6615	14.2845	12.4997	11.1110	10.0000	9.0909	0.3333	7.0723	7.1427
139	46.8118	32,7857	24.8928	19.9//3	16.6616	14.2845	12.4997	11.1110	10.0000	9.0909	8.3333	7.0723	7.1427
140	46.8743	32.8016	24.8969	19.9784	16.6619	14.2846	12.4997	11.1110	10.0000	7.0909	8.3333	1.0723	1.1429
141	46.9356	32.8171	24.9009	19.9794	16.6622	14.2847	12.4998	11.1111	10.0000	9.0909	8.3353	1.6923	1.1429
142	46.9957	32.8322	21.9047	19.9804	16.6624	14.2848	12.4998	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
143	47.0546	32.8468	24.9083	19.9813	16.6627	14.2848	12.4998	11.1111	10.0000	9.0909	8.3333	7.6923	2.1429
144	47.1123	32.8609	24.9119	19.9822	16.6629	14.2849	12.4998	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
145	47.1690	32.8747	24.9153	19.9831	16.6631	14.2849	12.4998	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
146	47.2245	32.8880	24.9185	19.9839	16.6633	14.2850	12.4998	11.1111	10.0000	9.0909	8.3333	7.6923	7,1429
147	47.2789	32.9010	24.9216	19.9846	16.6635	14.2850	12.4998	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
148	47.3323	32,9136	24.9247	19.9854	16.6637	14.2851	12.4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
149	47.3846	32.9258	24.9276	19.9861	16.6638	14.2851	12.4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
150	47.4358	32.9377	24.9303	19.9867	16.6640	14.2852	12.4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429

Table 1 (cont.)

