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Introduction 

(_This paper illustrates a new methodology for finding preferred action 

choice(s) under uncertainty for well-defined classes of decision-makers. The 

methodology does not replace the expected utility maximizing rule, which has 

been used to identify preferred action choices; rather it extends the rule's 

accuracy as a positivistic tool and its reliability as a nonnative guide-:) 

The methodology used in this paper does, however, alter the kinds of infor-

mation needed about decision-makers. Hence, it is related to a practical ques-

tion facing the Western Regional Research Committee (W-149). This conmittee 

is considering estimating utility functions for a large number of decision-

makers differentiated by geographic area, co1T1110dity produced, farm size, wealth, a d 

other vari ables, and they want to know the value of such a project. Because there 

was no consensus among the committee, a subc01T1Tiittee was appointed to explore the 

question in more detail. This paper can be considered part of that exploration. 

The remainder of this paper has four parts. In the first, we compare our 

current interest in utility functions with an earlier interest in production 

functions and note some similarities. The second part describes how sto

chastic dominance with respect to a function can be used to identify preferred 

acti on choices under uncertainty. The third part illustrates the criterion 

with a numerical example. And the fourth part concludes with our recorrmendation 

for future work on specifying micro risk models. 

Utility Functions in Perspective 

The question facing the (W-149) conmittee of whether or not to estimate 

von Neumann-Morgenstern utility funct i ons has a familiar ring, but in a different 

t une and for a different function. It seems reminiscent of our profess ional 

interest in production functions during the decade of the sixties (Heady and 
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Dillon}. The interest was both theoretical and empirical. Theoretical interest 

focused on derivation of expansion paths, isoquants, and profit maximizing solu

tions for different kinds and shapes of production functions. Empirical work 

emphasized the statistical estimation of the parameters of production functions 

for various crop and livestock enterprises. 

Output response patterns could be adequately described by a statistically 

fitted production function only when elaborate control procedures were under

taken. The input being varied had to be carefully measured. Fertilizer, for 

example, was in some cases applied by hand using small buckets. Plots had to 

be set up in fields with unifonn soil type. Despite researchers' best efforts, 

however, it was impossible to hold constant all factors not being systematically 

varied. Weather, insect and pest damage, soil type, and past cropping patterns 

were factors which often varied in even the most carefully controlled experiments. 

At the fann level, unexplained variation in the response of output to changes 

in input levels was even greater. Inputs were less carefully applied, and the 

number of factors not held constant was usually large. But no matter, scien-

tists had already fitted a single valued production function to experimental 

data, and from that single valued function they could make approximate recolTITlen

dations. On the average input level x1 would result in output level v1 (Figure 1). 

Once input and output prices were known with certainty, the profit maximizing 

levels of factor usage and output could easily be detennined. 

Our analytic skills have improved since then, and we are no longer willing 

to assume that production responses are described by single valued functions 

(Pope and Just). We now recognize explicitly that in response to a given level 

of usage for an input x1, say fertilizer, fann managers actually face a range 

of possible output response levels between v1 and v; with probability f(Y1 IX1) 

rather than a single valued level of output (Figure 2). 



3 

FIGURE 1. A s;ngle Valued Production Function Measuring Maximum Output y 
for a Specified Input x. 
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FIGURE 2. A Multivalued Production Function with Output y for a Given Input x1, 
Described by Probability Density Function f (y). 
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Previously we did not account for this variance in output; now we do. 

The explicit consideration of uncertainty has complicated our analysis of economic 

problems, but it has also made it more realistic (Hiebert, Talpaz and Taylor, 

Robison and Black). When prices and the production function are known with 

certainty, the profit maximizing solution is preferred by decision-makers for 

whom more is better. Once the certainty assumption is dropped, once uncertainty 

with respect to output and n many user prices is recognized, the expected utility 

maximizing solution becomes the preferred action choice. If we are to identify 

that solution, however, we must have a single valued utility function. 

