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CHAPTER 1
AN INTRODUCTION AND OVERVIEW

A decision maker decides between alternatives which we call action choices.
If there are at least two action choices and the relative attractiveness of the
choices is not clear, the decision maker has a decision problem. A decision
problem exists, in most cases, because the action choices have multiple outcomes
which must be compared. Converting the outcomes of action choices to common
dimension, a process called premaximization, is the first step in resolving
decision problems.

In many cases decision problems arise because outcomes from action choices
are random variables. When act{on choice outcomes are not known with certainty
we describe them by stating their likelihood of occurrence. Choosing between
action choices with uncertain outcomes is also a decision problem, a problem so
common that a science of decision making, decision theory, has emerged to address
the problem.

The decision problem existing under uncertainty requires the same approach
as does the solution to the decision problem when it exists under certainty.
Each action choice must be reduced to a single dimensional index number compat-
ible for comparison. By reducing each action choice to a single index number,
reflecting its preference ranking, the decision problem can be solved. Rules
designed to achieve this reduction we call decision rules. Describing decision
rules is the goal of Chapter 3 in this volume.

Unfortunately, with any emerging discipline such as decision theory, the
first task is to develop a vocabulary for communication between scientists.
Although working on a common problem, decision scientists often find their acade-

mic homes in other disciplines. Attempting to bridge the communication barrier




2
between scientists and researchers with diverse backgrounds is the task address-
ed in Chapter 2.

The consensus of opinion, for the moment at least, appears to be that the
expected utility hypothesis (EUH) is the most useful and reliable predictor of
decision making behavior. 1Its usefulness as a theoretical tool as well as an
applied tool has entrenched the EUH as the cornerstone of the science we call
decision theory. Nevertheless the detractors of the EUH have been relentless.
In some cases they have offered improvements. In some cases they offer evidence
about the violation of the assumption underlying the hypothesis of the EUH. 1In
some cases they present paradoxes not easily resolved by application of the EUH.

Chapter 4 is an evaluation of the EUH. It summarizes our experience with it
as a predictive tool and diécusses how the evidence supports or detracts from the
hypothesis. This chapter draws heavily upon an article by the senior author of

this volume which appeared in the American Journal of Agricultural Economics. We

thank the editor of that journal for permission to use the material of that
article in this report.

Scientific inquiry leads naturally to measures and comparisons. The state-
ment that an individual has risk averse attitudes or is risk averse is naturally
followed by the question: 1is individual A more risk averse than individual B?
Failure to answer that question will impede the progress of decision scientists
since the subjective nature of risk attitudes will require personalized pre-
scriptions to resolve decision problems.

In Chapter 5 we summarize the tools available for ordering individuals
according to their risk preferences. The limitation of the measures are also

addressed.




The desire and the need to order individuals according to their risk pre-
ference extends to the desire and need to order the probability density functions
(pdfs) of action choice outcomes. If we say action choice 1 is risky, can we say:
action choice 1 is more (less) risky than action choice 27

Answering the above question is the subject of Chapter 6. The answer to the
guestion, whether action choice 1 is more (less) risky than action choice 2,
depends on the attitudes towards risk of decision makers choosing between action
choices 1 and 2. Establishing this 1ink between decision makers and riskiness of
the action choices is the main topic the reader of this volume should expect in
Chapter 6.

Chapter 7 explores recently developed extensions to the EUH. These include
such innovations as the derivation of the EUH with fuzzy sets, prospect theory,

and the generalized EUH without the independence axiom.




CHAPTER 2

UNCERTAINTY, RISK, UTILITY FOR INCOME
AND ATTITUDES TOWARDS CHANCE TAKING

Introduction

This chapter should be viewed as the foundation for the remainder of the
report. Its task is to provide the background for the discussion of decision
makers' attitudes under uncertainty which will follow. Given our interest in
understanding how decisions are made in the face of uncertainty, we must first
review how decision makers describe their action choices which have uncertain
outcomes.

To do this we introduce the subject of probabilities. This immediately
creates a problem because there is wide disagreement about how probability mea-
sures originate. Fortunately there is unanimous agreement about their charac-
teristics., These characteristics include: (1) the probability of an event
occurring cannot be less than zero; and (2) the sum of probabilities of all
possible mutually exclusive events must equal one. There are, of course, more
elaborate rules for using probabilities but they needn't concern us in this
discussion.

It is assumed in all decision models that action choice outcomes are de-
scribed in probabilistic terms. In decision models, probabilities are consider-
ed primitives whose values are objectively given. But for the decision maker who
must formulate probability estimates, such a cavalier dismissal of the probabil-
ity measurement problem is not permitted. In forming probability estimates, the
decision makar may find T1ittle comfort in the traditional objective probabilis-
tic approaches.

The traditional schools of probabilities can be quickly summarized. The

first approach centers around the notion of "equal likelihood". In this view an
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experiment having n different outcomes which are assumed to have an equal chance
of occurring is considered. To construct an experiment, m less than or equal to
n of the possible outcomes are grouped together. Call the occurrence of a member
of the group of m events E. The probability of event E is m/n. Defined in this
way probability is simply a relative frequency measure for an event in an equally
l1ikely experiment. But elementary outcomes, particularly in agriculture, are
not equally likely and, in most cases, the set of observations is not complete.
For example, suppose we wish to measure the probability of monthly rainfall in a
particular Tlocation. Most would argue rainfall follows cycles so that all
possible rainfall observations in a given month may not be equally Tlikely.
Secondly, the question arises as to how many months of observations are needed to
complete the data set. The answer is the data set is never completed because
each year 12 new observations are added. The confounding of probability with its
measure renders this approach to probability measurement almost meaningless for
applied problems.

The second approach improves upon the first. It distinguishes between the
concept of probability and its measure. Jacques Bernoulli defined probability as
a "degree of confidence" for the occurrence of a particular event. The question
becomes one of how confidence is established. One approach is to conduct experi-
ments from which relative frequencies are measured. In this manner, the degree
of confidence becomes the 1imiting value of the frequency of a favorable outcome
(Venn). Schoemaker criticizes this approach for three reasons. First, probabil-
jties taken as limiting values are never exact. Second, it is unclear what
constitutes a replicable experiment from which data can be used to form "confi-
dence". The outcome of a coin toss is often used as an example which produces
data from which can be inferred probabilities of heads vs. tails in the limit.

But if the experiment were exactly replicated, either heads or tails would always



appear. The uncertainty in the outcomes arises strictly because the experiment
is not exactly replicated. And the Tack of knowledge arises because the in-
fluence of the uncontrolled or inexactly replicated factors is not known. Some
may argue, though, that the level of information required to know the outcome of
a coin toss with certainty is unknowable (e.g., Heisenberg's uncertainty prin-
ciple in physics) and that an acceptable replication is the control of known
factors.

The third attempt to define probabilities is based on logic. This approach
begins with a set of axioms and definitions (Jeffrey) which are consistent with
intuitive notions of how the probability of an event may be determined. Then the
consequences of the relationship between probabilities are mathematically de-
duced. The deduced relationships are used to test the truth of some hypothesis
being questioned. In this instance, probability measures the logical, objective
evidence assessed by a rational person.

In contrast to the objective probabilistic schools described above is the
subjective or personal school of probability (Ramsey, de Finetti). In this view
probabilities are degrees of belief subject to provisions of consistency which
restrict the probability of events to be nonnegative and the sum of probability
of mutually exclusive events in a universe to be one. This view allows, for
example, the assignment of probability to a nonrepetitive event for which no
information to make objective inferences is available.

Subjective probabilities do not necessarily exclude experimental or other
data, but do not require it either. It is this relationship between experimental
observations, data and subjectively held beliefs which cause problems in our
interpretation of decision theory model results, particularly using the most
important decision theory paradigm, the expected utility hypothesis. To

illustrate the problem, consider this example. Suppose a probabilistic assess-




ment is being made about the amount of rainfall to expect in a particular

location. The measure of interest is "inches of rainfall per year," denoted "r".
Suppose variable measures have been kept for 50 years which can be used to form
the objective probability density function f(r) which measures the percentage of
time during the 50 year period that annual rainfall equalled r for 0 < r< b,
where b is the highest rainfall observed. The subjective expectations of the
decision maker need not equal f(r) according to the subjective school of proba-
bilistic measures. The event of interest, after all, is the likelihood of
rainfall in a year not observed. So the subjective distribution, influenced by
f(r) can be written as:
g(r) = h(f(r)) for 0 < r < b*

where h is some transformation of f and b* may differ from b.

Most decision theorists agree that g(r) is the relevant probability measure
to use when examining the actions of a decision maker. But suppose that no data
on r are available, yet the uninformed subjective view is that the distribution
is as before g(r). Without the supporting evidence of f(r), will the decision
maker act exactly as before? The answer is "probably not". Yet most of the
decision models ignore this fact. Knight made the distinction between the
objective probability distribution f(r) and the unsupported subjective probabil-
ity distribution g(r) which the decision maker may be unwilling to specify. The
former he referred to as a risky choice while the Tatter was considered uncer-
tain.

Modern decision theorists have dropped Knight's distinction because of the
difficulty already discussed in the measurement of objective probabilities.
Likewise, in most analyses, the confidence of the decision maker in the probabil-

ity measure g(r) is not discussed.




But Knight had a useful idea. Subjective probability must be uniquely
defined because of rationality restrictions. In theory they are treated as
perfect probabilistic measures of the choice environment. In practice they are
differentiated by the confidence of the decision maker in his probabilistic
information. So, the subjectively supported distribution g(r) will likely be
viewed differently than the unsupported distribution g(r) despite the fact that
they may be identical.

Unfortunately, decision theory has not learned how to incorporate this
confidence factor into a decision model, despite the recognition of its impor-
tance. One approach for resolving this shortcoming was suggested by Meyer and
Pope. They suggested that one could rely on sampling theory to reduce the
dispersion of the probability density function as the number of observations of
the elementary outcome increases. While this approach has some appeal, it also
has a serious limitation. The limitation is that the probability function must
be specified ex ante; usually it is assumed to be normally distributed. This
unfortunately requires too much. We simply are not prepared to define the shape
of the density function beforehand, especially in light of the fact that the
empirical distribution is the unbiased probability density function measure.

So decision theorists remain in a dilemma. Without specifying the proba-
bility distribution ex ante, the number of observations supporting the distri-
bution cannot be used to reflect the confidence in the probability measure. On
the other hand, to assume a distribution ex ante violates the generally accepted
view that probabilities of interest are subjective.

One possible solution is offered by Kahneman and Tversky who argue that
subjective probability formulations may not follow consistency reguirements. We
might add the hypothesis that their adherence to such rules may be directly

related to the objective data available. There does not appear, however, to be
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reliable empirical data to support such a claim, apart from the fact that it
resolves some heretofore unresolved decision paradoxes.

Now, having identified the probability measures in decision theory, we will
ignore them in the remainder of this review. In this we follow the established
approach. Probabilities will be treated as primitives whose values are deter-
mined by the decision maker who, we assume, holds them with complete confidence.

Risk Versus Uncertainty

Knight, in his seminal work, Risk, Uncertainty and Profit distinguished

between risk and uncertainty on the basis of the amount of information available
about the likelihood of outcomes of action choices. More specifically, risk
required empirical information to generate probabilities. Uncertainty lacked
this empirical base. However, the view that all probabilities are subjectively
formed makes Knight's distinction irrelevant. Thus we find ourselves needing new
definitions for risk and uncertainty.

Stiglitz appeared to be pessimistic about such definitional efforts. His
contribution on the subject was that: "Risk is like love, we all know what it
means but we can't define it." Despite such a pessimistic forecast we offer
definitions for both "risk" and "uncertainty." These definitional efforts are
described more completely in Robison and Fleisher. We draw heavily from our
earlier work.

We begin our definitional efforts by introducing a primitive into our dis-
cussion. Our primitive, an undefined word, we call an "outcome." Synonymns for
"outcome" include: events, happenings, response to an action choice, or results.
Qutcomes may be active or passive; they may occur as a result of a decision
maker's actions, or independent of the decision maker. They may result in an
improvement or a reduction in the decision maker's well being or Tleave him
unaffected. They may be foreseen or unforeseen, or result in changes which are

permanent or temporary. They are simply outcomes.




10

Uncertain and certain are adjectives used to describe outcomes. We cannot
describe risk or uncertainty without first associating the concepts with out-
comes. Uncertain outcomes are those with more than one possible outcome. To say
an outcome 1is uncertain is to say that there exists more than one possible
outcome with a positive probability assigned to its occurrence. Action choices
with only one possible outcome are defined as certain; the single outcome has a
probability of one of occurring. Since outcomes are either certain or uncertain,
statements comparing the uncertainty of outcomes are inconsistent with our de-
finition of the terms.

A class of uncertain outcomes which alter the well-being of either a well
defined class of decision makers or a single decision maker are called "risky
outcomes." "Riskiness," because it depends on the decision makers' attitudes and
likes and dislikes, cannot be made more precise without first defining whose
well-being is being used to give meaning to the concept. Once we define the
class of decision makers, we may be able to make comparative statements Tlike
action choice A's outcomes are more (less) risky than B's. The important point
to remember though is that an outcome's riskiness depends on the preferences of
an individual or a class of individual decision makers. It cannot and should not
be used interchangeably with the word uncertainty.

Qur definition of risky outcomes comes close but does not correspond exactly
with the ordinary use of the term risk. Part of the difference is due to the fact
that we use "risky" and "uncertain" as adjectives to describe an outcome, not as
nouns. "Risk" used as a noun, according to the dictionary, is the possibility of
loss or injury. In this sense risk is used synonomously with the possibility of
adverse outcomes. This definition is simply too restrictive for use in decision
science; it must include the possibility of favorable as well as unfavorable

outcomes.
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Utility of Income Versus Attitudes Towards Chance Taking

Risky action choices have uncertain outcomes whose occurrence alters the
well-being of decision makers. Comparative statements about the riskiness of
action choices then requires a statement or a description of the attitudes
towards chance taking and preference for the outcome by the decision maker.
During the past five years, researchers from several disciplines have been writ-
ing on the difference between utility of income, strength of preference, and risk
aversion (Bell and Raiffa, Johnson, Kryzysztofowicz, Miyamoto, Sarin). We in-
troduce this distinction with an example.

Suppose you face a risky event whose outcomes measured in dollars are either
-$500 or zero. How much would you pay for an insurance policy which protected
you against the possible loss of $500? The dollar figure given can be called the
certainty equivalent, CE, for the risky event. From the expected utility hypo-
thesis we could express your indifference between the insurance payment and the
lottery as:

(2.1) 172 u(-500) + 1/2 U(0) = U(CE)

Now answer the following question. Suppose you were faced with two risky
events--of which you must choose one. One lottery has a 1/3 probability of
obtaining -$500 and a 2/3 probability of obtaining zero. The second lottery has
a probability of 1/3 of an outcome of zero and a probability of 2/3 of obtaining
the certainty equivalent, CE, from the lottery A. Below we express these with

tree diagrams.

Lottery A Lottery B

2
3

o) —

i3 2
3 3
Probabilities

-comes i
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Most individuals express a clear preference for lottery A or B despite the
fact that the expected utilities of the two lotteries are equal.

(2.2) 1/3 U(-500) + 2/3 U(0) = 1/3 U(0) + 2/3 U(CE)

A clear preference for lottery A or B is inconsistent with the earlier
indifference between the lottery and the payment of the insurance premium. The
inconsistency arises, we hypothesize, because of the preference for or the aver-
sion to chance taking or gambling. This preference for or aversion to gambling
or chance taking is separate from the utility of income which might be measured
by ascertaining a level of income, y, at which the satisfaction gained from
increasing from y; toy would equal to the satisfaction of increasing one's
income from y to ¥y where ¥ £ YL Yo In other words, we can measure the simple
utility for income by finding X such that:

(2.3)  U(y) - Uly;) = U(y,) - Uly)

Arbitrarily assigning utility values to U(yl) and U(yz) allows us to solve for
U(y). Repeating the procedure allows the assignment of utility values to other
income values. Note that this method for determining the utility of income
involves no concommitant assignment of probabilities. Utility measures derived
in this manner, therefore, involve no chance taking. The mathematical psycholo-
gists refer to utilty of income derived in this manner as a measure of strength
of preference (Sarin).

The difference between utility functions derived using the technique de-
scribed above rather than the certainty equivalent or the Ramsey method is
reflected in their curvature. Miyamoto has hypothesized that utility functions
derived without forcing the decision maker to take chances are more nearly linear
than those derived using certainty equivalent or Ramsey methods.

The bending of the utility function measured by comparing risky choices does

not necessarily imply an aversion to or a preference for chance taking. An
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individual may have diminishing marginal utility and a preference for chance
taking which, when combined, may result in either a concave or a convex utility
function. As a result, we should not confuse the bending of the utility function
with any particular attitude towards chance taking.

So what do our utility functions tell us? If they are derived by offering
choices between a lottery and a certain income, the measure is a confounding of
preferences for income and chance taking and is only a reliable measure in the
absence of preference for or aversion to chance taking or in the comparison of
two risky choices. This unusual state of neutrality toward chance taking is the
basic assumption underlying the expected utility hypothesis.

Unfortunately we have become accustomed to using the terms risk averse, risk
neutral and risk preferring to describe concave, linear, and convex utility
functions. There is, we believe, little hope for correcting this misuse of the
terms. However, we should recognize that preference for, aversion to, or neu-
trality towards risk or chance taking are attitudes distinct from the utility
measure of income.

To be consistent with established use of the terms risk averse, risk neutral
and risk preferring we propose the following. Decision makers whose utility
functions are obtained by offering choices between lotteries are risk averse,
risk neutral or risk preferrers over the income ranges which their utility
functions are respectively concave, linear or convex. Requiring that the utility
function be measured using comparison between lotteries assures us that atti-
tudes towards chance taking as well as preference for income are included in the
measure, and that the bending of the utility function is a composite measure of
the two influences. This definition does not, however, allow us to determine the

respective effects of preference for income and attitude towards chance taking.
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To separate definitionally the influences of attitudes towards chance tak-
ing and preference for riskless income y, we follow Krzysztofowicz and refer to
measures of the latter as value functions, v(y), defined over income Y. The
mapping w(v(y)), which accounts for attitudes towards chance taking as well as
preference for income, we refer to as the utility function u(y) where

(2.4)  u(y) = w(v(y))
where w is an individual's attitude towards chance taking.

Riskiness Versus Preference

Our lack of distinction between strength of preference for income and atti-
tudes towards chance taking has lead to a related misuse of the words riskiness
and preferences.