		7 848	/	E 00%	/ 60%	7 669	0 009	0 007	10 007	11 007	12 007	13 007	14.007
mn	2.007	3.00Z	4.002	5.004	6.004	7.00%	8.004	7.996	10.00%	11.00%	12.004	101004	
151	47 4941	30 9490	26 9330	19 9874	16.6642	14,2852	12.4999	11.1111	10,0000	9.0909	8.3333	7.6923	7.1429
150	17 5754	77 0101	24.7350	19 9880	16.6643	14.2852	12.4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
157	47.3334	77 0717	24.7330	19 9885	16.6644	14.2853	12.4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
100	4/ . 202/	77 0010	24.7301 3/ 0/AF	10 0001	16 6666	14 2853	12, 4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
134	4/.0311	32.7010	24.7403	10 0004	14 4447	14 2853	12 4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
100	4/ = 0//0	77 0000	24:7420	10 0001	16 1669	14 2053	12 4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
130	4/ 1/201	77 0114	24.7430	10 0004	14 4449	14 2854	12,4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
13/	1/ 1/0//	33.0110	71 0/01	10 0010	16.6650	14 2854	12 4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
100	9/.011J	77 0701	54.7471	10 0015	16 6651	14 2054	12 1099	11 1111	10.0000	9.0909	8.3333	7.6923	7.1429
127	4/.0344	77 0700	24:7311	10 0010	16 6652	14.2854	12.4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
109	4/.0703	33.V301 77 AL75	24:1327	10 0000	16 6657	14 2854	17 4999	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
140	4/ 13//	17 0550	24.7540	10 000%	14 4453	14 2855	12 5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
102	47.7702	33.V3J0 77 AL70	24.7505	10 0010	16 6655	14 2855	12 5000	11 1111	10.0000	9.0909	8.3333	7.6923	7.1429
100	10.01/0	77 0710	51 0500	t0 0077	14 4455	14 2055	12 5000	11 1111	10.0000	9.0909	8.3333	7.6923	7.1429
1/5	10.VJ0/	33.V/10	24.7370	10 0074	14 4454	14 2055	12 5000	11 1111	10.0000	9.0909	B.3333	7.6923	7.1429
101	40.0740	33.0/74 77 A0/0	24.7013	10 0070	14 4454	14 2055	12 5000	11 1111	10 0000	9.0909	8.3333	7.6923	7.1429
1/7	40.1022	33:9000	24:7020	10 0010	14 4457	14.2000	12.5000	11 1111	10 0000	9 0909	8 7777	7.6923	7,1429
10/	40.1000	33.0740	24,7092	17.7742	14 4457	14.2000	12.5000	11 1111	10 0000	9.0909	8.3333	7.6923	7.1429
100	40.204/	33.1007	24.7030	10 0040	16.0000/	14 7856	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
107	40.2077	77 11/7	16 0607	10 0050	14 4459	14 2056	12.5000	11 1111	10.0000	9.0909	8.3333	7.6923	7.1429
170	40.2/44	33.1143	24.7002	17.7730	11 1150	14.2000	12.5000	11 1111	10 0000	9 0909	9 1111	7.6923	7.1429
171	40.3002	33.1207	29.7079	10 0055	16.0037	14.2050	12.5000	11 1111	10.0000	9.0909	8.3333	7.6923	7.1429
172	40.3914	33.1207	24,7/00	10 0057	16 6660	14.2050	12.5000	11 1111	10.0000	9 0909	8.7333	7.6923	7.1429
172	40.0/07	33.1327	24.7/1/	10 0050	12 2220	14.2000	12.5000	11 1111	10 0000	9 0909	g 7777	7.6923	7.1429