Agricultural economists have estimated utility functions for fanners in 

a nuni>er of settings (Officer and Halter). Estimation techniques and interview 

procedures have been carefully refined, but the estimation of von Neumann

Morgenstern utility functions has proven to be at least as difficult as the 

estimation of single valued production functions. While production outcomes 

are usually physical and susceptible to measurement, preferences are not mani

fest in physical quantities and any utility measures assigned them are completely 

arbitrary. Moreover, the theory for assigning utility valuations to preference 

orderings influenced by multiple factors is not well-developed. We usually 

relate preferences to a single variable, wealth, ignoring the influence of goals 

other than increase in wealth and of other factors such as age and family status. 

Finally, because each subject is unique, replication of experiments is not 

possible. 

Due largely to these problems encountered when estimating utility functions, 

positivistic risk models based on the expected utility hypothesis have not proven 

to be particularly effective as predictive tools, though they may perfonn better 

than models which maximize expected profit (Lin, Dean, and Moore). Our own 

experience with an expected utility maximizing rule illustrates this point. 
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In an advanced fann management class students were asked to rank three action 

choices described by probability density functions. Later they were asked to 

derive their own von Neumann-Morgenstern utility functions and to order the 

same three action choices again using the expected utility maximizing rule. 

Of the 11 students who completed the assignment, only 2 had rankings based on 

the expected utility rule which matched those of their a priori evaluations. 

We need to ask, then, whether we can in fact derive single valued utility 

functions defined over wealth which rank uncertain outcomes in a way consistent 

with the underlying preferences of particular decision-makers. If this is 

our goal, it is similar to the one held earlier by those concerned with the 

estimation of si ngle valued production functions, and we are proceeding, just 

as we did before, by attempting to hold more factors constant and to reduce 

"measurement" errors through the development of more realistic interview proce

dures. How much can we refine our techniques, however? How close can we come 

to holding enough factors constant to pennit us to say that we have found a 

11 true11 single valued utility function which accurately reflects preferences? 

While we believe that efforts to improve our ability to represent decision

maker preferences with empirically derived utility functions, we also believe 

that analysts must recognize that utility functions cannot be known with cer

tainty. At best, we can be reasonably confident only that a given decision

maker' s preferences are represented by utility measures falling within some 

interval such as that between TI (W) and U*(W) in Figure 3. 

The problem of decision-making under uncertainty now becomes one of order

ing action choices with uncertain outcomes for a decision-maker whose utility 

function may take any shape, but which falls within the confidence interval 

defined by U (W) and U*(W). Obviously, this is a more difficult task than merely 

finding the action choice which maximizes the expected utility associated wfth 
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U(y) 

U*(y) 

----u(y) 

FIGURE 3. Interval Valued Utility Functions Valued over Outcomes y . 
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a single valued utility function, but by addressing the problem in this way 

we should be able to improve the predictive and prescriptive power of our deci

sion analysis. 

A New Methodology for Ordering Choices under Uncertainty 

In this section, we introduce a technique developed by Jack Meyer, stochastic 

dominance with respect to a function, which can be used to solve decision problems 

in which neither the outcomes of a given action choice nor the utility function 

of the decision-maker is known with certainty. We begin our discussion, how

ever, with a brief review of the concept of absolute risk aversion, which we 

relate to two well-known efficiency criteria: first and second degree stochastic 

dominance. 

It should be recalled that the scale and origin of von Neumann-Morgenstern 

utility functions are arbitrary; i.e., utility function U (X) would order action 

choices in the same way as utility function U*(X) = a + b U (X), where.! and .Q. 

are constants and b > 0. Therefore, the interval described by upper and lower 

confidence bounds for an empirically derived utility function are not unique, 

a fact which further complicates our decision problem. Arrow and Pratt, in 

separate articles show, however, that by dividing the second derivative of 

the utility function by the first derivative, a ratio is obtained which does 

uniquely represent preferences. This ratio, the absolute risk avers ion func

tion or RA(X), is defined in equation 1: 

(1) RA(X) = -U"(X)/U'(X) 

Since RA(X) is derived from a utility function, it is defined over all 

values of wealth for which the utility function is defined and twice differen

tiable. Hence, nearly all utility functions can be represented by absolute 
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risk aversion functions. For example, the log utility function has an absolute 

risk aversion function which is equal to: 

where X ; O 

For the negative exponential utility function, 1 - e-AX the coefficient of abso-

lute risk aversion is: 

Plotted in Figure 4, RA(X) functions derived from these utility functions are 

single level in the space of all possible absolute risk aversion values. As 

such, they identify a class of investors. Most efficiency criteria also identify 

a class of investors by their risk aversion coefficients, but such classes are 

generally much l ess restrictive than those associated with a single utility functi n. 

