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1. Introduction 

A DYNAMIC DUAL MODEL OF ASYMMETRIC 
INVESTMENT UNDER UNCERTAINTY 

The dual approach to modeling dynamic investment under uncertainty has proven extremely 

valuable in applied research (e.g. Epstein, 1981 ; Epstein and Denny, 1983; Vasavada and Chambers, 

1986; Stefanou, 1989). Advantages of the dual approach are that it allows for a flexible 

representation of the underlying production technology and generates closed-form dynamic decision 

rules that are amenable to empirical estimation. 

A weakness of existing dynamic dual models is that they generally assume the future paths 

of exogenous state variables are deterministic and known with certainty to the investing firm. Often 

the simple assumption of static expectations is made (current prices will continue forever with 

certainty). Nonstatic expectations, where firms expect certain kinds of growth or depreciation 

patterns in the exogenous state variables, have been incorporated into some studies (e.g. Epstein and 

Denny, 1983; Luh and Stefanou, 1996). However, state variable paths are still assumed deterministic 

and known. This creates an inconsistency because the future paths of exogenous state variables are 

usually stochastic and not known with certainty to the investing firm. 

Another weakness of existing dynamic dual models is that they typically assume investment 

decisions are symmetric, in the sense that positive and negative investments are assumed to follow 

the same decision rule (for an exception see Chang and Stefanou, 1988 and Oude Lansink, 1997). 

Recent research on the theory of investment under uncertainty has shown that irreversibility and 

asymmetric adjustment costs lead to asymmetry in investment decision rules (Pindyck, 1991 ; Abel 

and Eberly, 1994; Chavas, 1994). In these models, investment responds differently during capital 
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expansion and contraction phases. However, none of these models has been applied empirically using 

a dual approach. 

In this paper we develop a truly stochastic dual model of investment under uncertainty. We 

allow exogenous state variables to follow geometric Brownian motion with drift and use stochastic 

dynamic programming to characterize duality relations. Firms are assumed to have rational 

expectations but perceive future values of exogenous state variables as stochastic, so that uncertainty 

can directly influence the investment decision. We also allow investment decisions to respond 

asymmetrically during capital expansion and contraction phases. While stochastic transition equations 

and asymmetric investment behavior have been incorporated previously into primal approaches to 

modeling investment under uncertainty (e.g. Abel, 1983; Abel and Eberly, 1994), our major 

contribution is that we incorporate these features into a dual model which is more amenable to 

empirical estimation. 

2. The Model 

Consider a vector of exogenous state variables Z = (In Y, In W, In Q)' consisting of the 

logarithms of output Y,. variable input prices W, and rental rates on capital goods Q. The state 

variables are all functions of time but time subscripts have been dropped to simplify the notation. We 

assume that the state vector follows geometric Brownian motion with drift: 

(1) 6.Z = µ(Z)6.t + Pv 
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where 6. indicates a small change, µ (') is a non-random function or drift parameter, t is time, P is a 

matrix satisfying PP ' = :E and vis an i.i.d. error vector satisfying E(v) = 0 , E(v1v) = 0 for i '¢ j , 

The production process is characterized by a transformation function F(X, Y,K,I) = 0 where 

Xis a vector of variable inputs, K is a vector of capital stocks and I is a vector of gross investments. 1 

The transformation function is augmented with gross investment to account for adjustment costs 

because scarce resources have to be withdrawn from production to install new capital stock (Lucas, 

1967). The capital stock evolves over time according to: 

(2) 6.K = (J - oK) 6.t 

where o is a diagonal matrix of constant depreciation rates. 

Firms are assumed to be risk-neutral and minimize the expected value of discounted 

production costs subject to transition equations for capital and for the exogenous state variables: 

(3) J(Z0,K0) = rrtjn E0 { J e -r'C(Z,K,I)dt} 

0 

subject to (1) and (2). Here r is a constant discount rate and C(') is an instantaneous cost function 

defined by: 

(4) C(Z,K,J) =mm { W'X : F(X, Y,K,J) = O} + Q ' (U + y)K 
x 
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where U in the identity matrix and y is a diagonal matrix with diagonal elements equal to zero 

when I ~ 0 and some non-zero value when I > 0 . Notice that the way rental costs have been 

defined allows for a proportional expansion (or contraction) in rental cost when gross investment is 

positive, as compared to the base case of zero or negative gross investment. This asymmetry in rental 

costs may be due to a difference between acquisition price and salvage values for capital goods, or 

to an asymmetry in the costs of adjusting the capital stock. The parameters in y therefore capture 

the degree of asymmetry in investment response. 

Using standard stochastic dynamic programming, the Hamilton-Jacobi-Bellman (HJB) 

equation corresponding to (3) is: 

(5) rJ =min {C + 'V2Jµ(Z) + 'V""(I - oK) + 0. 5[vec~J)]1 [vec(E)]} 
I 

where 'V/ is the gradient vector of J with respect to i evaluated at (10, Z0, K0) , 'V~J is the hessian 

matrix of J with respect to Z evaluated at (10, Z0, K0), and vec is the column-stacking operator. 