Earlier we defined risky events as uncertain ones whose outcomes may alter
the well-being of decision makers. A problem arises when we make statements such
as action choice A is riskier than action choice B and infer that A is less
preferred than B. This implies not only an ordering of action choices according
to preference, but also an ordering of decision makers according to their aver-
sion to chance taking.

To make the distinction between uncertain and risky events more precise
consider the following example. Decision makers 1 and 2 are considering action
choices A and B whose outcomes are measured in dollars and have expected values E
and variances 02 of (EA’ UAZ) and (EB, 032) respectively for action choices A and
B. Moreover, let EA > EB and cﬁz > 682‘ Therefore according to our definition,
events associated with action choices A and B are uncertain. Moreover, since
both decision makers' well-being will be altered by the outcomes the action
choice outcomes are also risky. Now since JAZ > GBZ can we say A is riskier than

B? What if for individuals 1 and 2, who both have diminishing marginal utility

for income and are adverse to risk taking, individual 1 prefers A and individual
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2 prefers B? Then if riskier is to be used synonomously with "preference for" by
"risk averse" decision makers variance is not an appropriate risk measure; it
will only become such for decision makers whose utility function is a concave
down quadratic function and whose distribution of events associated with action
choices have an economic expectation.

Thus, measures of riskiness which imply "preference for" by "risk averse"
decision makers are obtained only after specifying the class of decision makers
for whom the measure applies. We also now recognize that orderings of action
choices or decision makers must be based on a composite functional measure of
attitudes towards chance taking and preference for income. We will return to
this subject in Chapter 5.

Summary

Qur definitional base has now been established. Probability measures are
subjective. Thus the distinction between risk and uncertainty which depends on
the distinction between empirically derived and distributions without an empir-
ical base is largely rejected. In its place we propose that when there is more
than one possible outcome, we refer to them as uncertain. When these outcomes
may alter the well-being of decision makers, we describe them as risky. Risky
outcomes then are a subset of uncertain outcomes.

Action choices facing decision makers are of interest when they have risky
outcomes. However, whether one action choice is riskier than another by the
nature of its outcomes depends on the utility of income and attitudes towards
chance taking of the decision makers.

Unfortunately some confusion has arisen in decision theory because scien-
tists have not distinguished between the two. We call the measures of preference
for riskless income value functions. The function which is a composite of the
value function and attitudes towards chance taking we refer to as a utility

function.
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Finally, to be consistent with decision scientists, we describe individuals
with concave utility functions (who may either prefer or be averse to chance
taking) as risk averse. Similarly, decision makers with convex utility functions
(who may either prefer or be averse to chance taking) as risk preferring.

While the descriptors applied to the utility functions are not clear, the

confusion introduced by altering them would, we hear, be worse. So we proceed.



CHAPTER 3
A REVIEW OF DECISION MODELS AND DECISION MAKING RULES UNDER RISK

Introduction

We previously defined an action choice as having uncertain outcomes if more
than one outcome was possible. Decision theorists are interested in describing
and comparing the outcomes of action choices with risky outcomes. As is custo-
mary in decision theory, the outcomes of interest are often expressed in terms of
net return to the decision maker. This measure, regardless of the unit of
denomination, is a net figure representing what is left for consumption after
meeting obligations. The decision maker is assumed to have more than one action
choice available which can be denoted as as 315 gy weny A The outcomes which
may result from an action choice depend on unknown or random states of nature
denoted S{s +ees Sp which the decision maker assigns probability measure
g(si)(1=1, ..., m). Consistency requires that g(si) be nonnegative, and g(si) +

g(sz) e g(sm) equal one. The interaction of the action choice of the
¢ L)y vews

sJ
m; j=1, ..., n) where Oi j is the outcome resulting from the occurrence of the i-

decision maker and the possible states of nature is described as Oi

th state of nature given the decision maker's choice of the j-th action choice.
The elementary outcomes Oi i may be in nonhomogeneous units. For example,

0 may be yields of soybeans per hectare, while Oi , may be yields of corn per

1,3
hectare. With such nonhomogeneous measures, the outcomes must be converted first

to a homogeneous measure. One approach is to measure the Oi j's in terms of

their exchange for money equivalent, a measure ¥; i where ¥; j is the cash value
of the outcome resulting from the j-th action choice occurring in the i-th state
of nature. This conversion to a homogeneous measure, is related to what Johnson

describes as "premaximization."

17
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TABLE 3.1

A TABULAR DESCRIPTION OF A DECISION ENVIRONMENT
INCLUDING ACTION CHOICES a3 (=1, ..., n) STATES

OF NATURE S5 (i=1, ...

, m) and PREMAXIMIZED OUTCOMES y.

1,3

Probability

Action Choices

States of
of Nature
Nature States % aj 4,
Action Choice Qutcomes
51 g(sl) yl,l‘ . i 5
5 g(s;) Yi,3
>m CJ(Sm) ym,l 'ym,n
Probability density functions
defined over ascending values gl(y) qn(y)

o ¥ij




FIGURE 3.1

A GRAPHICAL DESCRIPTION OF A SEQUENTIAL DECISION
PROCESS WHICH BEGINS WITH A CHOICE BETWEEN A AND B
AND DEPENDING ON THE OUTCOME RESULTS IN A SECOND

CHOICE BETWEEN a b b and b

1,1° 27,20 32,10 83 22 by 15 By 55 By 2,2




20

Table 3.1 describes this decision environment. The first column lists the
possible states of nature while the second denotes the subjective probability of
each state's occurrence. The next n columns designate the action choices avail-
able to the decision maker. The premaximized outcomes yi,j in the body of the
table define the interaction between an action choice and the occurrence of a
state of nature.

The simplicity of the decision environment described in Table 3.1 should not
lead one to conclude that it is irrelevant to complicated decision processes.
The outcomes may result from sequential decisions, multiperiod outcomes, or have
multiple attributes. Whatever the nature of decision environment, the choices
eventually reduce to action choices described in terms of their probability
density functions. Consider, for example, a sequential decision problem de-
scribed by the decision tree in Figure 3.1. The decision maker begins with a
choice beteen branches A or B. The possible outcomes of choosing A are a; or a,
while the possible outcomes of choosing B are b1 or b2. If the deciion maker
chooses A and 2 occurs, then the decision maker may choose either al,1 or al,2
each with its unigque probabilisitic set of outcomes described by f(al,l/al) (read
the probability of outcomes from action choice al’1 given that 3y has occurred).
Each branch constitutes a separate action choice, which depends on the
intermediate outcomes of the first choice between A and B.

Outcomes occurring over time can be treated using similar approaches. One
method is simply to find the present worth of the outcome received in the future.
This is accomplished in the premaximization process.

Despite complications, the decision problem eventually collapses to compar-
ison of actions 315 sees 3 described by their respective subjective probability
density functions gl(y), s SThg gn(y). The comparisons must be based on the shape

of these probability density functions. Measures of the distribution include the
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range of possible outcomes, the most likely outcome, or the mode, the center of
weight or mass of the function, referred to as the mean or, more generally, the
distribution's expected value. Another popular measure is the average deviation
of outcomes from the mean, the standard deviation, or its square, the variance.
A1l of these measures are helpful in describing and comparing probability distri-
butions of action choices. The two most commonly used measures in decision
theory though, are the expected value and variance of a distribution.

The expected value of the j-th action choice a; 82

(3.1) E(aj) o ‘ylj gj(‘ylj) T .VZ’J' gj(.Vz’j) F gan yl‘l‘l,j g,j(ym,j)
When gj(yi J.) equals 1/m, the expected value E(aj) is referred to as the mean.

To find how much, on average, an outcome varies from the expected value of a
distribution, we compute the variance of the action choice denoted oz(aj) equal
to:

(3.2) 9%(a;) = F5ly; ;5 - E@DZ+ e+ £5(0n o 5 - E(ag))P

J J
The squared deviations from the expected value provide an average squared dis-

tance of the outcome from E(aj). Taking the square root of cz(aj) provides the
average difference of an outcome from its mean.

A long tradition has designated that if two action choices a, and a; have
the same expected value, but the k-th action choice has a larger variance, it is
described as "riskier" or, in the terminology of this paper, it is more random

(Markowitz, Tsiang, Baumol).

| It seems acceptable to refer to a distribution as more random than another
if the probability weight is more dispersed. Certainly a distribution whose
outcomes deviate a greater distance from its expected value than another with the
same distribution qualify as being more dispersed.

Rothschild and Stiglitz point out that an increase in dispersion can result

from shifting probability from the center of a distribution to its tail or by
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adding a random variable with a zero mean to the original distribution. Both of
these actions will increase the variance of the probability distributions and
seem consistent with our notions of increasing randomness or risk.

Now we again enter murky definitional waters. We have discussed how a
probability distribution becomes more random. We equated it with an increased
variance or a spread in the probability function, leaving the expected value of
the distribution unchanged. It is not uncommon to have distributions compared
based on their riskiness. In fact, the mean preserving spread notion has been
used to order action choices according to their riskiness. But riskiness of
probability distributions connotes preference and we cannot indicate a prefer-
ence ordering unless we have a preference ordering rule. Moreover, any ordering
of probability distributions will likely vary between individuals precluding a
complete and general order of probability density functions.

So the task at hand appears to be a review of decision rules that describe
individuals' choice behavior under uncertainty. This theory as a minimum should
allow us to order individuals according to their attitudes toward risk. More-
over, once individuals have been described according to their attitudes toward
risk, we may use this information to order action choices according to their
"riskiness" or preferability. For this chapter, however, we are content to
summarize some of the decision rules (and the theories from which they are
sometimes obtained) which reduce action choices to a single index of preferences.

The Decision Problem with Uncertain Outcomes

We have discussed methods for describing action choices. In what follows we
discuss alternative approaches for indexing action choices so they can be ordered
according to preference. This chapter begins with the simplest of rules and
concludes with the expected utility hypothesis which Schoemaker describes as

"the most generally accepted decision paradigm." We could also add that it is
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TABLE 3.2
A COMPARISON BETWEEN THE i-th AND

Jj=th ACTION CHOICE

Action Choice

States Probability B 3
of of i j
Nature Nature States Premaximized Outcomes
%1 9(sy) P 1.
Sm q(Srn) ym,T ym,J
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the basis for almost all of the disciplinary work being done in the economics of
uncertainty.

A useful starting point is to review the decision problem introduced by
uncertainty. A decision problem exists when the possible consequences of a
decision are important and the best choice is not obvious (Anderson, Dillon, and
Hardaker). So we might begin by decribing a decision in which the choice is
obvious.

Using the language of Chapter 2, suppose a decision maker is faced with

action choices 315+ .. 5 @ whose outcomes Y1.1» + + + » ¥ p Occur with pro-

n
bability of one in state one. In addition, assume that for units of income y,
mor2 is preferred to less. As a consequence, if ] 4 is greater than 1,5 it 18
preferred. The obvious choice among action choices then depends on the magni-
tudes of yl,l’ ¢ % 8§ yl,n with the largest being preferred. The value of y
then serves as an index which can be used to infer a preference ordering. We
might, if we choose, transform the values of yl,l’ & W W g yl,n by a function U
to create a new index U(yl,j) (j=1, . . . , n) and the preference ordering would
be unaffected as long as the function U were a monotonically (always) increasing
function of y. As a result it makes 1ittle difference if we maximize the
function U(y) or the values of y to find the preferred action choice. They both
produce the same result. The traditional approach of economists has been to
ignore the function U(y) and maximize over y.

Now consider the complication introduced by uncertainty. With the intro-
duction of uncertainty, the comparison between action choices has been compli-
cated because of the multiplicity of outcomes which may occur with probability
greater than zero. Consider, for example, the pairwise comparison between the
i-th and j-th choices described in Table 3.2. Since there are m possible

7 - . "
outcomes under each action choice there are m~ possible comparisons between
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outcomes of the two action choices above. And if all pairwise comparisons of n
action choices each with m possible outcomes were made, the number of comparisons
N equals:

N = (n)(n-1) . . . (n-3)m?

a number very large even for reasonably small values of m and n. Moreover, the
comparisons are of little value unless an indexing rule is available to rate
differences in outcomes.

There is one case, of course, where the ordering is obvious even under
uncertainty. Suppose yk,i'i yk,j for k=1, . . . , m. Then no matter which state
of nature occurs, the i-th action choice has the most favorable outcome and is
preferred. This condition meets Hadar and Russell's first degree stochastic
dominance requirement. But this is a strong requirement, a requirement not
likely to be met in most comparisons. For those choices where the inequality
between yk’1 and yk,j are reversed over at least one of the states of nature,
preference will be unclear.

The comparison problem just described has led to rules which provide single
value indexes. The number of such indexing rules is large; only a small sample
of the rules will be discussed.

Maximax and Minimax Rules

The maximax indexing rule uses the maximum outcome which occurs under each
action choice as an index. It searches the outcomes under each action choice for
the maximum or the most favorable event. Suppose in Table 3.1 this is the
outcome ,i for the i-th action choice and yl,jfor the j-th action choice. The
values of yl,i and ¥1,j become the index values for the action choice and
indicate preference. If yl,j > yl,i for example, the j-th action choice is

preferred.
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The closely aligned alternative to the maximax rule is the minimax rule.
Instead of focusing on the most favorable outcome, it focuses on the least
favorable outcome. The index value becomes the worst that can occur. The
largest outcome of the worst possible, is, of course, preferred. The action
choice corresponding to the best of the worst outcomes is preferred.

The maximax and the minimax indexing rules describe the extremes of response
to uncertainty. The maximax rule which is based solely on the most favorable
outcome while ignoring all other possibilities reflects extreme optimism. In
contrast, the minimax rule which focuses on the least favorable outcome is pure
pessimism. To ignore the other possibilities and the probabilities with which
they may occur is certainly an incomplete evaluative criterion.

It follows that alternative rules could improve upon the maximax and minimax
rules by accounting for the probabilities and values of outcomes of alternative
outcomes. In the process these rules could possibly capture types of behavior
other than extreme optimism or pessimism. A step in this direction might be the
mixed strategy model. This model attempts to provide an intermediate response to

uncertain action choices. It does this by selecting an index, >, for each action

choice.
The method identifies both the maximum or most favorable outcomes,  —
E]
and ymax,j’ and the least favorable outcomes, ymin,i and ymin,j’ from the i-th

and j-th action choices respectively. Then using «, a linear combination is

formed equal to:

+ (1-a)
1-a)

; ' B .2 *
*ymax,1 min,i - 93

; *
*Ymax,j T ( min,j = Y]

where y? and yg become the preference indexes for the action choices. The rule
just described becomes operational, however, only when the decision maker can

supply the coefficient.
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The criticisms of this model are similar to those made of the minimax and
maximax models. Why ignore all the values between Yot and ymax? And why don't
probabilities matter? One response to these criticisms which applies to all of
the models just described is that no data are available from which subjective
probability density functions can be formed. As a result, the decision maker has
no basis to infer anything about the distribution beyond its upper and lower
values. In such a state of ignorance about the "true" shape of the probability
density function, the decision maker is only justified in using upper and lower
values in the decision rule used.

But if no data beyond high and low values is available, then each data point
in between should be equally weighted which results in a uniform probability
distribution shown in Figure 3.2. As a result, the models just described have
little practical relevance, except to exemplify the extremes of optimism and
pessimism.

Safety-First Models

An alternative to the maximax, the minimax and the mixed strategy model is
the use of some version of the safety-first model. In its simplest form, the
safety-first model focuses on a safety or disaster level of outcome Yqe This
outcome may be an income level below which a firm fails to meet its cash obliga-
tions or becomes bankrupt. In a developing country setting, it may be the
minimum level of returns reguired to satisfy survival requirements. Whatever the
interpretation of Vg this model assumes that its objective is to select action
choices in such a way that chances of experiencing yq Or worse are minimized.

We illustrate this rule with action choices a; and aj by drawing their
respective cumulative density functions in Figure 3.3. The cumulative density

functions are obtained from their respective probability density function by

summing. To illustrate, if 91(yk 1.) is the probability density function of the
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Probability of y

ymin Y max

FIGURE 3.2

A UNIFORM PROBABILITY DENSITY FUNCTION IN WHICH EACH OUTCOME BETWEEN
THE MAXIMUM Vi AND THE MINIMUM Y ARE EQUALLY LIKELY
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FIGURE 3.3

CUMULATIVE DENSITY FUNCTION Gi(y) and Gj(y) DESCRIBING
PROBABILISTIC QUTCOMES OF RECEIVING Y4 OR SOMETHING LESS



30

i-th action choices, its cumulative density function values at Yi is Gi(yk 1.)
k £l ]
= I gi(yj 1-) which obtains the sum of probability of outcomes equal to Yi .4 and

bgqai. The function Gi(yk,i) can be read as the probability of Yk, i or something
less occurring. The maximum value Gi (yk,i) can take on, of course, is limited
to the sum of all probabilities of Yk, i occurring, which is one.

Let Gi(yk,i) and Gj(yk,j) represent the cumulative density functions for
the i-th and j-th action choices. These are represented in Figure 3.2. At the
disaster outcome Yqo Gi(yd) exceeds Gj(yd) suggesting that the probability of ¥
or something worse occurring is greater with the i-th action choice. Then,
according to this version of the safety-first model, the j-th action choice is
preferred, despite the fact that it has less favorable maximum possible outcomes

)s

The safety-first model improves upon the earlier models by focusing on an

and a worst minimum outcome (y

(ymax,j h ymax,i) min,j < Ymin,j

outcome Yq which may be different than the worst possible or most favorable
outcome. And if Y4 marks the worst possible outcome for the decision maker, then
outcomes below Yq may be safely ignored. But, why ignore the likelihood of
outcomes more favorable than yd? Shouldn't the distribution of probabilities of
outcomes above Y4 matter? The answer is yes. To ignore what happens above Yq is
to assume that utility of y > Y4 is zero.

To account for outcomes above Yq in the context of a safety-first model,
Pyle and Turnovsky suggested three alternatives. The first rule attributed to
Telser  assumes that a decision maker maximizes expected returns
E(ak)(k=l, . . . , n) subject to the constraint that the probability of a raturn
less than or equal to a specified or disaster outcome yy does not exceed a
stipulated probability.

To illustrate this rule we return to Figure 3.3. Suppose the stipulated
probability for experiencing Ygq OF something less is a. All action choices

considered by the decision maker must have cumulative density function values at
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¥4 hot greater than a. In Figure 3.3, both Gi(yd) and Gj(yd) are drawn so they
meet the first constraint. Having satisfied this rule, the choice between the
i-th and j-th action choices are made based on their respective expected values.
In this case the i-th action choice is preferred.