Consider how some popular efficiency criteria identify classes of decision

makers by values of their absolute risk aversion function. First degree stochasti 

(FSO) dominance over act ion choices, based on cumulative density functions of 

action choices (Hadar and Russell; Hanock and Levy), applies for all decision

makers who prefer more to less; i.e., those for whom marginal utility is posi

tive (U' > O). Hence, the value on RA(X) is unrestricted. Second degree sto

chastic dominance (SSD) is more restrictive than FSD requiring not only positive 

marginal utility (U 1 > 0), but also risk aversion (U'' < 0). As a result, the 

class of agents for which SSO applies is the class with positive values of 

RA(X) for all values of X. This, incidentally, excludes decision-makers who 

possess Friedman-Savage type utility functions whose value for RA(X) initially 

is negative. 

A natural extension of stochastic dominance would be something in between 

a single line representing a utility function, and stochastic dominance which 

I 
I 
I I 
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FIGURE 4. Mappings of Utility Functions into R (x) Space for Log and 
Negative Exponential Utility FunctioAs . 

x 
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holds for the whole space or positive half-space of values of RA(X). This is 

the alternative supplied by Meyer. He provided a methodology for ordering 

action choices for a class of agents bounded by an upper and lower absolute 

risk aversion function. That is, he has developed an efficiency criterion for 

the class of agents whose risk aversion measures are bounded by: 

Graphically, this might include the class described in Figure 5. 

Like first and second degree stochastic dominance criteria, Meyer's cri-

terion involves a comparison of cumulative density functions of outcomes asso

ciated with particular action choices. It provides an ordering which is consis

tent with the postulates of expected utility theory for all distributions. 

Unfortunately, closed form solutions for a generalized decision problem involving 

a confidence interval in the utility function are not possible unless the risk 

aversion function is unbounded from above or below. Otherwise, the procedure 

requires that the problem be solved using optimal control techniques. These 

are described by Meyer and will not be reviewed here. What we offer is an 

example of how stochastic dominance with respect to a function can be used to 

solve a practical decision problem. 

A Practical Application of Stochastic Dominance with Respect to a Function 

In this section, we present results based on an application of Meyer's 

criterion to a problem involving the selection of an investment portfolio. 

These results are of particular interest for several reasons. First, they 

demonstrate that stochastic dominance with respect to a function is, in fact, 

a powerful tool for ordering action choices under risk. Second, they provide 

rather dramatic evidence of some of the shortcomings of EV portfolio analysis. 
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FIGURE 5. A Class of Agents Whose Risk Aversion Coefficients Bounded 
by RA( >:)u and RA( x\. 
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Finally, they serve as a starting point for a discussion of a still more power

ful approach to the problem of prescribing action choices under risk. 

In our example a utility maximizing investor must choose a portfolio com

prised of two assets, one of which has a stochastic return and is, therefore, 

risky. The investor has initial holdings of each asset valued at $5,000 and 

cash holdings of $250. He can acquire additional holdings of either asset using 

his cash holdings or borrowed funds. Additional holdings of one asset can also 

be purchased with funds obtained by liquidating some or all of the initial hold

ings of the other asset. Both assets are lumpy; they can be bought and sold 

only in $50 units. Both are also somewhat illiquid, since a fee proportional 

to their value is charged when they are sold. There is a ceil i ng on the amount 

of credit obtainable, and a lower bound in the size of loans. The cost of bor

rowing increases along a step function as the amount of credit used increases. 

A final factor which affects the investor's choice is the demand for cash bal

ances, which is also stochastic. The cost of adjusting to a new portfolio plus 

the demand for cash balances must not exceed the liquid wealth of the investor, 

which is defined as the sum of current cash balances, borrowed funds, and revenue 

from asset liquidation . 

s. t. 