1/9	40.4VJ0	33.130/ 77 1L/L	24.7/20	10 0041	14 4440	14 2056	12 5000	11 1111	10 0000	9 0909	8.3333	7.6923	7.1429
173	10.10/1	77 1/00	24.1131	10 0017	16 4441	14.2054	12 5000	11 1111	10 0000	9 0909	8 7777	7.6923	7.1429
170	10,90//	33.1977	24.7/47	17.7700	10.0001	14.2000	12.3000	11.1111	10.0000	0 0000	9 1717	7 6923	7.1429
1//	10.97/0	33.1332	24.7/30	17.7709	14 4441	14.2000	12.5000	11 1111	10.0000	0 0000	Q 1111	7 6923	7 1429
1/0	48.32/2	33.1004	24.7/00	17.7700	10:0001	14.2000	12.5000	11 1111	10.0000	0 0000	0 1717	7 4927	7 1429
1/9	48.3361	33.1034	24.1///	17.7700	10.0002	14.2050	12.5000	11 1111	10.0000	0 0000	0,000	7 10723	7 1429
180	48.3844	33.1/03	24.7/03	17,7707	10.0002	14.2030	12.3000	11.1111	10.0000	0 0000	0.0000	7 40723	7 1620
181	40.0122	33.1/31	24.7/74	17.77/1	10:0002	14,2000	12.5000	11 11111	10 0000	0 0000	Q 7777	7 6923	7 1429
182	48.0374	33.1/9/	24.7801	17.77/2	10.0003	14.2007	12.5000	11.1111	10.0000	0 0000	0,000	7 4973	7 1629
183	40.0001	33,1842	24.7807	10 0075	10.0000	14.203/	12.5000	11 1111	10 0000	0 0000	0.3333	7 4923	7.1429
104	48.0722	33.1003	24.7010	17.77/3	10.0003	14.2007	12.5000	11 1111	10.0000	0 0000	g 7777	7 6923	7.1429
103	40./1/7	33.172/	24.7020	17.77/0	10:0000	14.2057	12.5000	11 11111	10 0000	0 0000	0.0000	7 1071	7 1/29
100	48./430	33.1700	24.7030	10 0070	14 4444	14.2037	12.3000	11.1111	10.0000	9 0909	9 7777	7 6923	7.1429
100	40.7010	17 7647	14.7037	10 0070	12 6664	14.2007	12.5000	11 1111	10.0000	9.0909	8. 1111	7.6923	7.1429
100	40./710	77 2004	24.7043	10 0000	16 4444	14 2857	12.5000	11 1111	10 0000	9 0909	8 1111	7.6923	7.1429
107	40.0133	77 2120	21.7017	10 0001	16 6666	14 2057	12.5000	11 1111	10.0000	9 0909	8 3113	7 6923	7,1429
101	40.030/	77 9154	24.7033	10 0000	11 1111	14 2057	12.5000	11 1111	10 0000	0 0000	Q 1111	7 6923	7 1479
171	40.001J	33.2130	24:7001	17.7702	10.0007	11 2057	12.5000	11 11111	10.0000	0 0000	0 1777	7 4027	7 1420
172	10.0030	33.2170	24.7000	10 000/	10.0004	14.203/	12.5000	11 1111	10.0000	0 1010	g 7777	7 60723	7 1670
173	40.703/	33.2223	24.70/1	10 0005	16.0004	14.203/	12.5000	11.1111	10 0000	0 0000	0.0000	7 10723	7 1/20
174	48.92/2	33.2236	24.70/0	17.7783	10.0000	19.2007	12.3000	11.1111	10.0000	0 0000	0.3333	7 1007	7 1/20
195	48.9482	33.228/	24.9881	19.9983	10.0000	14.283/	12.3000	11-1111	10.0000	7.9707	0.3333	7.0723	7 1/00
196	48.7688	33.2318	24.9885	19.9986	10.0000	14.285/	12.5000	11.1111	10.0000	7.0709	8.3333	7.0725	7.1427
197	48.9890	33.234/	24.9890	19.998/	16.6660	14.285/	12.3000	11.1111	10.0000	9.0909	8.3535	7.0923	7.1927
198	49.0089	33.2376	24.9894	19.998/	10.6665	14.285/	12.3000	11.1111	10.0000	9.0909	8.3333	7.6925	7.1427
199	49.0283	33.2404	24.9898	19.9988	16.6665	14.285/	12.5000	11.1111	10.0000	9.0909	8.3335	7.0925	7.1429
200	49.0473	33.2431	24.9902	17.9988	16.6665	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	1.6723	7.1429