A second safety-first rule proposed by Kataoka is based on a particular
probability value of G(yL). It selects the action choice which maximizes Y for
given probability values of G(yL). In effect, this rule maximizes the minimum
return which can be earned for a fixed value of G(yL).

To illustrate, let the fixed value of G(yL) or the lower confidence 1imit be
a. Then the action choice with the largest value of Y at a given value of G(yL)
is preferred. In Figure 3.3, Gj(y) is preferred to Gi(y) since the value of N,
exceeds Y,i

A third safety-first rule was developed by Roy. It identifies the optimal
plan as one having the smallest probability of yielding a return below some
specified level. This corresponds closely with the objective of avoiding a
disaster level of income as the sole objective of the decision maker.

An Alternative View

While safety-first rules focus on probabilities or specified outcomes, an
alternative approach considers all outcomes, given knowledge of the range of
outcomes, y, and their likelihood function, G(y). If each y influences the well-
being of the decision maker, why should any be ignored in the decision rule? If
indeed there is a disaster outcome whose occurrence has more impact on the
decision maker's well-being than another, this could be accounted for by weight-
ing it differently. As is most often the case, the simplest of these weighting
rules was the first adopted.

The rule in general acceptance in the eighteenth century when mathematician

Daniel Bernoulli was studying decision making was to weight outcomes according to
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their monetary value. The index became the expected monetary value of each
action choice and was used to rank the action choices of the decision maker.

This rule did what safety-first rules did not. It allowed each possible
outcome to influence the preference index. This feature and its simplicity has
made it a popular decision theory tool even today. One popular application has
been in linear programming models. By replacing uncertain parameters in linear
programs with their expected values, the outcome is the solution which maximizes
the expected va]ue.1

Bernoulli, however, found an inconsistency between the expected value rule
and the way decision makers actually behave. The inconsistency arose in a gamble
referred to as the St. Petersburg paradox. The gamble paid depending on the
number of flips of a coin required to obtain heads. If, for example, heads
occurred on the first flip, the gamble paid $2. If heads occurred on the second
flip, the gamble paid (52)2 or $4. And if heads occurred on the third flip, it
paid ($2)3 or $8. The probability of heads occurring on the first flip is 1/2,
1/4 on the second flip, and 1/8 on the third flip and so on.

The expected value of gamble E(G) then could be written as the sum:
(3.3) E(G) = 1/2 (%$2) + 1/4(%4) + 1/8(%8) + .
The value of each individual element in the above gamble is one. The number of
elements, however, is infinitely long so that sum, or the expected value, of the
gamble is not finite.

If decision makers played this gamble according to the expected value rule
they should pay any "large" amount to play since the expected value of the gamble

is infinite. But as Bernoulli observed, the amount decision makers were actually

1For a more modern criticism of this approach, see Stovall.
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willing to play was a finite (small) amount. This observation led Bernoulli to
conclude that decision makers maximized some function other than the expected
va]ue.2

He proposed they maximize the log function of the premaximizing outcomes.
This has become known as the Kelly criterion and is still popular today. The
Kelly criterion, it turns out, is equivalent to maximizing the geometric mean of
a gamble. And as others have pointed out, maximizing the geometric mean will
maximize either the expected value of terminal wealth or minimize the number of
plays required to achieve some wealth in a repeated gamble (Bierman).

The Kelly criterion does, however, have its shortcomings. Negatively
valued outcomes are not defined by a log transformation. As result, an addition-
al transformation would be required in order to maximize the expected log when
negative outcomes are involved. A second question which arises is, "Do decision
makers respond in identical ways, i.e., by maximizing the log or any other
function?" While this is an empirical question, the evidence appears to indicate
they do not (Love and Robison).

Still, the recognition that additional units of income may not be valued by
a constant amount was a step forward. The concept of diminishing marginal
utility of income corresponding to the log utility function was consistent with
the output responses to inputs with which physical scientists were well acquaint-
ed. For this contribution, Bernoulli is credited with the notion of utility of

income.

2Samue]son has questioned Bernoulli's conclusion. He asked: who has the
infinite sum required to pay the gambler should the most favorable occur? Since
the payoff is not available, no one should pay the large price to play.
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But the assumption of utility of income being mapped by the log function was
too strong an assumption to make. It remained for Ramsey and later von Neumann
and Morgenstern to introduce the generalized expected utility theory which re-
mains the most generally accepted decision paradigm.

The Expected Utility Hypothesis

The expected utility hypothesis (EUH) asserts that if a decision maker's
behavior is consistent with a set of axioms which we will describe, they will
weight outcomes according to a personalized (possibly unique) function U(y). The
expected value of U(y) provides the single-valued index which orders action
choices according to the preferences or attitudes of the decision maker.

A complete development of the EUH is found in the landmark work of von
Neumann and Morgenstern and reviewed in Luce and Raiffa. Only the highlights of
the theory are presented here.

The EUH assumes decision makers obey the following axioms and initial condi-
tions. The initial conditions are that the decision makers can identify a set of
action choices 815« + + 5 A and can associate with the action choices proba-
bility density functions gl(y), e gn(y) respectively. The probability
density functions are subjective and are assumed to obey the calculus of
probability. The axioms of behavior fundamental to the EUH include the
following:

1. Ordering of Action Choices

For any two action choices, 3 and 35, the decision maker either prefers 3,
to a;, Or is indifferent between them.

2. Transitivity Among Choices

If 3 is preferred to 25, and a5 is preferred to 25, then ] must be preferred

to a3.



3. Substitution Among Choices

If a; is preferred to 3y, and a, is some other choice, risky choice pa; *+ (1-
p)a3 is preferred to another risky choice Pa, + (l-p)aB, where p is the
1ikelihood of occurrence.

4, C(Certainty Equivalent Among Choices

If 3 is preferred to a5, and a5 is preferred to as, then some probability p
exists so that the decision maker is indifferent between a, or receiving
3, with probability p and a5 with probability (1-p). Thus a, is equiva-
lent in satisfaction to the compound lottery pa, + (l-p)a3. If 3, is a
single value whose probability of occurrence is one, it is an income
received with certainty and is equivalent in satisfaction to the lottery.
In this context, 3, is referred to as a certainty equivalent income.

If a decision maker obeys these axioms, a utility function U(y) can be
formulated which reflects the preferences of the decision maker (Hey). A discus-
sion of the procedures for measuring U(y) follows while an overview of how well
they predict decision maker's actual choices is reserved for Chapter 4. Infer-
ences which can be made from the measurements of U(y) is the subject of Chapter
- 5

Measuring Decision Makers' Utility Functions

If each individual has a unique weighting of outcomes, then prescription of
an action choice requires that the unique preference function U(y) be measured.
But before proceeding to that subject, we might ask why we need to measure the
preference function at all. Why not present the decision maker with the action
choice set and Tet him make a selection based on internal and unrevealed prefer-
ences? This, of course, is the procedure followed in the largest number of

decision making processes.
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But there are other decision situations where the action choice set is so
large as to preclude its careful evalution by a decision maker. For example,
consider an investment in a mutual fund. Currently there are 500 mutual funds
exclusive of money market funds. Rather than make an effort to learn all about
the funds himself, the decision maker may consult a broker. But the broker must
have some information about the decision maker's investment preferences before a
recommendation could be made.

In another case the action choice set may be the result of a computer
simulation which creates a large number of possible action choices. In the case
of Monte Carlo simulations, some screening device is required before a set of
choices small enough for evalution by the decision maker is available.

In both cases, some characterization of the decision maker's preference is
required before the analysis can proceed. For these reasons and others a
description of the investment attitudes of the decision maker are regquired. We
measure the function U(y) for each decision maker by means of the expected
utility hypothesis (EUH).

For a complete discussion of how the measurement procedure occurs, the
reader is referred to an excellent technical guide by Halter and Dean, Chapter 4
in a more recent text by Anderson, Dillon and Hardaker, or a recent article by
Halter and Mason.

The measurement of U(y) begins by assuming decision makers can identify the
most and least favorable outcomes Yy and Y respectively. To measure U(y) over
the range of Yy and Y the analyst constructs hypothetical gambles using various
values of y between Y and y,, and probability value p. All of the procedures
seek to find an indifference between two lotteries or a lottery and a sure
outcome by either adjusting the value of the outcome or the probability of
occurrence. Finding this indifference supplies one new piece of information

about the decision maker.
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The procedure which adjusts probability to find the indifference point
proceeds as follows. Assign Y the value U(yL) and y, the value U(yH). This is
permitted as long as U(yH)> U(yL); i.e., the ordering of y, and y is not
reversed. Then choose an intermediate value of ¥eo such that o< Yy © Yy Since
Yy is preferred to Y and I is preferred to Y then according to the certainty
equivalent axiom, there is a probability p such that the decision maker is
indifferent between the Jlottery with expected value Py + (l-p)yH and . 8
received with certainty. The probability value p which makes the two choices
equal in preferences is supplied by the decision maker.

The utility value of y_, U(ym),which indicates indifference can be solved
from the expression:

(3.4) Ulyy,) = pUly.) + (1-p)U(yy)-

Now three points on the function U(y) are known U(yL), U(yH) and U(ym). But
others can be obtained by forming a new lottery out of Yy and Yo OF and Yt To
illustrate, if yy were $1,000, y_ were $0, and Y, Were $400, we might begin by
assigning $1,000 the utility weight of 100 and $0 the utility weight of zero. If
the indifference probability supplied by the decision maker were p=.4, then the
utility weight assigned to $400, U($400) is equal to 60:

(3.5) U($400) = (.4)(0) + (.6)100

= 60.

This approach, referred to as the von Neumann-Morgenstern model by Officer
and Halter, has particular application for decision problems with discrete out-
comes or outcomes not measured in the same units but which can be ordered. In
such a case the probabilities, not the outcomes, are adjusted to indifference.

The modified von Neumann-Morgenstern is a similar model except that it
adjusts the outcome to find indifference. In this model we search for an outcome

Yeg which, if received with certainty, equals the lottery whose expected value is
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1/2 (yL + yH). The utility value assigned to Yeg can be found from the expres-
sion:
Ulyeg) = 172 (U(y.) + Ulyy)).
To illustrate, if Yog Were $350 and U(yL) and U(yH) were the values assigned
previously, then
U(yCE) = 1/2(0+100)
50.

The difficulty with both of the approaches is that they assume the decision
maker is neither averse to nor prefers chance taking. Otherwise attitudes
towards chance taking are confounded with utility of income using the von
Neumann-Morgenstern or the modified von Neumann-Morgentern approach.

There are, of course, more complicated lotteries which could be constructed
to find indifference. If one wishes to compare two uncertain lotteries, the
Ramsey method is suggested. It starts with outcomes ¥t Yy and solves for
the probability p which makes the two lotteries below equal in preference, that
is,

1/2(U(y,) + Uly,)) = pU(y) + (1-p)Uly,).
Knowing that the value of l/2(U(yL) + U(yH)) and p allows us to write:

Ulyy) = (172(U(y ) + Ulyy) - pU(y ))/1-p.
Now three points have utility associated with them U(yL), U(yH) and U(yl). This
allows us to construct still other Tlotteries and associate utility with still
other points.

When enough utility values are available, a utility function can be fitted
to these points using either graphical or statistical procedures. The statisti-
cal approach consists of postulating a functional form for utility and regressing
it over the data points. Some error will be introduced in this process because

the function selected will not exactly match the data. Nevertheless, the
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expected value of the estimated function will serve as a single valued index for
ordering action choices according to preference.

The utility measurement procedures all consist of searches for indiffer-
ence. To find the indifference points, flexibility in the construction of action
choices is required. As a result, the action choices are always hypothetical in
nature, although the analyst may try to relate the hypothetical outcomes to real
world events with which the decision maker is familiar. Since the utility
function is usually derived for applications in other settings, it remains an
exercise in mind experiments. Whether or not the utility information obtained
from such experiments has applicability for real world decisions is an issue not
fully resolved, although Binswanger claims his Indian study supports such a
claim.

Properties of the Function U(y)

There has been some confusion in the past over whether the function U(y)
measured using one of the methods described is a cardinal or an ordinal function.
The basic difference between an ordinal function and a cardinal function is the
following. An ordinal function orders outcomes according to preference. Given
outcomes Y1 <¥p < ¥Y3< ¥, 2 monotonic ordinal function would have values such
that U(yl) < U(yz) < U(y3) < U(yq). A cardinal function U*(y) could do more. If
U*(yz) - U*(yl) < U*(ya) - U*(y3) we could infer that the additional satisfaction
of increasing one's income from Y3 to Yy was greater than going from an income of
yl to Ype This could not be inferred from the von Neumann-Morgenstern function

U(y) (Schoemaker)3.

3An axiomatic system which allows for orderings on differences has been
provided by Debreu.
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Since the origins and scale are assigned arbitrarily when defining U(y),
this ordinal function is not unique. Any positive linear transformation would do
Just as well. For example, suppose in the comparison of action choices a; and aj
that their respective probability density functions were preference ordered as
follows:

J
The same preference ordering would be preserved by any function U*(y) equal to

zU(y)gs(y)  zU(y)g;(y).
Y

a+bU(y) where a and b are arbitrary constants and b>0. This can easily be shown

from the expression

z (a+bU(y))g;(y)> = (a+bU(y))g;(y)
4 4  f
which simplifies to

azg.(y) +bzU(y)g,{y) aczg,(y) +bzU(ylg;(y).
vy y J y! y ;
Since zgj(y) and 291(y) equal one, we can subtract the a's from both sides,
cancel the positive parameter b and obtain the original inequality.

Concerns About the EUH

Despite the prominence of the EUH as a decision tool under uncertainty, it
does have its detractors. They have raised questions such as: Are decision
makers' true tendencies revealed in a game-like setting?, Are preferences over
time constant?, And while all theories of behavior only approximate actual real
world behavior, can a theory which includes income as its only independent agru-
ment be accurate enough to be useful? Certainly the precision assumed in the EUH
is unwarranted. Neither probability density functions nor utility functions can
be measured without error. Therefore, we are left with an empirical question:
How accurate is the EUH in applied settings? The next chapter reviews the

evidence.




CHAPTER 4

EVALUATING THE PREDICTIVE ABILITY OF
EXPECTED UTILITY MAXIMIZING MODELS'

Introduction

The expected utility hypothesis (EUH) is primarily a prescriptive tool. It
suggests that if decision maker behavior conforms to certain axioms, they will
maximize their well-being by selecting action choices which maximize expected
utility. We now ask whether decision maker behavior is consistent with the
axioms. And if so, can the EUH be used as a predictive tool? We proceed to
evaluate what we know about the predictive behavior of the EUH. But before doing
that, we must carefully describe what conditions are required for a test of the
EUH's predictive ability.

Constructing a Test of the Expected Utility Hypothesis

To claim that the EUH can be used to predict behavior is to claim that the
EUH is a supported theoretical hypothesis; that is, we hypothesize that decision
makers behave as if they were expected utility maximizers. According to Giere,
support for a theoretical hypothesis requires an experiment or set of
observations which 1involve the hypothesis, initial conditions, auxiliary
assumptions, and a prediction. For the theoretical hypothesis to be supported,
two conditions must be met: (1) if the auxiliary assumptions, initial
conditions, and hypothesis are true, then a correct prediction will probably
follow; and (2) if auxiliary assumptions and initial conditions are true and the
hypothesis is not true, then the correct prediction will probably not be

observed.

1Some of the ideas in this chapter also appeared in a 1982 American Journal
of Agricultural Economics article written by the senior author of this report.
This chapter and the article were prepared simultaneously. Support was provided
by both USAID and the Michigan State University Agricultural Experiment Station.
Appreciation is expressed to the Journal for their permission to use parts of
that article in this chapter.
41
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The word "probably" in the two conditions identifies the theoretical hypo-
thesis as probabilistic rather than deterministic. The model will likely omit
some features of the real world affecting decision making behavior. So we do not
expect perfect prediction, only that the evidence does not permit a rejection of
the model -- since truth of the model itself cannot be established.

Condition one requires an experiment involving the initial conditions, aux-
iliary assumptions, and hypothesis, which are used to make a prediction. The
experiment's prediction is compared with actual decisions to determine if
condition one is satisfied. To satisfy the second condition, the experiment's
result must have a low probability of being predicted from an alternative hypo-
thesis. If the same prediction results from many alternative hypotheses, the
second condition would not be satisfied and the theoretical hypothesis is not
fully supported.

Suppose we wish to examine the support for the theoretical hypothesis that
decision makers order action choices according to the expected utility hypothe-
sis. The hypothesis in such a test is the EUH. The initial conditions are the
choice set with consequences described in probabilistic terms and the decision
maker's utility function. The auxiliary assumptions are (a) that the decision
maker's utility function and the probability density functions describing the
consequences of the action choices are measured accurately and (b) that the
axioms underlying the EUH are valid. Alternative theoretical hypotheses might be
that decision makers order choices based on (a) expected profits, (b) safety
levels of income, (c) lexicographic utility functions, or (d) expected losses.
Finally, the prediction is the action choice selected by maximizing expected
utility. Condition one requires that the prediction matches the decision maker's
actual choice. Failure to predict the actual choice forces a rejection of either
the hypothesis, initial conditions, or auxiliary assumptions. Obtaining the

prediction from an alternative model causes the EUH model to fail condition two.
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Describing the Choice Sets

To examine support for the EUH, two choice sets are required. One set is
used to obtain the decision maker's utility function. From the second set, an
expected utility-maximizing choice is predicted which is compared with the deci-
sion maker's actual choice.

At least two approaches can be used to construct choice sets. One approach
is to describe the actual choice set facing an individual. This method is
referred to as the actual economic behavior approach. For complex choice sets,
however, the actual economic behavior approach is difficult and costly and there-
fore rarely used. As a result, researchers more often construct artificial
choice sets. This approach is referred to as the experimental appr‘oach.2 The
experimental approach has been criticized because it forces the decision maker to
respond to hypothetical questions. If the decision maker is an expected utility
maximizer over all his resources, including his time, he may respond to hypothe-
tical questions in such a way that minimize his cost (time) of participating
rather than reflecting his preferences for the hypothetical outcomes.

To overcome this criticism, a third approach can be used. This approach,
also an experimental one, satisfies the initial conditions by artificially con-
structing a choice set using significant outcomes and is referred to in this
paper as the experimental approach with significant outcomes. The limitation of
such an approach, of course, is that not all experiments can afford to reward
respondents with significant outcomes. The exceptions would be in developing
countries where significant outcomes may be small levels of income relative to

the budget of the researchers.