More fonnally stated, our problem is: 

(5) Max E [U(y)] 

x1 + x2 ~ OW-CD+ (l-C3) x3 + (l-C4) x4 + X5 
x5 ~Cl 

x1x3 = o, x2x4 = o 
X1,x3,x4 = 0, 50, 100, 150, ••• 5,000 

x2 = 0, 50, 100, 150, ••• 4,000 

X5 = 0, 100, 101, 102, ••• 7,500 



14 

where 

y = change in net worth 

xl = amount of asset 1 acquired 

x2 = amount of asset 2 acquired 

X3 = amount of asset l liquidated 

X4 = amount of asset 2 liquidated 

X5 = amount of funds borrowed 

DW = cash available for investment = $250 

CD = desired cash reserve for meeting cash demands = $668.001 

CL= limitation on credit= $7,500 

c3 = fee for liquidating asset l = 7% 

c4 = fee for liquidating asset 2 = 3% 

The first constraint requires that liquid wealth be sufficient to meet the 

cost of adjustment to the new portfolio. The second limits credit. The two 

multiplicative equality constraints ensure that the prescribed action choice 

does not call for both the acquisition and liquidation of the same asset. The 

remaining constraints define permissible levels for each activity. The change 

in net worth, y, associated with a particular action choice is represented by 

the following expression: 

where 

(6) y = rl (XlO + Xl - X3} + r2 (X20 + X2 - X4} 

+ (1-C3) x3 + (l-C4} x4 - R(X5} - CEX 

XlO = initial holdings of asset 1 = $5,000 

X20 = initial holdings of asset 2 = $5,000 

rl = rate of return on asset 1 - N(.05,.0016} 

r2 = rate of return on asset 2 = .025 
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CEX = cash expenditures r {4,100) 

R(X5 )= interest charge 

.02X5 , x5 ~ $3,000 

60 + .025{X5 - 3,000); $3,000 < x5 ~ $5,000 

110 + .03(X5 - 5,000); $5,000 < X5 ~ $7,500 

and other variables are defined as above. 

Application of the Meyer criterion involves the binary comparison of dis

tribution of outcomes associated with different action choices. For our pur-

poses, we chose to compare distributions associated with five portfolios which 

are efficient according to the conmonly used E-V criterion. The problem speci

fied above, though relatively small in dimension, is rather complex and is not 

suited for optimization by quadratic programming -- the technique usually employed 

to identify E-V efficient portfolios. Using a revised version of a Monte Carlo 

progranming algorithm developed by Donaldson and Webster, however, we were able 

to overcome this difficulty. 2 

Monte Carlo programming is a random search procedure. Feasible portfolios 

are generated sequentially in a completely random fashion. The outcome of each 

new portfolio, measured in tenns of some single valued objective function, is 

compared to the outcome associated with the previous best portfolio. If a 

sufficiently large number of portfolios is examined, one which is optimal or 

nearly optimal, should be identified. 3 

To generate a set of E-V efficient portfolios, we specified the following 

quadratic objective function: 

(7) i = E(y) - ~ Var(y) 

= E(r,) (X10 + X1 - X3) + r2 {X20 + Xz - X4) 

+ (1-C3) x3 + (1-C4) x4 - R(X5) - E(CEX) 

- ~ [(X10 + X1 - X3)2 Var(r1) + Var(CEX)] 
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Using Monte Carlo programning to maximize this objective function for several 

values of A, portfolios at different points along the E-V frontier were identi

fied. Activity levels for the five E-V efficient plans used in the analysis 

below are given in Table 1. 

Distributions of outcomes associated with these plans were generated in 

the following manner. Two series of ten random numbers, the first having a 

nonnal distribution with mean .05 and variance .0016 and the second having a 

ganma distribution with mean 400 and variance 40,000, were generated independently 

using techniques discussed in Manetsch and Park. By substituting a value from 

the first series for r1 and a value from the second for CEX into equation 6, 

a sample outcome for a given plan was computed. In this way ten sample outcomes 

for each plan were generated. The means and standard deviation for the sample 

distributions are also given in Table 1. 

The five plans were then ordered for 11 groups of investors using the Meyer 

criterion. The first group includes investors who are risk neutral as well as 

some who are mildly risk loving and mildly risk averse. The 11th group includes 

investors who are highly risk averse. Before discussing the results themselves, 

it should be noted that the coefficients of absolute risk aversion which are 

used to define groups of investors correspond exactly to the parameter A of the 

negative exponential utility function used to detennine E-V efficient portfolios 

{Freund). If the E-V criterion orders action choices in a manner consistent 

with the postulates of expected utility, then we should find that the optimal 

portfolio for a given value of A is not dominated for the class of investors 

incl uding those with absolute risk aversion coefficients equal to that value. 