3. Dynamic Duality 

Dynamic duality requires derivation of the characteristic properties of the value function J 

from those of the cost function C. Then any J which satisfies these characteristic properties is the 

value function for some cost function C defined by: 

(6) C = max {rJ - 'V2Jµ(Z) - 'V""(I - oK) - 0 . 5[vec(~J)]1 [vec(:E)]} 
W,Q 
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Furthermore, optimal decision rules can be derived from J using a version of Shephard ' s lemma 

(Epstein, 1981 ~ McLaren and Cooper, 1980). In particular, for our model it can be shown that: 

(7.1) 

(7.2) 

where 0 indicates element by element multiplication, K • is the time derivative of the optimal capital 

path, and x· is the optimal variable input allocation. These decision rules are derived from 

differentiating (5) with respect to lnQ and In Wand using the envelope theorem. AH that remains 

is to derive the characteristic properties of J from those of C. 

(A) 

Suppose that the primal problem (3) satisfies: 

(A.I ) c~ o . 

(A.2) C is increasing in Y, decreasing in K, and increasing (decreasing) in I 
if I > 0 (/ < 0). 

(A.3) C is convex in I and concave in (W, Q). 

(A.4) W el I-defined optimal decision rules exist (the integral m (3) 
converges). 

-
(A.5) There is a unique steady state capital stock K (Y, W, Q) which is 

globally stable. 

(A.6) C is positively linearly homogeneous in (W, Q) . 
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These properties are standard and foUow directly from applying the usual regularity conditions to the 

product transformation function F (see footnote 1 and Epstein and Denny, 1983). Because we allow 

for asymmetric investment response we might expect the optimal investment path to be discontinuous 

at zero investment, which generates kinks in the optimal path of K. Nevertheless, necessary 

conditions for optimality imply that J and 'V ~ (the shadow price of installed capital) are continuous 

along the optimal path of K (Dixit and Pindyck, 1994; Abel and Eberly, 1994). 

(B) 

Given the conditions (A) on the primal problem it can be shown that J satisfies:2 

(B .1) J is real valued and non-negative. 

(B.2) (i) (r + o)('V~' - (U+y)Q - ('V2~µ(Z) - ('V~J)K. 

- 0.5'VK[vecrfz.J)' vec(.E)]' < 0 

(ii) ('V ~1 < (>) 0 if I• > ( <) 0 where I · is optimal 
investment from (7.1). 

(iii) 

- 0.5'Vy[vecrfz.J)' vec(.E)]' > 0 

where K · is the time derivative of the optimal capital path 
from (7.1 ). 

(B.3) {rJ - 'V2Jµ(Z) - 'V~(/ - OK) - 0 . 5(vec('V~./)) 1 (vec(.E)]} IS 

convex in I and concave in (W, Q). 

(B.4) Optimal decision rules are given by (7.1) and (7.2) . 

(B.5) The oQ!imal decision rule (7.1) defines a unique, globally stable steady 
state K(Y, W, Q) . 

(B.6) J is positively linearly homogeneous in (W, Q) . 
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Property (B.1) is self evident and immediate from the primal problem. Properties (B.2) are obtained 

by differentiating the HJB equation (5) with respect to K, I, and Y, rearranging, and using the 

properties of C. Notice that we have generalized Epstein and Denny (1983) here by allowing gross 

investment to take negative as we11 as positive values. Property (B.3) fo11ows directly from the 

convexity properties of the cost function (see (A.3) and the dual cost function (6)). Finally, 

properties (B.4), (B.5), and (B.6) fo11ow immediately from properties (A.4), (A.5) and (A.6) of the 

primal problem. These conditions can also be used to show that J is non-decreasing in (W, Q) . 

The key value function property for empirical implementation is the concavity restriction 

(B.3). Even in the standard case of nonstochastic transition equations where vec(~) = 0 , this 

concavity restriction is somewhat difficult to impose on J . To see this, note that the first derivative 

of J appears on the right-hand-side of (6) so that, even in the nonstochastic case, convexity 

restrictions on C impose third derivative restrictions on J. Thus, a complete characterization of the 

necessary conditions for J requires third derivative properties. The conventional solution to this 

problem is to assume static expectations, µ (Z) = 0, and that the shadow price of installed 

capital V rf is linear in prices (W, Q) . Then concavity of Jin (W, Q) is sufficient to ensure that C wi11 

be convex in I and concave in (W, Q). 