2This definition of the experimental approach differs from Binswanger's.
His definition of the experimental approach is described in this paper as the
experimental approach with significant outcomes.
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Identifying the Decision Maker's Utility Function

The remaining initial condition to be satisfied before proceeding with a
test of the EUH is to identify the decision maker's utility function. Identify-
ing the decision maker's utility function, however, requires that he be confront-
ed with alternative action choices so that indifference can be established be-
tween alternative uncertain action choices or between a sure outcome and an
uncertain action choice. Efforts to derive a decision maker's utility function
have almost always relied on the experimental approach for defining the choice
set, asking the decision maker to choose between hypothetical choices.

Several studies have assumed that decision makers' utility functions belong
to a certain family of functions, usually ones that are described by a single
parameter. Then, defining choice sets using either the experimental or actual
economic behavior approach, they use the actual choice of the decision maker to
solve for the parameter which identifies risk preferences. Examples of such an
approach can be found in Brink and McCarl, Binswanger, and Dillon and Scandizzo,
who all used an equilibrium slope on an EV set or an equivalent mean-variance
trade-off measure: Binswanger, and Grisley and Kellogg, who used partial risk-
aversion measures obtained for a specific gamble; and Dillon and Scandizzo, who
used single parameters from an assumed quadratic or power utility function.

While this approach may provide useful information about the distribution
of risk coefficients measured, inferring from a measured risk coefficient to a
utility function is an unjustified approach. Moreover, the reliability of these
coefficients in predicting expected utility-maximizing choices still needs to be
established. And, until there is evidence to support the assumption that risk
preferences can be inferred in this manner, the results of this type of study

cannot be used to evaluate the support for the EUH.
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The difficulty of meeting initial conditions aside, there have been satis-
factory studies made of the EUH. They are organized below according to how the
choice set was obtained. A separate class of studies reviewed examines the
validity of the axioms from which the EUH is deduced. In the first study
reviewed, the application of Giere's conditions 1is carefully considered.
Because of space constraints there is less mention made of Giere's two
conditions in the remaining studies.

Actual Economic Behavior Tests

Lin, Dean, and Moore constructed a comprehensive test of the EUH using the
actual economic behavior approach to evaluate risk preferences on large-scale
California farms. To describe the choices facing decision makers the authors
constructed an expected value-variance (EV) efficient set for six farmers in the
San Joaquin Valley. Utility functions were obtained using the experimental
approach and predictions about farm organizations were made for each decision
maker. The predictions resulted from maximizing expected utility for each
decision maker over their respective choice sets. The test consisted of
comparing the predictions with observed economic behavior. Condition two was
satisfied by making predictions using expected profit and lexicographic models.

In only three of the six cases did the EUH model predict better than a
lexicographic model or an expected profit-maximizing model. In none of the cases
did the EUH model predict the actual farm plan followed by the decision maker.
In fact, it would have been impossible for the EUH predictions to have made
correct choices because the actual choices were not members of the choice set
from which the predictions were selected. Thus, an important initial condition
required for the test -- correct identification of the choice set -- was

violated.
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The authors then reconstructed the experiment and modified the initial
conditions, restricting the decision makers' action choices to members of the EV
set. In this approach, the authors adopt the experimental approach to define the
choice set from which predictions are made. In the new test, the predictions
matched the actual choices for three of the decision makers and came closer in
the other three cases than the predictions from either the lexicographic model or
the expected profit model. These results support the EUH.3

The Lin, Dean, and Moore study is appealing because both conditions one and

two were used in the test. To meet condition one an experiment produced a test

which followed from the EUH, initial conditions and auxiliary assumptions. Then

condition two was examined to see if correct predictions could be obtained from -

alternative hypotheses. But as an application of the actual economic behavior
approach, it failed to satisfy the auxiliary assumption that the choice set was
accurately described because actual choices were not predicted nor included in
the choice set. Brink and McCarl experienced similar difficulty in their at-
tempts to model actual economic choices using the equivalent of a mean-variance

set. This evidence suggests that, except in very simple decision environments,

constructing a test of the EUH using actual economic behavior will be difficult.

A quite different lesson was learned from a test of the EUH made by Haneman
and Farnsworth. They used the EUH model to test whether or not the EUH model
could explain why one group of farmers adopted integrated pest management strate-
gies (IPM) while another group continued with conventional (chemical) control
programs. Using the experimental approach, they derive utility functions for
both groups. They found no significant difference in the risk attitudes of the

two groups; however, they did find significant difference in subjective

3Even stronger support for the EUH is implied by Lin and Chang. They
increase the number of correct choices using the EUH model by estimating pre-
ferences using a more flexible econometric model to describe utility functions.
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expectations on yields and profits between the IPM and chemical control groups
despite the fact that historically there was no significant difference.

Their study results showed that for thirty-five of the forty-four decision
makers either expected utility maximization or expected profit maximization pre-
dicted the pest control method actually being followed. And in five of the nine
cases in which switching control strategies was recommended, the subjective
probability density functions gave unclear preference signals.

While Haneman and Farnsworth produced a prediction consistent with the EUH
and met condition one, their test failed to meet condition two because the same
prediction was made by either the EUH model or the expected profit model. This
evidence is weak support or lack of support for the EUH. Haneman and Farnsworth,
however, infer something else. They infer that "subjective perceptions of out-
comes rather than the type of choice criteria or the nature of risk preferences
explain (the prediction)" (p. 19). The confirmation of this hypothesis, however,
requires more testing.

The Experimental Approach

In contrast to the lack of tests using the observed economic behavior
approach, the EUH has been rigorously tested in an experimental setting, and the
experiments and tests have been generally well constructed. A landmark in this
class of study was Officer and Halter's work with Australian wool producers. In
this study and similar ones, the focus was on the auxiliary hypothesis: can we
in fact accurately measure a decision maker's utility function?

The von Neumann-Morgenstern model for obtaining utility functions does so
by finding a decision maker's point of indifference between the payoff associated
with a gamble and a sure outcome. This method of eliciting preferences has been

criticized (Young, et al.) because (a) the act of gambling itself may have
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utility or disutility for the decision maker, and (b) the decision maker may have
preferences for particular probabilities. Including these two hypotheses re-
sults in a model somewhat different than the EUH model. The EUH model proposed
that decision makers maximize the expected utility of wealth plus income. Let-
ting U represent the utility function and income plus wealth be y, the EUH
recommends:
(4.1) maximize E[U(y)]
where E stands for the expectations operator evaluated over all possible
action choices. What Officer and Halter suggest is that a better
model might be either
(4.2) maximize E{ULy,f(y)]1?
(the modified von Neumann-Morgenstern model), or
(4.3) maximize E{U[y,q,f(y)]:
(the Ramsey model), where g represents a perceived level of gambling and
f(y) represents particular probability levels associated with each
income plus wealth level.

Lacking a theory that explicitly incorporates g and f(y) into the decision
model, Officer and Halter hold them constant and examine predictions for models
(1), (2), and (3). The predictions from models (2) and (3) are then compared
with predictions using the model described in equation (1).

To conduct the experiment, the authors needed a choice set separate from the
one used to measure preferences. Like Lin, Dean, and Moore they constructed one
equal to an EV choice set. The members of the choice set consisted of alterna-
tive fodder reserves, a decision problem which was familiar to the decision
makers. In this they avoided a criticism of later tests that the choice set was

unrealistic and, therefore, not of interest to the participants.
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Using carefully measured utility functions described in equations (1), (2),
and (3), predictions from thirteen possible fodder reserve choices were obtain-
ed. The first test was to compare these predictions with actual choices made.
And since the choices were restricted to the EV set, the conditions for the test
were not met. The second test was to compare predictions from alternative
hypotheses, that decision makers select action choices on the basis of minimum
expected cost, model (1), model (2), or model (3). The result was that the
Ramsey model, model (3), gave accurate predictions 76% of the time and was
superior to both models (1) and (2). The criterion of minimizing expected cost
gave accurate predictions only 58% of the time. Moreover, the authors found that
after reconsideration and reapplication of models (2) and (3), their accuracy
improved. But before reconsideration, expected cost minimization sometimes
performed better than model (2), and always better than model (1).

The evidence supports rejection of the naive EUH model. Without attention
to decision makers' attitudes toward gambling and probabilities, the model does
not predict any better than its competitors such as expected cost minimization
models.

There is, however, a disturbing feature of the Officer and Halter study and
later ones that use the Ramsey model to predict preferences. If utility of wealth
is not independent of probability measures, then applying the EUH would produce
unbiased results only if the action choices are described by uniform probability
density functions. Applying the EUH over generalized probability density func-
tions would affect both the weighting of the utility as well as utility. This
lack of independence between probabilities and income would bias the resulting
expected utility measures. Notwithstanding this bias, reasonably accurate pre-
dictions were obtained, demonstrating that as a practical tool the EUH cannot be

rejected. The Officer and Halter study also suggests that the EUH may often fail
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to predict accurately because the auxiliary assumption of accurate utility
measurement was not satisfied.

Still the question remains: can the experimental approach based on re-
sponses to hypothetical questions be reliably used to obtain utility functions or
to test the predictive ability of the EUH in important real world decisions?
Binswanger's study ~rovided some answers. He found that before participating in
gambles with significant outcomes, decision makers demonstrated different
degrees of risk aversion when they played hypothetical outcome games than in an
actual game with significant outcomes. Once having participated in the gambling
experiment with significant outcomes, though, there was no statistically
significant difference between response to hypothetical choices and choices with
singificant out-cmes.

This resul: d=mecnstrates that learning does occur in an experiment with
significant outc-mes. A guestion which remains is whether or not experience with
actual outcomes is required for the learning. Officer and Halter and Webster
also observed l!earning without exposing the respondents to actual outcomes.
Probably the mo:t famous learning experience reported in the literature was by
Savage, who agrezd to alter his action choice when confronted with evidence that
he violated the independence axiom of the EUH.

At issue stiil is whether or not the learned responses to gambles more
nearly match zctual choices. And, is there a similar learning curve which alters
actual responc:s to economic choices if the choices are made repeatedly? More
studies like Binswanger's are required to answer such questions.

Returning to the number of arguments in a utility function question, King

and Robison assumed that decision makers maximize an expected utility model with

known arguments income + wealth, and unknown arguments, X;s . « . »Aqs which may
or may not be held constant. They argued that decision makers maximize

(4.4) E U(y,X Xo)

1, - . . n
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Arguments Xl through Xn are not measured. The model instead measures
(4'5) E U(.‘/,a) ’
where € is an error term resulting from failure to hold constant or measure

variables Xl, y W w ek This approach suggests that decision theorists are

n
naive to believe a single-valued, single-argument utility function can capture
all of the information that is needed to predict preferences, or that they can
predict a single preferred choice from a choice set with perfect accuracy while
accounting for only one argument in the utility function. Using an efficiency
criterion developed by Meyer which is consistent with the EUH, King and Robison
measured an interval around risk preferences, where risk preferences are
measured according to the Pratt-Arrow absolute risk aversion function. Recog-
nizing that their measurements are only accurate in terms of quantifiable
probability measures, they offer a somewhat unique approach toward risk
measurement. First, they identify as a Type I error the rejection of the
preferred choice from a choice set and as a Type Il error the failure to order
pair-wise comparisons of action choices. Since the EUH with a single valued
utility function discriminates on the basis of any absolute difference, it has
the greatest likelihood of committing a Type I error and a small chance of
committing a Type Il error. That is, given any choice set it will select only
one choice; the probability that this may not be the preferred choice is the
likelihood of a Type I error. On the other hand, all pair-wise choices will be
ordered so that the probability of a Type II error is nearly zero. Efficiency
criteria such as first-degree and second-degree stochastic dominance have a

lower likelihood of producing a Type I error but may result in large Type II

errors because of their failure to distinguish preferences.4

4First degree stochastic dominance orders action choices into efficient and
inefficient sets for decision makers who prefer more to less. Second degree
stochastic dominance orders action choices into efficient and inefficient sets
for risk averse decision makers.
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As an alternative, the authors proposed an interval that allows a tradeoff
between Type I and Type II errors. The interval that King and Robison measured
can be of any width or shape. The larger the width, the larger will be the
Type II error and the smaller the Type [ error. While the interval procedure may
avoid many of the problems of discovering a utility measure consistent with the
preference orderings of individuals, its ability to do so effectively is related
to the width of the interval. Furthermore, methods for determining the optimal
width are not fully developed at this time. A major benefit of the interval
approach is that it is much easier to apply since it only requires an ordering of
action choices, not the discovery of indifference points.

To test Giere's first conditior using the interval approach, three ques-
tionnaires were administered to a 3jroun of graduate students in agricultural
economics. The first questionnaire mezsured risk intervals of different widths
at different income levels. The s2cound questionnaire derived utility functions
using the modified von Neumann-Mcrgenstern model with neutral probabilities.
The third questionnaire presented cecision makers with a series of choices be-
taeen pairs of distributions. The experiment required that the risk interval
measures and the utility functions p-a2dict actual choices in each case; the test
was the comparison of the predicted cnoices with the actual.

In this study, the EUH model predicted correct choices 65% of the time, or a
35% Type I error. This evidence alone is a marginal pass of Giere's condition
one; it also ordered choices 100% of the time for a zero Type II error. The
largest interval predicted correct choices (i.e., did not reject the preferred
choice) 98% of the time, while the smallest interval predicted correct choices
75% of the time, or a 2% and a 25% Type I error, respectively. The largest
interval meznwhile ordered choices 9% of the time, and the smallest interval

ordered them 91% of the time for Type II errors of 91% and 9%, respectively.
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The conclusion from the King and Robison study is that the EUH is a useful,
but not a perfect, predictive tool. Also, their study points to an important
question: what is the optimal tradeoff between Type I and Type II errors and
what factors affect this optimal tradeoff? More discriminating models will
likely come at a cost of increased Type I errors. Less discriminating models
will increase Type II errors.

Experimental Approach with Significant Outcomes

Two studies have been reported recently using the experimental method with
significant outcomes approach (Binswanger; Grisley and Kellogg). Both studies
were similar in that they constructed an artificial choice set using significant
outcomes and measured risk aversion using a partial risk aversion measure
(Zeckhauser and Keeler; Menezes and Hanson). Both studies found a distribution
of risk aversion measures. While much useful information was obtained in these
studies, it is disappointing that no evident test of the EUH was produced. To
have conducted a test of Giere's condition one would have required an additional
choice set be constructed, different from the first. Could they, for example,
have derived utility functions using significant outcomes and then used these to
predict actual economic choice? Perhaps a future study could follow such an
approach.

Examining the Axioms

A different approach towards testing the EUH is to examine the axioms that
define rational behavior and ask whether they conform to observed behavior. The
answer that can be readily given is: no, they do not conform, at lTeast not all
the time. Consider some of the evidence.

Kahneman and Tversky, summarizing years of research, report consistent vio-
lations of the axioms underlying the EUH. In its place they propose a new

theory -- prospect theory. The first violation of the rational behavior axioms
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is what they refer to as the certainty effect, the overweighting of outcomes that
are considered certain. The effect was first demonstrated by the French econo-
mist Allais (Allais and Hagen).

In this result, the authors only confirm what Officer and Halter, Webster,
and Haneman and Farnsworth found -- that probabilities cesarve a place in the
utility function. However, rather than attempting to hoid the influence of
probabilities constant, these authors propose an expiicit form for its inclu-
sion. Their proposed model is multiplicative; probabilities are weighted by a
function v and outcomes by a utility function U. The resulting ordering index
model can be written as,

(4.6) maximize E{U(y)v[f(y)]1}.

Rather than proposing methods to measure the new f nction v, they suggest
instead that it is a standard function across individuais even though it is not
well behaved at its end points. While this new model is i-triguing, it lacks two
things: a method for measuring the function v and an experiment for testing
conditions one and two. Nevertheless, its ability tc explain what have been
aberrations of the EUH is encouraging.

Machina has also dealt with the Allais and related problems of EUH consis-
tency. In contrast to the prospect theory approach, Machina deduced a version of
the EUH without the independence axiom. However, it lzaves the EUH as it is now
applied as only a local measure using a well-behaved function. Nevertheless, it
does resolve many »f the inconsistencies easily produced using the EUH.

Another assault on the axioms of rationality underlying the EUH was made by
Janis and Mann. They quote John F. Kennedy who asked: "How could I have been so
stupid?" after realizing how badly he had miscalculated when he approved the Bay
of Pigs invasion (Janis and Mann, p. 657). The EUH portrays a carefully calcu-

lated expected utility maximizer weighing each possible alternative. And this
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is, in fact, how many decisions are made. But Janis and Mann argue that many
other decisions are simply not made in this manner.

They describe five different coping models that describe decision makers'
behavior depending on the stress level. (a) Unconflicted adherence: in this
model the risks associated with maintaining the status quo are small and, as a
result, the status quo is maintained. Subsistence farmers with well-established
farming plans may exemplify such a decision model. There is no careful weighing
of alternatives, only continued adherence. (b) Unconflicted change: in this
model the risk associated with not changing is high, while the stress associated
with changing is Tow. Perhaps this decribes an environment in which past prac-
tices have failed. In this model, the action choice selected is the one most
salient or the one most highly recommended. Again, there is not weighing of the
alternatives, only unconflicted change. (c) Defensive avoidance: the model is
characterized by high levels of stress. The decision maker's approach is to
shift responsibility, procrastinate, and to remain selectively inattentive to
correct information. Because the decision maker does not believe a better
solution is available, he fails to examine completely the available alterna-
tives. (d) Hypervigilance (panic): again characterized by high stress levels,
the decision maker seizes on hastily contrived solutions, overlooking the full
set of consequences because of his excitement. Again, the decision maker fails
to act like the EUH rational man. (e) Vigilance: this model is characterized by
moderate stress levels. The decision maker carefully assimilates and weighs the
information and appraises each choice before making a decision. Only in this
model would we expect to find operating our EUH rational man.

Janis and Mann offer no evidence their models meet Giere's condition one.
Instead, they emphasize that while not all decision makers reflect the vigilance

approach, they would be better off if they did. And the authors offer
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suggestions for improving the likelihood that the vigilance (EUH-1ike) approach
will be used. The result is that one more argument probably needs to be added to
our utility function -- namely stress. A reasonable hypothesis, but one still in
need of testing, is that high or low levels of stress may produce decision making
behavior quite different from the rational EUH decision maker.

Preferences for Income and Risk Aversion

In Chapter 2 we introduced the distinction between attitudes towards cnance
taking and preference for income. We can obtain measures of the latter by
arbitrarily indexing a range of incomes and searching for an indifference income.
(See equation (3) of Chapter 2). But how does one measure attitudes towarrs
chance taking.