Table 1 (c	ont.)
------------	-------

mn	2.00%	3.00%	4.002	5.00%	6.00Z	7.002	8.00%	9.00Z	10.007	11.00Z	12.00%	13.002	14.00%
201	49.0660	33.2457	24.9906	19.9989	16.6665	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
202	49.0843	33.2483	24.9909	19.9990	16.6665	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
203	49.1023	33.2507	24.9913	19.9990	16.6665	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
204	49.1199	33.2531	24.9916	19.9990	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
205	49.1372	33.2555	24.9919	19.9991	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
206	49.1541	33.2578	24.9923	19.9991	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
207	49.1707	33.2600	24.9926	19.9992	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
208	49.1869	33.2621	24.9928	19.9992	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
209	49.2029	33.2642	24.9931	19.9993	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
210	49.2185	33.2662	24,9934	19,9993	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
211	49.2338	33.2681	24.9936	19.9993	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
212	49.2488	33.2700	24,9939	19.9994	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
213	49.2636	33.2719	24.9941	19.9994	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
214	49.2780	33.2737	24.9943	19.9994	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
215	49.2922	33.2754	24.9946	19.9994	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
216	49.3060	33.2771	24.9948	19.9995	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
217	49.3196	33.2787	24.9950	19.9995	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
218	49.3330	33.2803	24.9952	19.9995	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
219	49.3461	33.2819	24.9953	19.9995	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
220	49.3589	33.2834	24.9955	19.9996	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
221	49.3715	33.2848	24.9957	19.9996	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
222	49.3838	33.2862	24.9959	19.9996	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
223	49.3959	33.2876	24.9960	19.9996	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
224	49.4077	33.2889	24.9962	19.9996	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
225	49.4193	33.2902	24.9963	19.9997	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
226	49.4307	33.2915	24.9965	19.9997	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
227	49.4419	33.2927	24.9966	19.9997	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
228	49.4528	33.2939	24.9967	19.9997	16.6666	14,2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
229	49.4635	33.2950	24.9969	19.9997	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
230	49.4741	33.2962	24.9970	19.9997	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
231	49.4844	33.2972	24.9971	19.9997	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
232	49.4945	33.2983	24.9972	19.9998	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
233	49.5044	33.2993	24.9973	19.9998	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
234	49.5141	33.3003	24.9974	19.9998	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
235	49.5236	33.3013	24.9975	19.9998	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
236	49.5330	33.3022	24.9976	19.9998	16.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
237	49.5421	33.3031	24.9977	19.9990	11.6666	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
238	49.5511	33.3040	24.9978	19.9998	16.6667	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
239	49.5599	33.3048	24.9979	19.9998	16.6667	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429
240	49.5686	33.3057	24.9980	19,9998	16.6667	14.2857	12.5000	11.1111	10.0000	9.0909	8.3333	7.6923	7.1429