Because we have no reason to believe that the distribution of outcomes will be 

normal, however, this expectation may not be well founded. It has been demon

strated that the E-V criterion be consistent with the postulates of expected 



Table 1. 

Portfolio X1 

1 5000 

2 4350 

3 2950 

I 4 0 

·5 0 

E-V Efficient Portfolios Derived Using 
Monte Carlo Progranming Methods 

c v :y eve A ti 1t L l 
x2 X3 X4 X5 Expected Change Standard Deviation of 

in Net Worth ChanQe in Net Worth 
I 

! 5175 
. I 

0 I 0 250 229.46 462.14 I 

0 I 0 0 I 4768 209.57 437.94 

1200 0 I 0 4568 148.31 386.50 
' 3200 0 I 0 3618 19.23 284.22 

4000 14300 0 419 -490.35 174.76 
I 

). 

0 

.001 

.002 

.01 

.09 

-----.-.... ..-.... -~··-
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utility theory only when outcomes are nonnally distributed (Samuelson) or when 

the utility function is quadratic (Tobin). 

The set of portfolios which is efficient under the Meyer criterion is pre

sented in Table 2 for each of the 11 classes of investors. Portfolio l dominates 

all others for the first class of investors. This is consistent with the results 

of the E-V analysis, since under that criterion we expect the first portfolio 

to be preferred to all others by risk neutral investors. Portfolios 1 and 2 

are efficient for the second class of investors. This contradicts the results 

of our E-V analysis, since it indicates that either portfolio 2 or 3 should be 

preferred by each investor in the class and that both of these portfolios should 

dominate portfolio 1. Portfolio 2 is efficient for classes 3 and 4, and port

folios 2 and 3 are efficient for class 5. Because we have not considered E-V 

efficient portfolios associated with risk aversion coefficients within the 

ranges defining these classes of investors, we cannot compare these results 

with those of the E-V analysis. Portfolio 3 dominates all others for investor 

classes 6 through 11. This clearly contradicts the results of the E-V analysis, 

since we would expect either portfolio 4 or portfolio 5 to be efficient for at 

least s001e investors in each of these classes. Closer inspection of the simple 

distribution of outcomes for portfolios 3, 4, and 5 indicates that the former 

dominates each of the latter two by first degree stochastic dominance -- i.e., 

that all investors who prefer more to less would prefer portfolio 3 to either 

of the other two. Clearly the E-V criterion is not a valid one for ordering 

the action choices facing these classes of investors in this problem. Its fail

ure is almost certainly attributable to the non-nonnality of the distribution 

of outcomes associated with the different portfolios. 

On the other hand, the Meyer criterion has given us an ordering of the 

five portfolios which is consistent with the postulates of expected utility 



Table 2 • 

Non-Dominated 
Portfolios 
Efficient 
Portfolios 

{ l) (2) 

Efficient Portfolios for Classes of Decision Makers 
Identified by Ranges on the Value of Absolute 

Risk Aversion Coefficients 

Range of Risk Aversion Coefficients 
(3) (4) (5) (6) (7) {8) (9) (10) (11) 

- .001 .001 to 
to .001 .003 

.003 to .005 to .007 to .009 to .011 to 

.005 .007 .009 .011 .013 
.013 to .015 to .017 to .019 to 
.015 .017 .019 .500 

1 1 
2 

2 2 2 
3 

3 

·- ---------

3 3 3 3 3 

-------·---~---------........--...,._~--..I'·--~--..·- ..,. .. ~-............ 
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for all distributions. Furthennoret it has enabled us to make that ordering 

without specifying a utility function or an exact value of the decision-maker's 

risk aversion coefficient. All that is needed to order risky action choices 

is a range -- a confidence interval -- within which we are reasonably certain 

that the decision-maker's risk aversion coefficient falls. We need not, then, 

focus our empirical efforts on the identification of a functional fonn for 

different investor's utility function and on the estimation of the parameters 

of these functions. Rather, we need to develop better empirical tools for the 

estimation of absolute risk aversion coefficients for different classes of 

individuals. 