If attitude towards chance taking is a binary trait, then the Ramsey met cd
for utility function estimation accurately measures the utility function--a c.m-
pound of the preference for income and attitudes towards chance taking. Bu:t 'f
the attitude towards chance taking cannot be captured with a binary variable, bu:
in fact deperds on the distribution of outcomes associated with the chance, :he
Ramsey method would not, in any consistent manner, capture ones attitudes towards
chance taking?

Krzysztofowicz has tried to separate the influences of attitudes towarcs
chance taking and preference for riskless income y. We follow Krzysztofowicz and
refer to measures of the latter as value functions, v(y), defined over incomz y.
The mapping w(v(y)), which accounts for attitudes towards chance taking as 'el]
as preference for income which we refer to as the utility function u(y)
Krzysztofowicz writes as:

(4.7)  u(y) = w(v(y))
where w is an individuals attitude towards chance taking.

Krzysztofowicz has hypothesized that the transformation y takes the form
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s “bV(Y) .
(4.8a) u(y) = iffu(ly) b>0
1-¢"P
e~bv(y)
BB ulgl v iff u(y) b<O0
e -1
(4.8¢c) u(y) = v(y) iff u(y) b=0

which hold wshenever the decision makers attitude towards risk (b) is constant.
The decision maker is therefore constantly risk averse (b>0), constantly risk
seeking (b<0O) or constantly risk neutral (b=0). Under such circumstances, u is
related to v by a unique transformation.

In a scries of experiments Krzysztofowicz demonstrates that relative risk
attitudes are constant for an individual for a given situation, but neither the
value func®“on nor the relative risk attitude is constant across individuals or
for the sars individual across situations. In very few circumstances is the
utility function equal to the value function. These results are distinctly
opposed to Kahneman and Tversky's arguments that the value function is constant
across individuals and that in many cases u(y) = v(y).

Altnouch Krzysztofowicz's experimental results are valuable in their sup-
port of thic hypothesis, we are uncomfortable with his assertion that the trans-
formation w is limited to a single functional form each for risk averting, risk
preferring and risk neutral individuals. Research to find alternative measures
of attitucas towards chance taking and find the form of the function y(.) will

continue.

Conclusions

The evidence presented in this chapter could be used to infer that there has
been inadeguate evaluation of the EUH. The question of interest, can the EUH
preaict real world decisions, has not been answered satisfactorily because of our

own inability to construct a choice set which describes the actual choices facing




58

the decision maker. Moreover, the prospects are not attractive for constructing
a legitimate test of the EUH which would predict action choices from an actual
choice set facing the decision maker. Without this actual choice set available
to use in a test, we are forced to app]y'our predictive tests to other experi-
mentally obtained choices. In this type of choice environment the EUH makes
correct predictions of experimentally derived pair-wise choices in roughly 60-
70% of the cases. We should not expect it to be a perfect predictor because
neither the utility function nor the experimentally produced probability density
functions used to describe action choices are without error of measurement.
Binswanger and Grisley and Kellogg have come closest to evaluating the EUH's
predictive ability in real world settings by constructing choice sets with signi-
ficant incomes. Unfortunately, since they assumed a utility function rather than
derived it, their test really examined whether or not the decision maker was
consistent in the manner in which he made choices rather than whether or not the
decision maker was an expected utility maximizer. Nevertheless, these studies
provided valuable insights regarding the decision process and more studies de-
veloped using their methods should be encouraged--and extendeu to include the

explicit measurement of utility functions.



CHAPTER 5
COMPARING INDIVIDUALS' ATTITUDES TOWARD RISK

Introduction

In Chapter 3 we discussed how action choices under conditions of certainty
led to unanimity of selection. As long a&s more is preferred to less, the action
choice producing the most is preferred. This is the conclusion of static econo-
mics. When uncertainty enters, the unanimity of preference for a particular
action choice is lost. The EUH model selected the preferred action choice by
maximizing a personalized preference function U(y) over the set of possible
action choices.

Since U(y) may differ bety:en individuals, it is necessary to make compari-
sons between individuals' util 'ty functions in order to discuss differences in
preferred action choices. In thz examination of preferences reflected by person-
alized utility functions, we may also want to look for similarities between
preference functions of individuals within groups. For example, do decision
makers become more adverse to urcertainty as they become older, more wealthy, or
more educated?

Obviously, any comparison of the attitudes toward risk of decision makers
must begin with the only measure of preferences available -- the utility function
U(y). So, we begin by comparing individuals using their personalized utility
function Uj(y) j=1l, . . . , N where N is the number of individuals being compar-
ed. We can then review the literature which has described attitudes toward risk
of individuals and in scme cases has related them to personal and business

characteristics.
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Risk Attitudes Inferred from the Shape of U(y)

To compare attitudes towards risk, the standard approach is to ask how
different individuals would respond when faced with identical action choices
with risky outcomes. Supposg, for example, that a lottery with outcomes Y and
Yy was being offered for sale and that we were in a position to observe the
maximum bids of N individuals. The maximum bids represent certainty equivalents
which the decision makers would willingly exchange for the lottery. So, at an
indifference point, the utility of the certainty equivalent Yeg» (a maximum bid
price) is equal in preference to the expected utility of the lottery.

For the i-th individual this equality could be written as:

(5.1) Ujlyeg) = pUy(y) + (1-p) Uy(yy)

where p is the likelihood with which the decision maker perceives that Y will
occur. We represent this indifference graphically by drawing an arbitrary func-
tion Ui(y) in Figure 5.1. The mean of the lottery is y = Py, * (l-ﬂ)yH. The
linear function is expected utility for all possible values of 0 < p< 1. For p
equal to zero, Eui(y) is Ui(yH)' For p equal to one, EUi(y) is Ui(yL)' For p
such that y is the mean, the expected utility is EUi(y) which is equal to
Uilyee)-

The concavity of the function Ui(y) suggests that the average or the expect-
ed value of the lottery must exceed its purchase price. The difference between
the expected value of the lottery and the certainty equivalent of the lottery is
often referred to as =, the "risk premium" (Pratt). It is also customary to
order individuals according to their risk premiums -- the larger the risk premium
the more risk averse the individual. This ordering procedure, however, has
limitations which will be discussed.

The utility function U.(y) drawn in Figure 5.1 is an arbitrary one. We

discussed in Chapter 3 how any linear transformation of Ui(y) would have yielded
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AN ARBITRARY UTILITY FUNCTION UT.(y) SHOWING INDIFFERENCE
BETWEEN YCE RECEIVED WITH CERTAINTY AND THE LOTTERY WITH
OUTCOMES YL AND Yy OCCURRING WITH PROBABILITIES
p AND (1-p) RESPECTIVELY
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the same indifference. For example, a horizontal shift in Ui(y) to U?(y) also
produces indifference between U?(yCE) and EU?(y) as the dotted lines in Figure
5.1 illustrate. What produces differences in the risk premium is the bending of
the function U(y). In Figure 5.2 we compare two individuals with utility func-
tions Ui(y) and Uj(y). As they are drawn, Ui(y) bends at a grzater rate than does
Uj(y). As a result, the risk premium Hi associated with Ui(y) is Targer than Hj
which is associated with function Uj(y). This result mighc 1zad us to infer that
individual i is more risk averse than individual j.

The utility functions in Figure 5.2 are bending downward. As the function
bends less in a downward or negative direction, the size of the risk premium
decreases -- in Figure 5.2 the decrease is from L to Hj. As the rate of bending
in a negative direction approaches zero, the function U(y) aj sroaches a straight
line and the risk premium I approaches zero. Thus the certa nty ecuivalent of a
decision maker with a linear utility function (with a positive slope) is the mean
of the lottery. Because this individual requires no risk premium, he is referred
to as risk neutral.

Positive bending of the function U(y) produces, as we would expect, negative
risk premiums, or amounts in excess of the mean which decisicon makers willingly
pay to acquire lotteries. We refer to individuals with negative risk premiums as
risk preferrers or risk lovers.

The direction of the bending -- negative, zero, or positive -- is indicated
by the second derivative of U(y). For U"(y) < 0 the bendirg is negative, while
U"(y) = 0 indicates no bending and U"(y) > 0 implies positive sending. So either
U"(y) or the sign on the risk premiums can be used to classi“y decision makers
into the broad categories of risk averse, risk neutral, or risk loving. But the

magnitude of the second derivative cznnot be used for interpersonal comparisons

of risk aversion because an individual's utility function is only unique up to a



FIGURE 5.2

A COMPARISON OF RISK ATTITUDES OF INDIVIDUALS i AND j WITH
UTILITY FUNCTIONS U,i'(y) and Uj(y) AND CERTAINTY
EQUIVALENT INCOMES Yeg AND YeE RESPECTIVELY
i j
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positive linear transformation. Thus, the value of the second derivative can be
arbitrarily varied by multiplying the utility function by a positive number.

A measure which is unique, which measures not only the direction of bending
of U(y) but also the rate of change in slope, is the absolute risk aversion
coefficient. Introduced independently by Pratt and Arrow, it is defined as:

_Un(
¥

A related measure, the relative risk aversion coefficient, Rr(y)’ measures the

(5.2) Ry(y) =

elasticity of marginal utility and is defined as:

(5.3) R.(y) = iy .

Both measures are unaffected by arbitrary transformations of the utility
function. They are positive for risk averse decision makers, zero for risk
neutral decision makers and negative for risk loving decision makers. Moreover,
their uriqueness permits interpersonal comparisons.

The absolute risk aversion function, the measure most often used, like the
function U(y) has y as its argument. As a result, for every function U(y) there
is a corresponding function R(y). A1l linear transformations of U(y) would, of
course, map into the same function R(y). Thus, there is some advantage to
representing decision makers by the magnitude of their absolute risk aversion
function R(y) rather than a nonunique utility function U(y).

Comparisons of Risk Attitudes in the Small and in the Large

So far we have inferred that the essence of a decision maker's attitude
towards risk is captured by the rate of bending in the ordinal u*ility function
U(y) or the absolute risk aversion function R(y). This function alone, however,
has no element of uncertainty or risk included in it. R(y), for exampie, is
simply a function defined over y. But the manner of its derivation through

finding indifference between risky alternatives, makes it unclear whether the
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function represents simply ordinal ranking of certain income or whether it is
also a measure of attitudes toward risk taking. Whatever the truth of the
matter -- it is what we use to compare attitudes towards risk of individual
decision makers. Moreover, to understand risk attitude comparisons, we must
understand how thz measure U(y) or R(y) are being used.

The first important distinction is the one made by Pratt between risk
attitude measures in the small versus the large. Since R(y) is a function, it is
defined over a'l y and risk attitude measures could be made at any particular
point on the function y. Let us choose some specific value for y, call it y, and
ask: "For the i-th and j-th individual, who is more risk averse at income y?"
Another way to ask the gquestion is to ask: "For small gambles with variance 02
and mean y, w ich individual would pay the larger risk premium I to eliminate
uncertainty?”

To answer the question just posed, Pratt derived the approximate relation-
ship below:

(5.4) @ = R(y)02/2.

Interpreted, the equation reads -- the risk premium = is equal to the value of
the absolute risk aversion at y, the mean of the gamble, times the variance of
the action choice divided by 2. The certainty equivalent, or the certain income
which provices the same satisfaction as the gamble, can be found by replacing I
with y - Yeg expressed as:

(5.5) yo = ¥ - R(y) 9°/2,

From equazion (5.5) we can infer that the more risk averse an individual, a
trait indicatec by the size of the absolute risk averse function R(y), the larger
is the risk premium they would require. So, in the small, or at a point,
individuals can be ordered according to the degree of risk aversion by either
their absolute risk aversion function valued at a point or by the size of the

insurance premium.
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Ordering individuals in the large, however, creates another problem. When
can we say one individual is always more risk averse than another? For example,
consider two individuals i and j whose absolute risk aversion functions Ri(y) and
Rj(y) are described in panel A of Figure 5.3. Also assume they are facing an
action choice with possible outcomes Y1 and Yo whose mean outcome is y. From
Pratt's approximation formula we can determine that the i-th individual is more
risk averse since Ri(y) is larger than Rj(y). If, however, the action choice has
outcomes Y3 and Ya with mean outcome y* then the j-th individual is more risk
averse since Rj(y*) is greater than Ri(;*)'

Now suppose the i-th and j-th individuals face a lottery consisting of ¥p
and y, with mean y. Which one is more risk averse? We cannot say, based on the
local or small measure of risk aversion. The individuals could be interrogated
to find their respective certainty equivalents, and thus obtain risk premiums for
the action choice with outcomes Yo and Y3 However, we cannot infer that the
individual with the larger risk premium is the more risk averse, because many
utility functions with corresponding absolute risk aversion functions may have
identical risk premiums. In our example, by shifting the probability weights
between outcomes Yo and y3 We can reverse the risk averse orderings of the i-th
and j-th individuals. This is inconsistent with the notion that the risk aver-
sion attitudes are independent of probability measures.

If Ri(y) were greater than Rj(y) as shown in panel b of Figure 5.3, then the
risk premium for individual i would always exceed that of the j-th individual, no
matter what the probability distribution of action choices. In this case, the
i-th individual is globally more risk averse than the j-th individual. In other

words, the i-th individual is everywhere more risk averse.
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FIGURE 5.3

A COMPARISON OF ABSOLUTE RISK AVERSION FUNCTIONS R_.(y) and R_.(¥)
OVER OUTCOMES y FOR THE i-th AND j-th INDIVIDUALS RESPECTIVELY
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An Alternative Risk Attitude Measure

An alternative measure of risk attitude is obtained by comparing the trade-
of f between expected values and variances of action choices selected by indivi-
duals from an expected value-variance (EV) efficient set. Describing the choice
set in terms of means and variances has been a popular approach for several
reasons. First, quadratic programming methods can generate the set. And second-
ly, for risk averse utility maximizing decision makers facing distributions that
are normal the preferred choice will always be a member of the EV set.

Figure 5.4 illustrates an EV set. The solid line ACB represents the effi-
cient set. Dots below ACB represent other feasible choices, each described by
their respective expected values and variances which are all less preferred than
some point on line ACB for risk averse individua]s.1

To say that C with expected value }c and GE is the action choice most
preferred by an individual is to argue that it maximizes the individual's expect-
ed utility. Let the expected utility for the individual at that point be k. Then
we might map an iso-expected utility line equal to k which identifies action
choices described in terms of their expected values and variances and represents
them as the dotted line tangent to C in Figure 5.4. It is possible, of course,
that other iso-expected utility functions might also maximize expected utility
at point C. In particular, a straight line could be drawn tangent to C. This
dotted line is represented as DCE.

It has been a common practice (e.g., Binswanger; Brink and McCarl; Dillon

and Scandizzo) to infer risk attitude orderings based on the slope or trade-off

lFor a more complete discussion on this point, the reader is referred to
Markowitz's pioneering article, and more recent articles by Tsiang and Tobin.
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between the expected value and variances at the equilibrium action choice. Using
such an ordering scheme, individuals who selected action choices above C would be
considered less risk averse than those selecting action choices below C. How-
ever, such an ordering may not make clear the distinction between risk aversion
measures in the small and risk aversion measures in the large.

Consider, for example, the equation for the tangent line at C in Figure 5.4.
At the intercept D, an action choice with zero variance has a certainty equiva-
lent outcome Yeg: Meanwhile, the slope is a constant times the variance. If we
define the constant slop2 coefficient as 1/2 we have an 2quation of the form
(5.6) ¥ = yop *10°/2
where the intercept Yeg plus the slope times the variancz at equilibrium equals
the expected value of the action choice at point C. e can rearrange the
equation to obtain
(5.7) § - yop = (M2)d%.
Since y - Yeg is by definition the risk premium I, we are left with Pratt's local
approximation formula given in equation (5.4). The c<!lope is merely the local
absolute risk aversion function value at ¥. And this being a local risk aversion
measure, we may not be justified in making global infere~:zes about risk attitude
differences based on EV slope coefficients. Only in the case where all decision
makers have constant absolute risk aversion functions could we make such global
inferences about risk attitudes.2

Classifying Individuals According to Their Risk Attit.des

Having introduced the subject of how risk attituczs can be measured in the

context of EUH, we are prepared to summarize studies which have measured risk

2For constant absolute risk aversion, the straight line tangent given in
equation (5.6) over normal distributions is the iso-expected utility line. It
follows then, that the larger the equilibrium slope, the greater the risk aver-
sion of the decision maker. (See Freund and also Hildreth for a more formal
proof.)
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FIGURE 5.4

AN EXPECTED VALUE-VARIANCE EFFICIENT CHOICE SET
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attitudes. A comprehensive review was completed by a Western Regional Risk
Committee W-149. The committee consisting of D. Young, W. Lin, R. Pope, L.
Robison, and R. Selly prepared the material used to construct Table 5.1. The
preponderance of the evidence shows that decision makers are risk averse over
significant ranges of outcomes. However, where measurement techniques permit-
ted, it was not uncommon to observe decision makers displaying risk preferring
behavior or a mixture of risk averting and risk preferring behavior.

Several difficulties may be encountered in making a classification such as
the one appearing in Table 5.1. For example, binswanger's and Halter and Mason's
studies measured risk attitudes locally. Thus, decision makers must be eitier
risk averse, risk neutral, cor risk loving. Mixed behavior would be impossitle to
observe. Risk attitude may also be influenced by the choice of functions f° :ted
to utility data points. A quadratic utility function must either exhibit ~is:
averting or risk loving behavior. A cubic function will imply mixed behavior,
Brink and McCarl, and Moscardi and de Janvry assumed a constant absolute risk
averse function which also ruled out mixed behavior.

An alternative approach would be to measure the function R(y) directly
without being restricted by available functional forms of U(y) which restrict :he
function R(y). Such an approach has been implemented by King and Robison. What
they estimate is a confidence interval around the decision maker's R(y) function.
By selecting local measures of R(y), they constructed global risk attitucss of
decision makers.