Table 1 (cont.)

mn	15.00%	16.002	17.00%	18.002	19.002	20.00%	21.002	22.00%	23.00%	24.00%	25.00%	26.00%	27.00
1	0.8696	0.8621	0.8547	0.8475	0.8403	0.8333	0.8264	0.8197	0.8130	0.8065	0.8000	0.7937	0.7874
2	1.6257	1.6052	1.5852	1.5656	1.5465	1.5278	1.5095	1.4915	1.4740	1.4568	1.4400	1.4235	1.4074
3	2.2832	2.2459	2.2096	2.1743	2.1399	2.1065	2.0739	2.0422	2.0114	1.9813	1.9520	1.9234	1.8956
4	2.8550	2.7982	2.7432	2.6901	2.6386	2.5887	2.5404	2.4936	2.4483	2.4043	2.3616	2.3202	2.2800
5	3 3522	3 2743	3,1993	3,1272	3.0576	2.9906	2.9260	2.8636	2.8035	2.7454	2.6893	2.6351	2.5827
4	7 7945	7 4847	1 5892	3.4976	3.4098	3.3255	3.2446	3.1669	3.0923	3.0205	2.9514	2.8850	2.8210
7	6 1606	4 0386	3.9224	3,8115	3,7057	3.6046	3.5079	3.4155	3.3270	3.2423	3.1611	3.0833	3.0087
0	4 1977	1. 7.171	4 2072	4 0774	3 9544	3.8372	3.7256	3.6193	3.5179	3.4212	3.3289	3.2407	3.1564
0	1. 7714	4 4045	4 4506	6 3030	6.1633	4.0310	3.9054	3.7863	3.6731	3.5655	3.4631	3.3657	3.2728
10	5 0100	4 9772	4 4586	4 4941	4.3389	4,1925	4.0541	3.9232	3.7993	3,6819	3.5705	3.4648	3.3644
11	5 2777	5 0284	4 9366	4 4540	4 4865	4.3271	4.1769	4.0354	3.9018	3,7757	3.6564	3.5435	3.4365
12	5 1981	5 1071	1.0004	6 7070	4 6105	6 6397	4 2784	4.1274	3.9852	3.8514	3.7251	3.6059	3.4933
17	5 5071	5 7121	5 1107	4 9095	4 7147	4.5327	4.3624	4.2028	4.0530	3.9124	3.7801	3.6555	3,5381
14	5 79/5	5 1175	5 2207	5 0081	6 8023	4 6106	6. 4317	4.2646	4.1082	3.9616	3.8241	3.6949	3.5733
19	5 0/7/	J.40/J	5 77/7	5 0014	1 0750	4.6755	4 4990	4 3152	4 1530	4.0013	3,8593	3.7261	3,6010
11	5 05/7	5 2205	5 2057	5 1474	1.0737	4.0703	6 57/4	4 3547	4 1994	4.0333	3.8874	3.7509	3.6228
10	1.7342	J.000J	5.4000	5 9997	1.7077	4 7744	4.5755	1 1000	4 2100	4 4501	7 9099	1 7705	3 6400
1/	0.04/2	J./40/	J. 4/40	5.2223	9:707/	4.//90	4. 3/33	4.3700	6 3671	4.0371	2 9279	3 7861	1.4534
10	0.1280	0.01/0	J.JJJ7	5 7110	5 0700	4.0122	4.00/1	4 4415	4 9697	4 0967	3 9494	3,7985	3.6642
17	0.1702	J:0//J	J. J04J	5.3102	5 4000	4.0400	1 1517	1 1107	1. 5702	4 1107	7 0510	3 9093	3 6726
20	6.2393	3.9288	J.62/8	3.332/	5.1007	4.0070	4.0J0/	4.4000	4.2/00	4.1100	7 0471	7 0141	1 4792
21	6.3125	3.9/31	0.0048	3.383/	J.1200	4.0713	4.0/JV	4:4/J0 / /000	4.2710	4,1414	7 0705	1 0007	7 1911
22	6.558/	6.0113	3.0704	3.4077	3,1480	9.7074	4.0700	1.4004	4.3921	4.1371	7 0711	7 0077	7 4005
23	6.3788	6.0442	5.7234	3.4321	0.1000	4.7240	4.7020	4.4702	4.31V0	4.10/1	0:7/04	0:02/0 7 0110	7 2010
24	6.4338	6.0/26	5./465	5.4309	J.1822	4.73/1	4./128	4.30/0	4.31/0	4.1420	3,7011	7 07/2	3.0710