The Meyer criterion is not without shortcomings, however. If the range 

of absolute risk aversion coefficients defining a particular class of actors 

is too large, it may not provide a complete ordering of acti on choices. We 

see this problem in our results above for investor classes 2 and 5. A more 

serious difficulty arises because the Meyer criterion operates by making binary 

comparisons. For most problems the number of action choices is large and pair

wise comparison of each choice to all others may not be possible. We can reduce 

the set of action choices through the application of some other criterion 

such as the E-V criterion -- but we have no assurance that such a rule will 

not eliminate the best action choice. 

Little can be done to resolve the first problem mentioned above. It can 

be corrected only by reducing the range of risk aversion coefficients defining 

each class of investors. We believe we can suggest at least a partial solution 

to the second and more important problem, however. We propose to incorporate 

the Meyer criterion into a Monte Carlo progra1T1Tiing model as the evaluative 

criterion -- i.e., a subroutine which applies the Me7er criterion will replace 

the objective function as a means for detennining whether a new portfolio 
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generated at random is preferred to the previous best portfolio. Since the 

Meyer criterion can be shown to be fully transitive in its ordering of action 

choices, this technique can be used to find a set of efficient portfolios which, 

as the number of portfolios examined increases, should include a portfolio 

approaching the action choice which maximizes expected utility for each member 

of a particular class of investors. 

Conclusion 

In this paper we have compared our current interest in utility functions 

to our earlier interest in production functions. Neither type of function can 

be estimated without error because of the number of excluded variables not held 

constant. Earlier we ignored the error term associated with production func

tions, treating production levels as single valued outcomes defined over variable 

input levels. Later we accounted for the stochastic nature of production in 

our decision models by introducing single valued utility functions with non

constant marginal utilities of wealth. The Meyer criterion, stochastic dominance 

with respect to a function, allows us to refine further our analysis of decision

making under uncertainty. It pennits us to relax the earlier requirement of 

a single valued utility function, replacing it with well-defined upper and lower 

bounds on the absolute risk aversion function, RA(X). In effect, it permits 

us to solve decision problems for well-defined classes of investors. Defining 

investor classes using the RA(X} measure, as noted above, has already been used 

to identify classes of decision-makers who act in accordance with the well-known 

stochastic dominance efficiency criteria. Meyer's criterion allows us to narrow 

the bounds on those classes and is therefore a more discriminating decision tool. 

Our empirical results demonstrate that stochastic dominance with respect 

to a function can be applied in realistic decision situations. Furthermore, 
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they demonstrate that some very conmonly used techniques such as E-V analysis 

may not be very effective when the assumption of nonnally distributed outcomes 

cannot be made. 

Applying the Meyer criterion introduces the new problem of how to place 

bounds in the absolute risk aversion function. One method for doing this might 

involve the· determination of confidence limits in the parameters of empirically 

estimated utility functions which are also parameters of the absolute risk aver

sion functions. Alternatively, simple values of the absolute risk aversion 

function could be obtained using an approximation fonnula derived by Pratt. 

If reasonable bounds in RA(X) can be found, thereby explicitly recognizing the 

fact that utility functions cannot be known with certainty, we will probably 

have a more effective analytical tool for both predicting and prescribing pre

ferred action choices. 

The above results have some implication for the question being considered 

by the W-149 conmittee. Is it worthwhile to estimate utility functions? We 

are concerned that a single valued utility function may not be an accurate re

flection of investor preferences because of important variables which may affect 

preferences and which are not held constant. Perhaps what is really needed is 

some way to identify decision-makers by more flexible measures, such as bounds 

on RA(X) as Meyer's criterion allows. 
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Footnotes 

1cash demand was assumed to have a garrma distribution w1th mean 400 and 
variance 40,000. By setting CD at $668.00, we ensured that the probability 
of cash demand exceeding cash reserve is only .10. 

2For other applications of Monte Carlo programning, see Anderson, Dent 
and Byrne, Dent and Thompson, and Carlson, et. al. 

3For a problem the size of that considered here, inspection of 1,000 plans 
was considered to be adequate. 
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