Summary Measures of Risk Attitudes

Several articles have appeared in our literature over the past several years
which have presented summary measures of risk attitudes within an expected util-
ity framework. Examples include work by Brink and McCarl, and Bond and Wonder,

Dillon and Scandizzo, and Binswanger. In scme cases these summary risk measures
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TABLE 5.1

DESCRIPTION OF EMPIRICALLY MEASURED RISK PREFERENCES OF
INDIVIDUAL FARMERS FROM THE LITERATURE

Percent Distribution of Sample by
Risk Classification

Sample Prefer- a
Source Description of Sample Size Averse Neutral ring Mixed
1. Binswanger Indian farmers and 119 n 0 lgg --g
landless laborers 117 84 0 Qb -
118 89 0 Zb =,
118 97 0 1 --
2. Conklin, Baquet, Oregon orchardists 8 37 0 13 50
and Halter (U.S.A.)
3. Dillon and Brazilian small farmers 56 70 9 21 --2
Scandizzo and sharecroppers a7 58 8 34 s
56 87 0 13 —
a7 79 0 21 --
4. Francisco and Australian pastoralists 21 0 0 5 95
Anderson
5. Halter and Oregon grass seed 44 33d 33 33d i
Mason growers (U.S.A.)
Lin, Dean, and Large scale California 6 50 33 0 17
Moore farmers (U.S.A.)
7. McCarthy and Australian beef 17 48 29 23 0
Anderson ranchers
8. Officer and Australian wool 5 60 20 20 0
Halter producers 5 40 40 0 20
5 20 0 60 20
5 80 0 20 0
9. Webster and Australian sheep and 5 80 0 0 20
Kennedy grain farmers 5 100 0 0 0]
10. B8rink and Cornbelt farmers 38 66 34 0 s®
McCarl (U.5.A.)
11. Moscardi and Mexican peasant 45 100 0 0 .

de Janvry

farmers

both risk averse and risk preferring regions within the relevant range,

aThe risk classification "mixed" includes that portion of the sample having utility functions with

bPercentages do not sum to 1C0 because from 2.5 to 10.1 percent of the respondents were classified
as "inefficient."

Risk preference classifications were evaluated at a particular point so "mixed" classifications
are impossible.

d

ported "that the number falling into each category was about equal."

Halter and Mason did not present an exact tabulation of risk preference classifications, but re-

Bumixed" classifications were impossible because a constant risk aversion coefficient was assumed
by the methodology.
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have been used to correlate risk attitudes with other socioeconomic variables in
a search for links between the environment and risk attitudes.

Consider, for the moment, the difficulty of obtaining and interpreting
summary measures of risk attitudes. To begin, we recognize that all of the risk
attitude information available to us is incapsulated in the absolute risk aver-
sion function R(y) which is obtained from the utility function. Measures other
than R(y) which may be used to describe risk attitudes have two problems. First
the probability density functions of outcomes may be compounded in the risk
measure. The second problem is that any summary measure is Just that, an
incomplete description of the measure. Just as the mean is an incomplete de-
scription of the underlying distribution, so will any summary measure of risk
attitudes be an incomplete description of R(y).

Still we recognize the need for summary measures ncted above using risk
premiums, the difference between certainty equivalents and the expected value of
outcomes.

Suppose we offered to sell to a set of individuals the same action choice
with the 1ikelihood of events being described by a probability density function.
We normally infer that the highest bidder for the action choice is the least risk
averse since he requires the smallest risk premium. But what if one decision
maker's utility function were the backward "S" shaped ufi]ity function described
by Friedman and Savage while the second decision maker's utility function was the
"S" shapled utility function proposed by Kahneman and Tversky.

For the Friedman-Savage decision maker depicted in Figure 5.5 the risky
prospect of ¥q and y, are equal in utility in the certain outcome of y. The same
is true for the prospect theory decision maker depicted by Kahneman and Tversky.

In both cases the risk premium is zero. But in neither case would we say that the




Friedman-Savage
Utility Function

Kahneman-Tversky
Utility Function

FIGURE 5.5
FRIEDMAN-SAVAGE AND KAHNEMAN-TVERSKY UTILITY FUNCTIONS
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decision makers are risk neutral or that they have identical risk preferences.
The difficulty is caused by inferring from a single parameter, the risk premium,
to a measure in the large, namely the decision makers' utility function.
Summary

In this chapter we have reviewed measures intended to summarize attitudes
towards chance taking and preference for income. Assuming the utility function
is a compound of the measures and attitudes towards chance taking is a binary
variable, the utility function can be uniquely described by Pratt and Arrow's
absolute risk aversion function.

Ordering individuals according to the aversion to risk, defined as rate of
bending of their utility function, in the large requires one individual's risk
aversion function to never lie below the other, a condition which will not permit
the ordering of significant number of individuals into risk classes.

As a result, efforts which have categorized individuals according to their
risk attitudes have developed alternative summary measures of risk. Sometimes
these are consistent with a local measure of the Pratt function of absolute risk
aversion.

In some cases these measures have been used to correlate with business or
personal characteristics of the decision maker. But the fact that the utility
function is a composite of attitudes towards chance taking and preference for
income implies 1little can be Tlearned from such correlations about attitudes

towards chance taking.




CHAPTER 6
ORDERING RISKY ACTION CHOICES

Introduction

Uncertain action choices were defined in Chapter 2 as ones whose outcomes
are not definitely known. Moreover, we argued that it was the decision maker's
knowledge base which determined whether or not action choices were uncertain or
certain--and thus we argued that discussions of uncertainty are always
subjective. Risky action choices on the other hand were defined as uncertain
ones where the outcomes could alter the well being of the decision maker. And
since well being is a subjective sensation interpreted by an individual, so is
the perception of riskiness.1

Action choices may be either uncertain or certain depending on the decision
makers sureness of the outcome. Thus we do not talk about action choices as
being more or less certain. But riskiness of action choices is another matter.
Individuals can and do distinguish between action choices based on their percep-
tion of differences in riskiness. And this perception of riskiness is what
Jetermines maker's preference for one outcome over another.

Thus for one decision maker to assert that one action choice is riskier than
a second reflects his preference for the probabilistic distribution of the out-
comes of the first relative to the second. But based on this single decision

maker's preferences, we could not infer that individuals in general would prefer

lMost often riskiness is interpreted in a negative sense; namely, the pos-
sibility of material or social loss or injury. This connotation, however, is
much too strict for our purposes since its limits potentially uncertain outcomes
to ones whose entire range of outcomes reduce the well being of the decision
maker. OQur definition of risky action choices includes the possibility that
outcomes may either improve or reduce the decision maker's well being.

76
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one distribution to another unless they all had their risk attitudes in common.
Thus when we talk about riskiness of action choices, we must first talk about
attitudes towards risk or well being held by decision makers.

In Chapter 5, we discussed how preferences, measures of well being or risk
attitudes reflected by individual utility functions could be used to compare
individuals and to order them according to aversion to risk. In this chapter we
explore in greater detail the link between risk attitudes and characteristics of
probability density functions for action choices which can be used to order
action choices according to riskiness. But the basic principle remains. Riski-

ness of action choices cannot be inferred without specifying the attitudes of the

decision maker(s) for whom the ordering is being made. Therefore any riskiness

comparisons between risky action choices must be preceded by a statement describ-
ing the preferences of the relevant class of decision makers.

Ordering Action Choices According to Riskiness

Having discussed in the previous chapter how individuals can be classified
according to measures obtained from their utility functions, we are prepared to
examine what implications these utility function measures have on the ordering of
action choices. In exploring how orderings of action choices correspond to risk
attitudes we will rediscover a familiar relationship: the more complete the
ordering, the more demanding will be the preference information. However, infor-
mation about preferences is not measured without error, so the more complete the
ordering, the greater will the chance of incorrect orderings. If we can be
satisfied with a less than complete ordering which divides action choices into
efficient and inefficient sets, our preference information requirement will be
reduced as well as the chance of our obtaining a large Type I error. If, in
pairwise comparisons of action choices, fewer orderings are made, there will be a

reduction in the errcor of claiming one distribution is preferred to another when
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that statement isn't true. The cost, unfortunately, will be that fewer distribu-
tions will be ordered; i.e., more often the test result will be that no
preference of one distribution for the other can be determined. Failure to order
when an ordering would have been made by the decision maker is referred to as a
Type II error.

Utility Function Ordering Rules

A decision maker's utility function contains all risk preference informa-
tion which is available. Thus this information is the basis for any complete
orderings of action choices. Let U(y) be the utility function of a decision
maker and let fl(y), fz(y), . fn(y) be probability distributions describing
the likelihood of outcomes for n risky action choices facing the decision maker.
The decision maker's problem is to order them according to their riskiness or
synonomously, to order them according to his preferences. This he does by
forming the preference indices: EU(yl), EU(yz),..., EU(yn) where Y1» Yps woes ¥,
are the random variables associated with distributions fl(y), fz(y),..., fn
These indices then form the basis of a complete ordering of the action choices
since any absolute difference in the index can be used to order.

When faced with the problem of ordering action choices according to the
preferences of an identified decision maker, an explicit answer is required and
the complete ordering performed by the utility function is warranted. However,
such an explicit ordering only applies to a single decision maker. Beyond that
it has no application.

There have been those, however, who have argued that individuals have simi-
lar utility functions described by a common function. Daniel Bernoulli was

probably the first to make such a claim, arguing that preferences were described

by the logarithmic function:

(6.1)  U(y) = log ¥y
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This led to the result that distributions with the highest geometric mean were
most preferred and the remaining distributions could be ordered according to the
relative magnitudes of their geometric means.2
The utility function which Bernoulli's log function was to replace was the
linear one described earlier as:
(6.2)  U(y) = ky
where y is a positive constant. Such a rule we have already determined leads to

the preference index:

(6.3)  EU(y) = k¥

2The ordering equivalence of the geometric mean criterion and the expected
log utility function requires that each criterion yield the same orderings of
action choices. Thus if there exists a positive monotonic transformation equat-
ing two functions, the orderings will be identical.

The geometric mean 99 of outcomes y;, ..., y, with likelihoods of occur-
rences py, ..., P, respectively is:

A log function is a monotonic transformation which applied to the above
expression yields:

==

P; log y; = Tog ( iz "

1 i=1

nem3

i

]

Since the expected value of the log utility function is a monotonic transforma-
tion of the geometric mean, it must provide the same ordering.
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where y is the expected value of y. Then if faced with the problem of ordering
the n action choices the resulting preference indices would be:

kil, k}z, ey k}n
where 91, 92, R }n correspond to the expected values of the probability
distributions fl(y), fz(y), Bk fn(y). These preference indices then would be
ordered according to their expected values and independent of the positive values
Bt -,

The opposition to such explicit ordering rules is the lack of evidence to
support the claim that these functions represent, in general, preferences of
individuals.

As a result, efforts have been made to specify decision maker's utility
functions more generally. If decision makers were risk averse, then a quadratic
utility function of the form:3

(6.4)  U(y) =y + by?
could be assumed where b <0. One might argue for a quadratic function as being
a reasonable approximation of any concave utility function.4

Taking the expectation of the quadratic utility functions leads us to pro-
bability density function characteristics which can be used to order action
choices according to riskiness. If y is stochastic with expected value y and

variance of 32, equation (6.4) can be written as:

3Since utility functions are unique up to linear transformations, we can
always transform quadratic functions of the form U(y) =d+ey+ fyz, where d, e,
f are parameters to obtain the expression above which nas the single parameter b.

4A second order Taylor series approximation would, e.g., lead to a guadratic
function approximation in a neighborhood.




81

(6.5)  E(y + by?) = E(y) + bEy?

2 2

Recalling that o~ egquals Ey2 - (Ey)2 we can add and subtract (Ey)® without

altering the equality and obtain:

2 4 3

The above criterion with b< 0 implies that the riskiness of action choices

(6.6) E(y + by?) = Ey + b Ey? - (Ey)% + (Ey)? = ¥ + b(o

is dependent on expected values and variances of action choices. For b < 0, an

2 constant increases the riskiness of action choices and

increase in o2 holding ¥
reduces their preference for risk averse decision makers. Thus for action
choices of equal means and different variances, the action choice with the
smallest variance is preferred by all risk averse decision makers or decision
makers with diminishing marginal utility.

One might place additional restrictions on the gquadratic function by limit-
ing the value of "b." Elton and Gruber, for example, have suggested at least

one. Since U(y) =y + by2

describes a quadratic, at the y value such that U'(y) =
1 -2by = 0 the marginal utility becomes negative. Since U'(y)< 0 isn't an
accepted feature of most preference functions, Elton and Gruber argue that the y
value at which marginal utility occurs should be at least some specified distance
from the mean value of y. If the minimum value selected is, say 2 standard
deviations from the mean y = y + 20 and y and o are known, b can be solved for.
With an explicit minimum value for b, a more refined criterion than EV can be
deduced.

This criterion, referred to as the expected value-variance (EV) criterion
is described graphically in Figure 6.1.

Each dot in Figure 6.1 describes the expected value and variance correspond-
ing to an action choice. Take, for example, the action choices Ai and Aj identi-

fied in Figure 6.1. Ai and Aj have identified expected values by Aj has a larger

variance and is less preferred by risk averse decision makers than Ai‘ Here
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FIGURE 6.1

AN EXPECTED VALUE-VARIANCE EFFICIENT CHOICE SET
REPRESENTED BY THE LINE BC
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again, riskier is applied to individuals whose preferences are represented by a
guadratic, concave to the origin, utility function.

Action choices along the line BC are preferred to action choices interior to
BC for the identified class of decision makers. When action choices are
separated into efficient choices (points along BC) and inefficient choices
(points interior to BC), there is for each inefficient choice an action choice
all decision makers (as defined) would prefer to the inefficient one. To
illustrate, all quadratic risk averse decision makers prefer Ai to Aj--therefore
A. is inefficient.

J
Stochastic Dominance Rules

For some, any functional restriction on the shape of the utility function
may be too limiting. As a result, still more general ways to describe decision
makers' attitudes towards chance taking have been introduced. The result has
been even more generally applicable efficiency criteria.

Without attempting to provide a rigorous proof of the stochastic dominance
criteria, an intuitive introduction will be made. For a rigorous discussion of
first and second degree stochastic dominance the reader is encouraged to read
Hadar and Russell or Hanoch and Levy.

Consider the class of decision makers who prefer more to less, a quite
unrestrictive assumption and that a decision maker from this class is faced with
action choices A1 and A2 whose likelihood of occurrence is described in Table 6.1
below.

The outcomes associated with the action choices are Y9 wees Ypo The
lTikelihood of the outcomes occurring for action choices Al is described by either
the density function f(y) or the cumulative function F(y). The likelihood of
occurrences of outcomes associated with action choice A2 is described by either

the density function g(y) or the cumulative density function G(y).
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Suppose the probability functions f and g are related in the following ways.
Qutcomes under each have equal likelihoods of occurring except for the ith and
kth outcome. OQutcome Yi is more likely to occur if action choice Al is made while
outcome ¥ is less likely. The difference between f and g is that the
probability 4 > g(yi) has been subtracted from the likelihood of occurrence for
the ith outcome under A2 and added to the likelihood of the kth occurrence.

So for the action choice Al, an event more satisfying, Yi is more 1ikely to
occur at the expense of a less favorable event, Yis becoming less likely to
occur. The result, for all those who prefer more to less, is to make action
choice Al less risky and more preferred than A2‘

The effect of probability shifts which make an action chaice more preferred
is demonstrated in the last two columns of Table 6.1. The probability of getting
an outcome y or something less (worse) is always less for the action choice Al
than for AZ' So in general our criterion, called the first degree stochastic
dominance criterion (FSD), can be written as follows. The action choice associ-
ated with F(y) is always preferred to the action choice associated with G(y) by
all decision makers who prefer more to less if the condition

Fly) < G(y)
for all y with strict equality for at least one y. This condition is described
graphically in Figure 6.2.

Second Degree Stochastic Dominance

First degree stochastic dominance, which orders action choices into effi-
cient and inefficient sets in accordance with preferences of all decision makers
with U'(y) > 0, is the most general of the efficiency criterion. The disadvan-
tage, of course, is that for a large number of pairwise action choice compari-

sons, no preference can be inferred--because all decision makers who prefer more

to less must have unanimous preference of one action choice over the other for an




TABLE 6.1

A TABULAR PRESENTATION OF THE LIKELIHOOD OF QUTCOMES
ASSOCIATED WITH ACTION CHOICES A] AND A2 WITH DENSITY

FUNCTIONS f AND g AND CUMULATIVE FUNCTIONS F AND G RESPECTIVELY

Qutcomes

Density Functions

A

A

Cumulative Density

A Functions A

1 2 1 2
Y fyy)=a(v;) 9(yy) Fly) = G(yq)
Yy fly;)=9(y;) = 9(;1) Fly.;)< G( %)
Yk fly =9y )+a a(y,) Fly ) = G(y)
¥4 fly )=aly,) alyy,) F(g) = &%)
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FIGURE 6.2

A GRAPHICAL PRESENTATION OF THE CONDITION ON
CUMULATIVE DISTRIBUTIONS F(v) AND G(y) for G(y)
TO BE RISKER OR LESS PREFERRED THAN F(y)
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ordering to occur. As a result, the number of action choices in a first degree
stochastic dominance efficient set is almost always large. And if large numbers
of action choices are being generated, e.g., using Monte Carlo procedures, then
the criterion becomes unworkable.

The solution is to refine the description of decision makers preferences.
In addition to U'(y) > 0, we assume risk aversion or U"(y) < 0. Defining prefer-
ences in this manner leads to a new efficiency criterion called second degree
stochastic dominance (SSD).

Again we introduce SSD with an intuitive argument rather than a formal
proof. Those desiring a more rigorous presentation are referred to Fishburn,
Hadar and Russell, and Hanoch and Levy.

We begin with a comparison between action choices A1 and A2 described with
probability density function f and g respectively with outcomes Y15 +ees ¥
arranged in ascending order. The distributions are constructed in such a way
that distribution f is obtained from distribution g by shifting probability from
the tails to the center of the distribution. For example, a < g(yi) is shifted
from the ith to the (i+l)st outcome. In contrast, 8 < g(yk+l) is shifted back
from the (k+1)st outcome to the kth outcome. The results are presented in
tabular form in Table 6.2.

In Table 6.2 the first probability shift exceeds the shift . For deci-
sion makers with diminishing marginal utility can we unequivocably argue the
decision maker has been made better off by such a shift? The answer is yes. The
shift of 5 probability which made the more favorable outcome Yj41 more likely
while reducing the likelihood of the less favorable outcome ¥; definitely in-

creased expected utility. In fact it increased by the amount:

(6.7) U(‘y'i+1) o - U(.Yj)a = &ﬂU{yi)- -
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TABLE 6.2

A TABULAR PRESENTATION OF PROBABILISTIC OUTCOMES OF
ACTION CHOICES A] AND A2 EXPRESSED IN TERMS OF
PROBABILITY DENSITY FUNCTIONS, CUMULATIVE DENSITY

FUNCTIONS, AND THE SUM OF THE CUMULATIVE FUNCTION DIFFERENCES

Action Choices

Z(Gly )-Fly })
A] A2 A] A2 S{m 0 J
Cumulative Cumulative
Probabilities of Density Function
Qutcomes Density Functions Functions Differerces
Yj f(.Vi) r g(_yi)-a g(yi) F(y.;) = G(yi) a
Yi+ f(yi_,_]) = g(y.i+'| )+a g(yi.{.]) F(yiﬂ) = G(yi_,_]) o
v The) = b8 abpyg) Flyg) = Gl ol
¥ fly,) = gly ) aly ) Flyd = Gly,) =1 a-8
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On the other hand a shift in  probability from Yi+1 to Yi which is less
favorable than Y1 reduced the expected utility. It is reduced it by the amount

(6.8) U(Yisp) -8UCY) = 8aU(y,).