25	6.4641	6.09/1	5./662	3.4667	5.1931	4.74/0	4./213	4.3137	4.3232	4.19/4	3.7047	3:0042	2:0743
26	6.4906	6.1182	5./831	5.4804	5.2060	4.9363	4./284	4.3170	4.32/8	4.1311	3.70/7	3.0307	3.0703
27	6.5135	6.1364	5./9/5	3.4919	5.2151	4.7636	4./342	4.0240	4.3310	4.1342	3.7703	3.030/	2.07/7
28	6.5335	6.1520	5.8099	5.5016	5.2228	4.969/	4./390	4.5281	4.3340	4.1366	3.9923	3.8402	3.0771
29	6.5509	6.1656	5.8204	5.5098	5.2292	4.9/4/	4./430	4.0312	4.33/1	4.1080	3.9930	3.0414	3.7001
30	6.5660	6.1772	5.8294	5.5168	5.2347	4.9789	4./463	4.5338	4.3391	4.1601	3.9900	3.8424	3.7009
31	6.5791	6.1872	5.8371	5.5227	5.2392	4.9824	4./490	4.5359	4.340/	4.1614	3.9960	3.8432	3.7013
32	6.5905	6.1959	5.8437	5.5277	5.2430	4.9854	4.7512	4.53/6	4.3421	4.1624	3.998	3.8438	3./019
33	6.6005	6.2034	5.8493	5.5320	5.2462	4.9878	4.7531	4.5390	4.3431	4.1032	3.9973	3.8443	3.7023
34	6.6091	6.2098	5.8541	5.5356	5.2489	4.9898	4.7546	4.5402	4.3440	4.1639	3.9980	3.844/	3.7020
35	6.6166	6.2153	5.8582	5.5386	5.2512	4.9915	4.7559	4.5411	4.344/	4.1644	5.9984	3.8430	3.7028
36	6.6231	6.2201	5.8617	5.5412	5.2531	4.9929	4.7569	4.5419	4.3453	4.1649	3.998/	3.8452	3.7030
37	6.6288	6.2242	5.8647	5.5434	5.2547	4.9941	4.7578	4.5426	4.3458	4,1652	3.9990	3.8454	3.7032
38	6.6338	6.2278	5.8673	5.5452	5.2561	4.9951	4,7585	4.5431	4.3462	4.1655	3.9992	3.8456	3.7033
39	6.6380	6.2309	5.8695	5.5468	5.2572	4.9959	4.7591	4.5435	4.3465	4.1657	3.9993	3.8457	3.7034
40	6.6418	6.2335	5.8713	5.5482	5.2582	4.9966	4.7596	4.5439	4.3467	4.1659	3,9995	3.8458	3.7034
41	6.6450	6.2358	5.8729	5.5493	5.2590	4.9972	4.7600	4.5441	4.3469	4.1661	3.9996	3.8459	3.7035
42	6.6478	6.2377	5.8743	5.5502	5.2596	4.9976	4.7603	4.5444	4.3471	4.1662	3.9997	3.8459	3.7035
43	6.6503	6.2394	5.8755	5.5510	5.2602	4.9980	4.7606	4.5446	4.3472	4.1663	3.9997	3.8460	3.7036
44	6.6524	6.2409	5.8765	5.5517	5.2607	4.9984	4.7608	4.5447	4.3473	4.1663	3.9998	3.8460	3.7036
45	6.6543	6.2421	5.8773	5.5523	5.2611	4.9986	4.7610	4.5449	4.3474	4.1664	3.9998	3.8460	3.7036
46	6.6559	6.2432	5.8781	5.5528	5.2614	4.9989	4.7612	4.5450	4.3475	4.1665	3.9999	3.8461	3,7036
47	6.6573	6.2442	5.8787	5.5532	5.2617	4.9991	4.7613	4.5451	4.3476	4.1665	3.9999	3.8461	3.7037
48	6.6585	6.2450	5.8792	5.5536	5.2619	4.9992	4.7614	4.5451	4.3476	4.1665	3.9999	3.8461	3.7037
49	6.6596	6.2457	5.8797	5.5539	5.2621	4.9993	4.7615	4.5452	4.3477	4.1666	3.9999	3.8461	3.7037
50	6.6605	6.2463	5.8801	5.5541	5.2623	4.9995	4.7616	4.5452	4.3477	4.1666	3,9999	3.8461	3.7037