The difference between the gain of expected utility at and the loss of
expected utility at ¥, can be written as:

(6.9) aAU(yi) -BAU(yk) > 0.

It is greater than zero because 1) a > 8; and 2) diminishing marginal utility
requires the marginal utility at y, be less than y, or AU(yi) > AU(yk).

Thus probability shifts which preserve the sign of the cumulative differ-
ence between z(G-F)> 0 will always imply that F is preferred to G.

The cumulative distributions along with the cumulative sum of the differ-
ences between F and G are presented in Figures 6.3 and 6.4 respectively. In
Figure 6.3 the cumulative distributions differ by probability amount « at ¥;
(F(yi) < G(yi)) and by probability amount B at yk(F(yk) > G(yk)).

The cumulative sum of the difference between F(y) and G(y) is graphically
described in Figure 6.4. This measure is best thought of as the cumulative value
of the area between the two cumulative distributions F(y) and G(y). And since
they differ only at points y; and Yy this area measure will only have two
different values, o anda -8,

Now consider a special application of the second degree stochastic domi-
nance rule which we have just proven. Suppose the choice is between two action
choices A, and A, whose likelihood of outcomes can be described with normal
probability density functions with equal expected values and different variances
f and g respectively. Two such probability density functions are drawn in Figure

6.5 with their cumulative distributions drawn in Figure 6.6.
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FIGURE 6.3

A GRAPHICAL PRESENTATION OF CUMULATIVE DENSITY FUNCTIONS F(y)

G(y) CORRESPONDING TO ACTION CHOICES A1 AND A2 RESPECTIVELY
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Cumulative Sum of
the Differences
Between G(y) and F(y)

£(6( )-F(y))

a-8

Outcomesy

FIGURE 6.4

A GRAPHICAL PRESENTATION CORRESPONDING TO
TABLE 6.2 OF THE CUMULATIVE SUM OF THE DIFFERENCE G(y)-F(y)
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FIGURE 6.5
PROBABILITY DENSITY FUNCTIONS WITH EXPECTED VALUE
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FIGURE 6.6

CUMULATIVE DENSITY FUNCTIONS F(y) AND G(y)
CORRESPONDING TO ACTION CHOICES A1 AND A2
WHOSE LIKELIHOOD OF QUTCOMES ARE NORMALLY DISTRIBUTED
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Since the distributions are normally distributed and symmetric, the
probability mass is divided equally at the expected values of the distributions.
This implies two things: that the cumulative distributions corresponding to F
and G will be equal and cross at their expected value outcomes, and that symmetry
will require that the difference in area between the distributions to the left of
the expected value will equal the difference in area to the right of the expected
value. That is area "a" in Figure 6.6 eguals area "b." As a result the
cumulative sum of the difference between G-F will always be satisfied and F will
be preferred to G by all risk averse decision makers. This result leads again to
the EV criterion that for distributions of equal means but different variances
(standard deviations) the distribution with the smallest variance (standard de-
viation) is preferred. Thus two justifications for the EV set described graphi-
cally in Figure 6.1 are that decision makers have risk averse quadratic utility
function or that decision makers are risk averse and face action choices whose
outcomes are normally distributed.

Stochastic Dominance with Respect to Functions

The efficiency criteria described above each had the ability to order action
choices into efficient and inefficient sets for a particular class of decision
makers. To say one set of action choices is preferred to another is to also say
it is less risky. Hence the efficiency criteria discussed permitted us to assert
some definitiveness to the world risk--or at least how to measure it.

While FSD and SSD add to our understanding of risk and how to measure it, as
practical tools they leave much to be desired because of the large size of the
efficient set usually obtained. Moreover, the arbitrary classification of deci-
sion makers into classes depending on the derivatives of their utility functions
may be too restrictive, especially since strong evidence exists that decision

makers display both risk loving and risk averse attitudes.
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Stochastic dominance with respect to functions is an evaluative criterion
which orders action choices for a class of decision makers defined by the analyst
rather than being externally imposed. The decision making class is defined in
terms of upper and lower bound absolute risk aversion function. In fact, FSD and
53D are special cases of this more general efficiency.

To illustrate, consider the class of decision makers for whom FSD provides
an ordering of action choices. They were described as having positive marginal
utility U'(y) > 0. In terms of the absolute risk aversion function, this placed
no bounds since U"(y) was free to take on any value. Thus the decision making
¢ ass consistent with FSD were R(y) = -U"(y)/U'(y) is defined as:

(6.10) < o % R{y)= *

The SSD set was more discriminating. In addition to U'(y) > 0 it required
L"(y) < 0. Now the function R(y) and the corresponding decision maker class for
wiica it applies is limited to the class of risk averse decision makers for
which:

(6.11) 0 <R(y)< =
The lower bound defining the decision making class is the horizontal axis while
t=2 upper bound is infinity.

Stochastic dominance with respect to functions allows the decision maker to
define functional bounds on R(y); the lower bound function might be Rl(y) while
the upper bound function may be Rz(y). Then the class of decision makers is:

(6.12)  Ry(y) <R(y)< R,(y).

The necessary and sufficient conditions to order action choices consistent

with the class restriction above have been proven by Meyer. For distribution F
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to be preferred to G by decision makers in the class described by (6.12) the
solution procedure requires the identification of a utility function Uo(y) which
minimizes .
(6.13) = (6(y) - F(y)) U'(y)dy
Sl
Ri(y) < -U"(y)/U'(y) < Ry(y) for ally

Equation (6.13) is equivalent to the difference between expected utilities
between distributions G(y) and F(y).5 By minimizing (6.13) a search is made for
the decision maker in the defined set least likely to prefer F to G. If a member
of the set defined by (6.12) least likely to prefer F to G prefers F to G, then
all other included in the set will also and G is eliminated from the efficient
set.

If the member of the set described in 6.12 least likely to prefer F to G
doesn't, then the procedure is repeated for G relative to F beginning with the
search for the individual least likely to prefer G to F.

Meyer's soluticn to the problem described above is optimal control techni-
gue. Details of the solution is given in Meyer and an example is given in King

and Robison. Applications of the technigues are illustrated in Love and Robison.

5To show this let the difference in expected utility between f and g be:

TU(y)f(y) - Fuly)aly) =" U(y)(F(y)-a(y))

Then applying the change of var1able technique to integrate let dv = f(y)-g(y), U
= U(y), U =F(y)-G(y) and du = U'(y). Then recalling udv = uv [*=_; vdu we write:

!_m
FU(y) (F(y)-a(y) )dy = U(y) (F(y)-6(y))| T2+ T (G(y)-F(y))u* (y)dy

= (G(y)-F(y))U'(y)dy = ' (G(y)-F(y))u'(y)dy
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Set Stochastic Dominance

One characteristic of all the efficiency criteria presented thus far has
been the unanimity of preference requirement. Consider for example the compari-
son between action choices in A1 versus A in either Table 6.1 or 6.2. If Al
dominated A2 or was pref:rred, it required that all decision makers prefer more
to Tess in the case of FSD or it required all decision makers with diminishing
marginal utility (in the case of SSD) to prefer Al to A2‘ The same unanimity of
preferences is required for stochastic dominance with respect to functions. This
unanimity of preference requirement naturally leads to a smaller number of action
choices considered tc be inefficient than would otherwise be the case if
unanimity were not ~equired. Fishburn provided the theoretical breakthrough
required to relax the unianimity of preference requirement.

Conclusions

The essence of de:ision making under uncertainty is to order action choices
according to preferenze. Sometimes this preference ordering is confused with an
ordering according to riskiness. But riskiness, we argued earlier, depends on
the risk attitudes of the decision maker. Thus any ordering of action choices
must of necessity begin by defining for whom a preference ordering is occurring.

A common classification of risk attitudes is to associate them with deriva-
tives of the von Neumann-Morgenstern utility functions. Concave downward util-
ity functions are scid to describe risk averse decision makers. Thus orderings
which apply generally for risk averse decision makers are said to be orderings
according to riskiness as well as preference orderings. Examples of such order-
ings include second decree stochastic dominance and EV efficiency criterion.

More recent advances in decision theory may force us to rethink the rela-
tionship between riskiness and preference. Classes of decision makers can be
specified more precisely than by derivative signs of the decision maker's utility

function.
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The Pratt coefficient provides a natural measure for bounding risk atti-
tudes and defining classes of decision makers. Moreover, the magnitude of this
function indicates a willingness to pay for the elimination of uncertainty. When
one more risk averese class of decision makers prefers an action choice while
another less risk averse group prefers an alternative, we might determine a
riskiness ordering of action choices more specific than possible for d viding
decision makers according to the sign of U"(y). Unfortunately this ordering

depends on the specific definition of the decision maker.




CHAPTER 7

EXTENSIONS OF THE EXPECTED UTILITY HYPOTHESIS

Introduction

Tests of the EUH have focused on its ability to predict farmers preferred
action choices. Tversky has argued that in view of the extreme generality of the
model on the one hand, and the experimental limitations on the other, the basic
question is not whether the model can be accepted or rejected as a whole.
Instead, the problem is to discover which of the assumptions of the model hold,
or fail to hold, under various experimental conditions.

The three major assumptions of the EUH which concern us are that expected
utility maximizers follow the four axioms of rational behavior defined in Chapter
3 (ordering, transitivity, substitution and certainty equivalents among
choices), that utilities can be assigned to absolute states of wealth, and that
judgments called for in an analysis can be represented accurately by a single,
precise number.

Experimental evidence supports the contention that individuals' actions
often do not conform with these fundamental assumptions of the EUH. Decision
theorists have used this experimental evidence to develop new approaches to
understanding decision processes within the general framework of expected
utility analysis. Kahneman and Tversky's pioneering work on prospect theory is
an attempt to resolve questions arising from the fact that individuals edit
information before using it to choose the prospect with the highest value.
Because each individual will edit information in unique ways, apparent
inconsistencies in preference ordering arise. In addition, Kahneman and Tversky
argue that the decision weights which multiply the value of outcomes are
determined by factors including, but not 1limited to, their attendant

probabilities.
99
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The independence axiom which underlies the EUH appears to be routinely
violated by decision makers. Machina has shown, however, that despite inconsis-
tencies between the independence axiom and actual behavior, the basic concepts,
tools and results of expected utility analysis are still appliceble. The gen-
eralized form of expected utility analysis which he has devaloped does not
require that the independence axiom hold. Instead, all that is rcauired is an
assumption of smoothness of preference, and consistency in the shape of utility
functions in a given region. An important implication of this weaker assumption
is that the shape of the utility function for wealth is a complete characteriza-
tion of risk aversion whether or not the individual is an ::pected utility
maximizer.

Both of these extensions of the EUH maintain the assumptior Lhaz individuals
can accurately state their preferences in the form of a single number. Propo-
nents of "fuzzy set theory" argue that uncertainty due to randc:ness and uncer-
tainty due to imprecision and vagueness are both present in dzcision making.
These distinct qualities must be modeled in different ways, the former using
probability theory and the latter using fuzzy set theory. ~uzzy saet theory
provides a means of quantifying the degree of imprecision ass::ziated with any
input into the decision process through the use of membership functions. The
degree of uncertainty or “fuzz" related to an action choice is, therefore, a
function of the fuzziness of the inputs.

Prospect Theory

In the remainder of this chapter, the three extensions of the expected
utility will be reviewed in more detail beginning with prospect theory. Follow-
ing Bernoulli, it has generally been assumed that utilities are asigned to states
of wealth., Kahneman and Tversky depart from this tradition and analyze choices

in terms of changes in wealth rather than states of wealth. They reject the
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assumption of classical analysis that preferences reflect a comprehensive view
of the options available to the decision maker. Kahneman and Tversky propose
instead that people commonly adopt a Timited view of the outcomes of decisions:
they identify consequences as gains or losses relative to a neutral point. This
can lead to inconsistent choices regarding the same objective consequences be-
cause they can be evaluated in more than one way depending upon the reference
point with which the outcomes are compared.

In developing prospect theory, Kahneman and Tversky cite several violations
of the axioms of the EUH. One of these is framing, the effects arising when the
same alternatives are evaluated in relation to different points of reference.
Framing effects in consumer behavior may be particularly pronounced in situa-
tions which have a single dimension of cost and several dimensions of benefit.

In the EUH the utilities of outcomes are weighted by their probabilities.
Kahneman and Tversky hold that the decision weights that multiply the value of
outcomes do not coincide with the attendant probabilities. Instead, low proba-
oilities are commonly overweighted while intermediate and high probabilities are
underweighted relative to certainty. The underweighting of intermediate and
high probabilities reduces the attractiveness of possible gains relative to sure
ones and reduces the threat of possible losses relative to sure ones. This
“certainty effect" leads to violation of the substitution axiom. In prospect
theory, an individual's outcome weighting mechanism is represented by a value
function. Risk aversion or seeking is explained by the curvature of this func-
tion which is usually concave for gains and convex for Jlosses.

The shape of the value function is explained by the "reflection effect"
whereby the preferences expressed for negative prospects are the mirror image of
those for positive prospects. In other words, the reflecton of prospects around

zero reverses the preference ordering. As a result, risk aversion in the
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positive domain is accompanied by risk seeking in the negative domain. In
conjunction with the certainty effect this leads to risk seeking preference for a
loss that is probable over a smaller loss that is certain. This seems to
eliminate aversion to variability, at least with respect to losses, as a plaus-
ible explanation of behavior. In addition, the function for losses is much
steeper than that for gains. If given an equal probability of loosing $y or
gaining some amount, individuals usually demand that the potential gains be a
multiple of $y before they will engage in the gamble.

To simplify choices, individuals often disregard components that are shared
by all prospects under consideration and focus on their differences. This
"isolation effect" may produce inconsistent preferences since a pair of pros-
pects can be decomposed in many ways and the different decompositions may lead to
different preference orderings.

Prospect theory distinguishes two phases in the choice process. In an
initial editing phase, a preliminary analysis of the offered prospects is carried
out, often yielding a simpler representation of the prospects. The second phase
is one in which the edited prospect with the highest value is chosen. Editing
involves several separate actions including coding, where gains and losses are
assessed relative to some neutral reference point, combining, where the range of
prospects is reduced by combining the probabilities associated with identical
outcomes, segregating, where the risky component of & prospect is separated from
the riskless component, simplifying, where extremely unlikely outcome. are dis-
carded and other outcomes are rounded, and dominance, where dominated outcomes
are rejected.

Many of the apparent inconsistencies in preference ordering result from
editing. In the evaluation stage, a decision weight is associated with each

probability affecting the impact of probability on the overall value or the
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prospect. The resulting value is not a probability measure and the summation of
the values is typically less than unity. Using the value function, a weight is
assigned to each outcome which reflects the subjective value of that outcome.
The resulting set is a measure of the values of deviations from the reference
point, or the expectad gains or losses associated with each prospect.

Although the evaluation procedure suggested by prospect theory is proce-
durally simila~ to that used in expected utility analysis, the two processes are
qualitatively different. Prospect theory seeks to explicitly incorporate the
subjective impact of probabilities into the utility analysis through the speci-
fication of a value function for each individual. The theory also seeks to
explain the rezscis for apparent inconsistencies found in individual prefer-
ences. This des riptive model of preference formation also presents challenges
to the theory of ~ational choice because it is far from clear whether the effects
of decision weich:s, reference points, and framing should be treated as errors or
biases, or whether they should be accepted as valid elements of human experience.

Generalized Expe:ted Utility Analysis

Experimental evidence has shown that the independence axiom of the EUH is
systematically vi-lated by phenomena such as the St. Petersburg Paradox and the
Allias Paradox. Ilachina argues that, despite these violations, the basic con-
cepts, tools, and results of expected utility analysis are still applicable
because they a2 no: dependent upon the independence axiom. They can also be
derived from a veaker assumption of smoothness of preferences over alternative
probability distributions.

The role of the other axioms of expected utility theory, which amount to the
assumptions of completeness and continuity of preferences, is essential to es-
tablish the existence of a continuous preference function over probability dis-

tributions in much the same way as is done in standard consumer theory. It is the
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independence axiom which gives the EUH its empirical content by imposing a
restriction on the functional form of the preference function. The independence
axiom implies that the preference function may be represented as the expectation
with respect to the given distribution of a fixed utility function defined over
the set of possible outcomes. In other words, the preference function is con-
strained to be a linear function over the set of distributions of outcomes, or,
as commonly phrased, "linear in the probabilities". For the independence axiom
to hold, the local utility functions for all distributions in the range of
prospects must be identical. This is often not the case, as will be shown below.
This restriction does not apply if we use a generalized form of expected utility
analysis proposed by Machina.

Violations of the independence axiom can be demonstrated using the Fried-
man-Savage utility function. Based on their observations that the willingness of
persons of all income levels to buy insurance is extensive and that the willing-
ness of individuals to purchase lottery tickets or engage in similar forms of
gambling is also extensive, Friedman and Savage proposed that there is a general-
ized form of a von Neumann-Morgenstern utility function held by most people [see
Figure 7.1). The utility function is concave and implies risk aversion at Tow
income levels, linear and locally risk neutral at the inflection point, and
convex and locally risk loving at high income levels. Individuals will be
unlikely to take unfair odds in insurance or gambling in amounts closa to their
initial wealth position given their hypotzhsized constant marginal utility for
money in this range. Given the chance of significant gains, however, the indivi-
dual will participate in gambles with unfair odds. The individual will take
equally unfair odds for much less in losses than in gains in an attempt to

preserve the resources which he holds.



105

FIGURE 7.1

FRIEDMAN-SAVAGE UTILITY FUNCTION
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One implication about human behavior stemming from the assumption of a
Friedman-Savage utility function is that people will tend to prefer positively
skewed distributions, with larger tails to the right, to distributions which are
negatively skewed, with larger tails to the left (Markowitz). There is evidence
to suggest that a preference for positive skewness and a relative preference for
risk which increases in the upper rather than the lower tails of distributions
are also exhibited by global risk averters whose utility functions do not conform
to the Friedman-Savage form.