Table 1 (cont.)

mn	15.00%	16.00%	17.00%	18.00%	19.00%	20.00%	21.00%	22.00%	23.00%	24.00%	25.00%	26.00%	27.00%
51	6.6613	6.2468	5.8804	5.5544	5.2624	4,9995	4.7616	4.5453	4.3477	4.1666	4.0000	3.8461	3,7037
52	6.6620	6.2472	5.8807	5.5545	5.2625	4.9996	4.7617	4.5453	4.3477	4.1666	4.0000	3.8461	3.7037
53	6.6626	6.2476	5.8809	5.5547	5.2626	4.9997	4.7617	4.5453	4.3478	4.1666	4.0000	3.8461	3.7037
54	6.6631	6.2479	5.8811	5.5548	5.2627	4.9997	4.7617	4.5454	4.3478	4.1666	4.0000	3.8461	3.7037
55	6.6636	6.2482	5.8813	5.5549	5.2628	4.9998	4.7618	4.5454	4.3478	4.1666	4.0000	3.8461	3.7037
56	6.6640	6.2485	5.8815	5.5550	5.2628	4.9998	4.7618	4.5454	4.3478	4.1665	4.0000	3.8461	3.7037
57	6.6644	6.2487	5.8816	5.5551	5.2629	4.9998	4.7618	4.5454	4.3479	4.1666	4.0000	3.8461	3,7037
58	6.6647	6.2489	5.8817	5.5552	5.2629	4.9999	4.7618	4.5454	4.3479	4.1667	4.0000	3.8461	3.7037
59	6.6649	6.2490	5.8818	5.5552	5.2630	4.9999	4.7618	4.5454	4.3478	4.1667	4.0000	3.8461	3.7037
60	6 6651	6 2492	5 8819	5 5557	5 2430	4 0000	4 7619	4 5454	4 3478	4 1447	4 0000	3 9462	3 7037
61	6 6653	6 7493	5 8819	5 5557	5 2630	4 9999	4 7619	4 5454	4 3478	4 1667	4 0000	3 8442	3 7037
62	6 6655	6 7494	5 8820	5 5554	5 2630	4 0000	4 7419	6 5454	4 3470	4 1447	4 0000	7 9442	7 7077
43	6 6657	6 2495	5.8020 5.8821	5 5554	5 2471	4 0000	4 7419	4 5454	1 1470	4 1667	4 0000	3.0402	1 7017
11	1 1150	1 7/05	5 0021	5 555/	5 9471	5 0000	1.7617	1.5/5/	4. 1/70	1 1447	4 0000	7 0/12	7 7077
45	6.0030	1 5/0/	5 0001	J.JJJJ	5 9171	5 0000	1.7110	1 5/5/	4.34/0	4.1007	4.0000	3.0402	1 7017
11	0.0037	0.2470	J.0021 5 0000	3.3334	5. 2471	5.0000	4.7017	4. 5/5/	4.34/0	9.100/	4.0000	3.0402	3.7037
47	1 1111	1 9107	5.0022	9.9999	5 9471	5.0000	4.7017	4.3434	4.34/0	4.100/	4.0000	3.0402	3.703/
/0	0.0001	0.297/	5.0022	7.7777	5 9/74	5.0000	4./017	4. 5934	4.34/0	4.100/	4.0000	3.0902	3./03/
00	1 1113	0.2477	5.0022	7.7777	5 9171	5.0000	4./017	4.3434	4.34/0	1.100/	4.0000	3.0402	3./03/
70	0.0002	0.2470	J.0022	7.7777	J.2031	5.0000	9./017	4.3434	4.34/0	4.100/	4.0000	3.0402	3./03/
74	0.0003	0.2970	3.0023	2.3333	3.2031	5.0000	4./017	4.3433	1.34/0	4.100/	4.0000	3.0402	3.703/
71	0.0000	0.2970	J.0023	9.9999	J.2031	5.0000	4./017	4.3433	4.34/0	4.100/	4.0000	3.0402	3./03/
12	0.0004	0.2477	J.0023	3,3333	5.2031	5.0000	4./017	4.3433	4.34/0	4.100/	4.0000	3.0402	3./93/
13	0.0004	0.2977	0.0823	3.3333	0.2031	5.0000	4./017	4.3433	4.34/0	4.100/	4.0000	3.0402	3./03/
14	6.0000	6.2499	5.8823	5.0000	5.2631	3.0000	4./019	4.3433	4.34/8	4.100/	4.0000	3.8462	5./03/
15	6.6665	6.2499	5.8823	3.3555	5.2631	5.0000	4./619	4.3433	4.34/8	4.166/	4.0000	3.8462	3.7037
76	6.6665	6.2499	5.8823	5.5555	5.2631	5.0000	4.7619	4.5455	4.34/8	4.166/	4.0000	3.8462	5.7037
77	6.6665	6.2499	5.8823	5.5555	5.2631	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
78	6.6665	6.2499	5.8823	5.5555	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
79	6.6666	6.2499	5.8823	5.5555	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
30	6.6666	6.2500	5.8823	5.5555	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
81	6.6666	6.2500	5.8823	5.5555	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
82	6.6666	6.2500	5.8823	5.5555	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
83	6.6666	6.2500	5.8823	5.5555	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
84	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4,1667	4.0000	3.8462	3.7037
85	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
86	6.6665	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
87	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
88	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
89	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
90	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
91	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
92	6.6666	6.2500	5.8823	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
93	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
94	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	.5455	4.3478	4.1667	4.0000	3.8462	3.7037
95	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
96	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
97	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
98	6.6667	6.2500	5,8824	5.5556	5,2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
99	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037
100	6.6667	6.2500	5.8824	5.5556	5.2632	5.0000	4.7619	4.5455	4.3478	4.1667	4.0000	3.8462	3.7037

XIII. APPENDIX I

DEFINITIONS OF VARIABLES USED

r	=	the	annual	percentage	rate	(APR)	expressed	as	а	decimal;
m	Ŧ	numt	per of	conversion	period	s with	in a vear			

re = the effective (annual) interest rate expressed as a decimal;

 V_0 = value of the loan in the present period;

n = number of years to loan maturity;

mn = number of periods to loan maturity;

- b = geometric factor;
- a = a constant in a geometric series;
- $A_t = a \text{ single payment made in year t;}$

A = a constant payment or annuity;

- US₀(r,n) = abbreviation for the factor which converts to a present value a uniform series of \$1 payments discounted at r percent for n periods;

TI = total interest costs paid over the life of the loan; SSD(mn) = sum of the periods digits for an mn period loan;

t = time period number or number of periods away from the present period;

I(t) = interest paid on the tth payment;

- AI(t) = accumulated interest paid after t periods;
- AP(t) = accumulated principal paid after t periods;
- PD(t) = loan principal outstanding after the 16th payments;

PP(t) = principal paid on the tth payment;

- △P(n) = change in loan payment associated with a term increase from n to n + 1 periods;
- ∆TI(n) = change in total interest paid associated with a term increase from n to n + 1 periods;

B = a balloon payment made to retire a loan;

A_c = subsidized payment on a buy down loan;

∆r = interest rate subsidy on a buy down loan;

V_s = present value of subsidy provided on a buy down loan;

- mn = term on a graduated payment loan;
- g = percentage increase in the loan payment of a graduated payment mortgage which occurs every m periods;
- r* = a concessionary APR interest rate, expressed as a decimal;

V * = the present value of a concessionary interest rate loan
with an outstanding loan balance of V_o;

A* = payment on a concessionary interest rate loan;

 A_{b} = payment on a blended interest rate loan;

r_b = blended interest rate expressed as a decimal;

 A_{+} = the tth payment on a constant principal payment loan;

p = the percentage of a loan charged (points) to close a loan;

 \hat{V}_{0} = present value of a new loan extension;

i = stated interest rate on disguised interest cost loans; V_d = discounted loan amount actually received by the borrower; d = maximizing derivative.

XIV. REFERENCES

- Barry, P. J., J. A. Hopkin, and C. B. Baker, <u>Financial Management in</u> Agriculture, Instate Printers, Danville, IL, 1983.
- Baker, T. G., "An Income Capitalization Model of Land Values with Income Tax Considerations," Journal Paper No. 47907, Purdue Agr. Exp. Sta., June 1981.
- Brake, J. R., "Interest Rate Terminology and Calculation," Agricultural Economics Department, Report 13, Michigan State University, East Lansing, 1966.
- Canada, J. R., Intermediate Economic Analysis for Management and Engineering, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971.
- Fabrycky, W. J., and P. E. Torgersen, <u>Operations Economy: Industrial</u> <u>Applications of Operating Research</u>, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966.
- Grant, E. L., W. G. Ireson, R. S. Leavenworth, Principles of Engineering Economy, John Wiley and Sons, New York, 1982.
- Herber, A. F., Capital Budgeting Theory, Quantitative Methods, and Applications, Harper and Row, New York, 1982.
- Hirshleifer, J., <u>Investment, Interest, and Capital</u>, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970.
- Lee, W. F., and N. Rask, "Inflation and Crop Profitability: How Much Can Farmers Pay for Land?" <u>American Joural of Agricultural Econom-</u> ics, 58(1976):984-990.
- Robison, L. J. and W., G. Burghardt, "Five Principles for Building Present Value Models and Their Application to Maximum (Minimum) Bid (Sell) Price Models for Land," Agriculture Economics Report #442, Department of Agrarian Economics, Michigan State University, November 1983.