With the later discovery by Markowitz, and Friedman and Savage that the
amount an individual would pay for a 1/n chance of winning $ny is an eventually
declining function of n, Friedman and Savage modified their utility function to
include a terminal concave section. This modified Friedman-Savage utility func-
tion is shown below (see Figure 7.2).

Objections were also raised to the original Friedman-Savage form because of
the typical response of individuals to a certain type of gamble, known as the St.
Petersburg Paradox. The paradox stemmed from the observation that an individual
typically would never forego a singificant amount of wealth to engage in a gamble
which offered a payoff of $2i with probability Z'i even though the expected
winnings from this gamble are infinite. But the Friedman-Savage function which
is consistent with the restrictions of the independence axiom shows, unrealisti-
cally, that an individual would take this gamble. The Friedman-Savage form of
the utility function is not the only one which suffers from this shortcoming.
Menger has shown that whenever the utility function is unbounded, gambles with
infinite certainty equivalents can be constructed. Arrow demonstrated that
individuals with unbounded utility must violate the continuity or transivity
axiom as well as the independence axiom. By bounding the utility function, as is
done in the modified Friedman-Savage utility function, the degree of risk aver-

sion is no longer monotonic with respect to outcomes.
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\ Initial Wealth Pcsition

FIGURE 7.2
MODIFIED FRIEDMAN-SAVAGE UTILITY FUNCTICN
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A third objection to the Friedman-Savage utility function, and one which
clearly demonstrates systematic violation of the independence axiom, comes in
the form of the Allias Paradox (Allias). The paradox is that individuals system-
atically rank a stochastically dominating pair of prospects according to a util-
ity function which is more risk averse than the one used to rank a stochastically
dominated pair. This is clearly a violation of the independence axiom.

The Allias Paradox can also be used to demonstrate another violation of the
independence axiom in that individuals have been found to be oversensitive to
changes in the probabilities of low probability, outlying events. This violation
has been analyzed by Machina, Kahneman and Tversky, Hagen, and MacCrimmon and
Larsson. To compensate for the violation of the independence axiom stemming from
oversensitivity to certain probabilities, both psychologists and economists have
suggested the use of subjective expected utility models. (See Prospect Theory
above.) Although these models allow for a relatively straightforward estimation
of the individuals relative sensitivity to changes in low versus high probabil-
ities, Machina argues that they exhibit many undesirable properties. Once the
measure of subjective probability is non-linear, behavior is no longer charac-
terized by the shape of the utility function alone and the main results of
expected utility theory, such as the characterization of risk aversion by the
concavity of the utility function, no Tonger apply. Subjective expected utility
models are also incapable of incorporating the property of monotonicity. This
necessarily results in cases where an individual maximizing with a non-linear
preference function will prefer some distributions to ones that stochastically
dominate them. Similarly, no subjective expected utility maximizer can exhibit
general risk aversion even over restricted ranges of possible outcomes (Grether

and Plott).
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A possible objective to this and other criticisms of EUH models is that when
individuals are shown how their choices violate the independence axiom, they then
alter their preference so as to conform with it. While this is strong testimony
to the normative appeal of the axiom, it is irrelevant to the positive theory of
behavior towards risk.

The generalized form of expected utility analysis proposed by Machina does
not require that the independence axiom hold. In addition, it leads to resuits
consistent with the Allias Paradox and the St. Petersburg Paradox without requir-
ing the use of subjective probability models. I!lsing local utility functions
which display the appropriate qualitative property (e.g., risk aversion) for
every local function in a region, the preference function will display th:z
corresponding behavioral property throughout the region. This will occur even ii
the local utility functions are not the same, or in other words, the individual
is not an expected utility maximizer. An important implication of this weaker
assumption of smooth preferences is that the concavity of a cardinal function of
wealth is a complete characterization of risk aversion in the sense that any risk
averter must possess concave local utility furnctions whether or not he or she is
an expected utility maximizer. Thus, the researcher who would Tike to drop the
restrictions of the EUH and study the nature of general risk aversion can ap-
parently still work completely within the framework of expected utility anal,-
sis.

Fuzzy Set Theory

Central to the paradigm of decision analysis using the expected utility
hypothesis is the often unstated assumption that each of the judgments called for
in an analysis can be represented accurately by a single, precise number. Thus,
the EUH only addresses uncertainty due to randomness and not uncertainty due to

vagueness or imprecision. Much of the unease exhibited by potential users of the
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tools of decision analysis stems from concern about their ability to provide
sufficiently precise inputs regarding probabilities and utility to receive reli-
able answers. Watson, Weiss and Donnell argue that probabilities and utility can
inherently only be represented by somewhat rough sets of numbers. Their "fuzzy
decision analysis" method is motivated by the need to handle the imprecision
accompanying the judgmental inputs to decision analysis in a systematic and self-
consistent manner.

Zadeh, one of the first to argue for a new fuzzy approach to systems
analysis and decision making under uncertainty, holds that imprecision and un-
certainty are distinct qualities which must be modeled in different ways, the
former using fuzzy set theory and the latter using probability theory. Fuzzy set
theory is, therefore, not an alternative to probability theory and the EUH, but a
parallel calculus to be used to handle the imprecision inherent in human cogni-
tive processes. The central concept in fuzzy set theory is the membership
function which numerically represents the degree to which an element belongs to a
set. The function is valued between zero and one and is assessed subjectively
with small values representing a low deree of membership in the set and high
values representing a high degree of membership. In other words, the statement
that "it will probably rain tomorrow", would have a higher degree of membership
in a set regarding likelihood of rain than the statement "it might rain tomor-
row". Often the values used to represent degrees of membership in a set are not
elicited directly. Instead, they are taken from curves drawn by individuals to
represent their degrees of belief that an event will occur.

The calculus of fuzzy sets is based on three propositions to which numbers
indicating membership should conform. These propositions are analogous to those

used in conventional set theory and include:
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1. The degree to which X belongs to set A and to set B is equal to the
smaller of the individual degrees of membership.
2. The degree to which X belongs to either set A or set B is equal to the
larger of the individual degrees of membership.
3. The degree to which X belongs to (not A) is one minus the degree to
which X belongs to A.
The calculations involved in the decision analysis can he considered to be a
functional relationship between the inputs regarding probabilities and utilities
and the output of the analysis in the form of the expected utility of an action.
The three relationships cited above are used to deduce the "fuzz" on the output
given the fuzziness of the inputs.1
As with conventional utility analysis, probability distributions may be
generated which characterize the range of possible outcomes for each action
choice. Whereas the distributions obtained from conventional analysis are taken
to be the true distributions, in fuzzy set theory the extent to which the
distribution of inputs, probabilities, and utilities implies an action choice is
only as large as the least level of implication for each set. Uniless one
distribution clearly dominates another, it cannot be said to indicate the prefer-
red action choice. To determine the preferred action choice when two sets
overlap, one must determine the extent to which one set is preferred over the
other through the use of Zadeh's fuzzy calculus.
There remain questions regarding the axiomatization of a fuzzy set calculus
which can be used to elicit membership functions. Experimental evidence does

show, however, that individuals are able to draw curves or probability

1For particulars of the mathematical methods used, see Watson, Weiss and
Donnell and Freeling.
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distributions to represent their perceived imprecision regarding degrees of be-
lief such as "better than even", "pretty likely", or "about y%". The precise
shapes of these distributions are somewhat arbitrary, but this fact does not
affect the inferences which can be drawn from fuzzy set analysis as it is the
general shape of the distributions that matter.

The extent to which these extensions to the EUH model will be accepted and
adopted remains to be determined. So far, they have not altered in significant
ways the "business as usual" of economists. Before this happens several ques-
tions must be answered. Can we measure preferences in the context of any of the
three extensions listed? Can we build analytical models, which so far have been
deduced almost entirely using EUH models? And last, will the extension provide
an increase in accuracy commensurate with the cost of more complicated
techniques? The answers to these gquestions will determine the future importance

of the extensions to the EUH which this chapter reviewed.



CHAPTER 8
CONCLUSION

In this volume we have explored both the foundations and frontiers of
decision theory. This chapter will summarize the strengths of the theory as it
stands today and point out weaknesses which provide exciting areas for future
research for building a more robust theory of decision making under uncertainty.

The State of the Art

Decision analysis of any type assumes that the decision maker has more than
one action choice available to him. Furthermore, it is assumed that the decision
problem he faces can be collapsed to comparisons of available actions described
in terms of the subjective probability density function of the outcomes associ-
ated with each respective action choice. These subjective probability density
functions can be described by their expected value, mean, and variance.

Traditionally, we have accepted that if two action choices have the same
expected value, the one with the larger variance is more risky. But in order to
determine the decision maker's relative preference for the action choices avail-
able to him, we must develop some ordering rule. One of the fundamental asser-
tions of this report is that the most suitable ordering rule is one which takes
into account the decision makers' attitudes towards risk. To use such an order-
ing rule we must first determine the individuals' attitudes towards risk.

Many ordering rules have been developed which assume that all decision
makers share similar extreme attitudes of optimism or pessimism in response to
uncertainty. These include the maximax rule in which the action choice corres-
ponding to the best of the best possible outcomes is preferred and the maximin
rule in which the action choice corresponding to the best of the worst possible
outcomes is preferred. These are ineffective criterion because they ignore the

many other possible outcomes and probabilities with which they may occur.
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An alternative to these models is the safety-first model. In its simplest
form the safety-first model focuses on a safety or disaster level of outcome
such as the income below which a firm will go bankrupt or the minimum crop yield
needed to meet subsistence requirements. Whatever the interpretation of the
level of safety, this model assumes the objective of selecting the action choice
so that chances of experiencing outcomes below the level are minimized.

In contrast to the specific outcome focus of the safety-first model is the
expected utility hypothesis (EUH) which allows each outcome which influences the
well being of the decision maker to influence the preference index. The EUH
asserts that if a decision maker's behavior is consistent with a set of axioms of
rational behavior, they will weight outcomes specified in term of income or
wealth, y, according to a peronalized utility function U(y). The expected value
of this function for each action choice then provides a single value preference
ordering index.

The measurement of an individual's preferences regquires the assumption that
he can identify the most and least favorable outcomes of any action choice.
These extreme outcomes are then used to construct a series of gambles over the
range. By adjusting either the value of the outcome or its probability of
occurrence, a point of indifference between two gambles can be obtained. After a
sufficient number of indifference points are obtained, a utility function can be
derived using either statistical or graphical methods. The utility function can
be used to weight the expected outcomes of each action choice, and the resulting
expected utilities are used to determine preference ordering. Individuals will
prefer the outcome with the highest expected utility.

One of the reasons we are interested in discovering individuals' utility
functions is that this may allow us to rank individuals according to their

attitudes towards risk. We may also want to look for similarities in attitudes

toward risk within groups which share certain socioeconomic characteristics.
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The most commonly used method of comparing individual attitudes toward risk
is to rank them according to their response to an identical lottery. We can
interpret their indifference point in the gambles as their expected utility of
the lottery. The difference between the expected utility of the lottery and its
certainty equivalent is often referred to as the risk premium. The more risk
averse an individual, the larger his risk premium will be. This provides a basis
for ranking individuals.

But, because an individual's utility function is only unique up to a posi-
tive linear function, the risk premium approach does not give us a complete
characterization of the individual's attitude towards risk even in the region of
the gamble. Alternative measures which are unique over the range of the gamble
and which incorporate not only the general shape of the utility function but the
rate of change of its slope are the Arrow-Pratt coefficients of absolute risk
aversion and relative risk '‘aversion. Both measures are unaffected by arbitrary
transformations of the utility functions.

The Arrow-Pratt coefficients provide us with the information necessary to
rank individuals according to their risk preferences over the range of monetary
outcomes covered by the specific gamble. But this does not tell us whether one
individual is globally more risk averse than another. The rankings of indivi-
duals obtained over different regions of their utility functions can vary widely.
For example, in an identical gamble involving $1.50, individual A may be more
risk averse than individual B, while in gamble involving $150.00, individual B
may be more risk averse than A. Without some rule for ordering individuals over
their entire preference functions, we can say little about interpersonal compar-
isons of attitude towards risk. For the same reason, it is difficult to classify
any one individual as risk averse, risk neutral, or risk loving over the entire

range of his utility function.
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Most studies of decision makers' behavior measure risk attitudes locally.
This allows them to be classified as risk loving, neutral or averse. Often the
classification is influenced by the choice of functions fitted to the utility
points as many functions are restrictive in the type of behavior they can exhib-
it. Our ability to order action choices into efficient and inefficient sets for
a particular class of decision makers has been greatly enhanced by the develop-
ment of stochastic dominance rules.

Despite the widespread use of the EUH to determine decision makers' prefer-
ence orderings, many questions regarding its accuracy still remain. Among these
concerns are whether decision makers' preferences are actually revealed in a
game-1like setting, the intertemporal validity of utility functions, and whether
a theory which includes income as its only independent argument can be usefully
applied in real world situations. Most studies which have used the EUH to
predict decision makers' action choices tell us little about its robustness. To
meet the requirements of a good test of a theoretical hypothesis one must show
that the predicted outcome conforms with the actual outcome and that the same
accuracy of prediction could not be attained through an alternative model.

To test the EUH, two choice sets are required: one for use in deriving the
individual's utility function, and one to predict his utility maximizing choice.
Three approaches have been used to construct the required choice sets: the
actual economic behavior approach, the experimental approach, and the experimen-
tal approach with significant outcomes. Although the experimental approach with
significant outcomes meets many of the objections raised regarding the other two
approachs, it is quite expensive. Therefore, the experimental approach which
elicits the individual's utility function through a series of hypothetical gam-

bles is most commonly used.
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Although these studies provide some support for the EUH, they also lead us
to some disturbing conclusions. First, decision analysts may be naive to believe
that a single-valued, single-argument utility function can capture all of the
information needed to predict choices or that they can predict a single preferred
action choice from a choice set. Second, decision makers' attitudes towards
gambling and probability may affect their elicited utilities and need to be
incorporated into the model. Recent work by mathematical psychologists has shown
that utility functions elicited using common methods are actually compound util-
ity functions for individuals' preference for riskless income and attitude to-
ward chance taking. Third, the assumption that probability measures are indepen-
dent of wealth may be unjustified. Fourth, we have found that choices among
artificial lotteries are affected by learning but we have not yet determined
whether learning occurs which alters actual responses to economic choices if the
choices are made repeatedly. Lastly, considerable doubt has been raised regard-
ing the assumptions that decision makers follow the axioms of rational behavior
and that judgments called for in an analysis can be expressed accurately through
the use of a single, precise number.

In response to this last concern, decision theorists have used experimental
evidence to develop new approaches to decision modeling with the general frame-
work of expected utility analysis. Prospect theory has attempted to resolve
questions arising from the fact that individuals do not always follow the axioms
of rational behavior assumed by the EUH. The diversion of actual behavior from
that assumed by the EUH is due, in part, to the fact that individuals have unique
ways of editing information before using it to determine the expected value of
the outcome of an action chocie. In addition, prospect theory argues that
decision weights which multiply the value of outcomes are comprised of a set of

factors which include, but are not limited to, probabilities.
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Although the independence axiom of rational behavior is consistently vio-
lated by decision makers, development of a generalized form of expected utility
analysis still allows us to use the basic concepts, tools, and results of expect-
ed utility analysis. This is accomplished through the use of a weaker assumption
of smoothness of preferences, or consistency in the shape of utility functions in
a given region. An important implication of this weaker assumption is that the
shape of the utility function for wealth can be used as a complete characteriza-
tion of risk attitude whether or not the individual is an expected utility
maximizer.

Both prospect theory and the generalized form of expected utility analysis
continue the EUH's focus on uncertainty caused by randomness. Fuzzy-set theory
has been developed as a parallel calculus which models the uncertainty which is
introduced due to imprecision or vagueness in human cognitive processes. Fuzzy-
set theory allows for representation and quantification of the degree of impreci-
sion or vagueness associated with any input into the decision process through the
use of membership functions.

A Final Note

One may ask why an understanding of risk attitudes and how to measure them
is important or, where choices between risky actions are required, why we do not
confront decision makers directly. Although most decisions are made by the
direct involvement of decision makers in the decision process, in an important
number of cases, the direct involvement of decision makers is not possible.
Computer simulation models may generate thousands of action choices which a
single decision maker could not possibly subjectly evaluate. Having a decision
criteria to reduce the choice set presented to decision makers is extremely

helpful.
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In other cases, policy makers may be called on to make decisions which
affect large numbers of individuals. Knowing the risk attitudes of those affect-
ed and their likely response can be valuable information in policy design. And
if risk attitudes can be found to correlate closely with various socioeconomic
variables, policies and decisions affecting groups not directly involved in the
decision process may be even more finely tuned.

Finally, we may study decision making under uncertainty because decision
makers' decision skills can be improved. Learning, although not discussed in
this report, is almost always an important by-product of application of decision
making rules.

Problems which will continue to plague decision theorists in the context of
the EUH are numerous. Fuzzy set theory, prospect theory, various safety-first
models, and Machina's generalized expected utility models are all challengers or
some might say extensions to the existing EUH framework. A1l claim to model well
some results which apparently contradict results obtained from the EUH. That
there are shortcomings in EUH applications should not, however, come as too great
a surprise. No one has claimed to be able to measure with perfect accuracy
either decision maker's utility functions or the probability distributions which
describe their feasible action choices. A1l EUH single value index values will,
therefore, contain errors. Whether or not these errors in measurement eliminate
the EUH as a practical decision tool is still under debate. We tend to agree with
Dillon, however, that it remains a practical and useful decision tool in most
applied situations. For a review of methods and results of recent applications
of decision theory in agricultural settings see Fleisher and Robison, forth-
coming.

Still, there is room to improve and some of the newly proposed models may

offer improvements. But to replace the EUH will not be easy because it offers
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scientists in the decision theory field and economics a unique combination of
tools. It is, according to Hey, the basis of at least 95 percent of disciplinary
models in risk analysis including the literature applicable to decision makers on
small farms. For these models, the precision implied by the EUH in ordering
action choices is required. Comparative statistics involving maximization tech-
niques of calculus requires a single valued, precisely measured and described
function. Without such functions, the disciplinary progress made thus far would
have been impossible. And this tool will not likely be discarded because it
doesn't work precisely in all applied situations.

So, we will continue to work with the EUH model. Efficiency criteria which
separate action choice sets into one containing the expected utility maximizing
choice and one that doesn't allows us to be less demanding in our risk measure-
ment applications. Yet, our theory continues to assume such precise measures
exist. The importance of understanding risk and its role in decision making, the
solid foundation already built, and the opportunities to make new discoveries
combine to make risk analysis an exciting and dynamic portion of the discipline

of economics.
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