The assumption of static expectations can be relaxed slightly. For example, Luh and Stefanou 

( 1996) have shown that if all first derivatives of the value function ( V 2J as well as V rf) are linear 

in prices (W, Q), and µ is convex, then concavity of Jin (W, Q) remains sufficient to ensure that C 

is convex in I and concave in (W, Q) (see equation (6)) . But while this allows certain kinds of 

expected growth or depreciation patterns in the exogenous state variables, firms are still implicitly 

assumed to know the future path of all state variables with complete certainty, so that uncertainty 

does not alter the decision to invest. 
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In our case of stochastic transition equations, vec(E) ~ 0 , the right-hand-side of (6) contains 

second derivatives of J as well as first derivatives. This clearly exacerbates the problem of analyzing 

convexity relations between J and C because convexity properties on C now impose fourth-order 

curvature restrictions on J. Thus, a complete characterization of the necessary conditions on Jin the 

stochastic case requires fourth derivative properties. Nevertheless, the following proposition which 

is proven in the appendix can be used to obtain conditions on J which are sufficient to ensure that the 

convexity restrictions (B.3) are satisfied. 

Proposition: If (a) J is concave in (W, Q) 

(b) 'V ~is linear in (W, Q) 

( c) 'V~J is linear in ( W, Q) 

( d) µ (Z) is non-increasing and convex 

then the convexity restriction (B.3) is satisfied. 

Notice that the Luh and Stefanou sufficient conditions under convex µ and vec(E) = 0 require 'V 2J 

to be linear in (W, Q), while we only require 'V~J to be linear in ( W, Q) in our stochastic model. In 

other words, we allow 'V 2J to be quadratic rather than requiring linearity, as in Luh and Stefanou. 

The usefulness of our generalization is that it allows a shift in uncertainty to alter investment decisions 

while still generating fairly tractable decision rules for econometric estimation. The restriction ( d) 

on µ can be made with little loss of generality. For example, a stationary VAR process or differenced 

VAR process with unit roots estimated in the logarithms of prices satisfy the required restrictions 

onµ . 
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Overall, the regularity conditions on J in the stochastic case are comparable to those in the 

deterministic case. The only significant additional restriction required is condition (c) of the 

proposition, a condition which is weaker than that used in Luh and Stefanou (1996) in their 

deterministic model. 

4. An Illustrative Example 

Suppose there is a single variable input which is defined as the numeraire. Then W = 1 for 

all t and rental prices Q are expressed relative to the variable input price. Following Epstein ( 1981 ), 

consider a second-order approximation to the value function of the form: 

B11 
I 

0 K B21 K 
I I I 

Inf + .! [K 1 Inf' lnQ ' ] B21 B22 B 32 Inf J(-) = a0 + [A 1 A2 A3] 

(8) 2 
lnQ 0 I 

B 33 
lnQ 

B 32 

+ Q1M -1K 

where a0 is a parameter and the A, B, and M matrices are made up of unknown parameters. It is easy 

to verify that (8) is consistent with the relevant value function properties derived above. In particular, 

the zero restrictions in the B matrix ensure that 'V ~ in linear in Q; and simple differentiation shows 

that 'V~J is linear in Q. Notice also that although we are allowing for a discontinuity between capital 

expansion and contraction phases in investment decisions, both J and 'V ~ are continuously 

differentiable in K, as required along the optimal capital path (Abel and Eberly, 1994). 
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For purposes of illustration, suppose we make the simple assumption of static expectations, 

µ O = 0, and that JO is given by (8). Then differentiating J, substituting into (7.1) and (7.2), and 

rearranging gives the decision rules:3 

3 

(9.1) ki = ~Mi[A3 + B32lnY + B331nQ] - L My( I + Y)kj + (r - o.sa;) ki 
~ ~ I 

I I I · I . x = a + A2 rlnY + A3rlnQ + (A 1 + B21 lnY)(rK - K) + K B 11 (O.SrK - K) 

(9.2) 
+ O.Sr[lnf1B

22
lnf + 21nY1B;2 (lnQ - I) + lnQ 'B33 (1nQ - 2)] 

for i = 1,2, ... n capital goods and x = the aggregate variable input. Here, lei is the ith element of K, qi 

is the ith rental price, M; is the ith row of M, Mij is the ijth element of M, a; is the variance of 

proportional changes in the ith rental price, y
1 

is the jth diagonal element of y , and a is a parameter 

determined by other parameters in the system. Notice from the decision rules that uncertainty about 

future state variable paths influences the decision to invest, and investment may respond 

asymmetrically during capital expansion and contraction phases. These equations are highly nonlinear 

but can be estimated using full information maximum likelihood methods. 

5. Concluding Comments 

Existing dynamic dual models of investment typically assume investing firms know future state 

variable paths with complete certainty, and that investment decision rules are symmetric during capital 

expansion and contraction phases. Yet most state variables are more appropriately modeled as 
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stochastic processes, and irreversibility and asymmetric adjustment costs may induce an asymmetric 

investment response. In this paper we derive a truly stochastic model of investment under uncertainty 

where firms perceive state variables as geometric Brownian motion with drift. Stochastic dynamic 

programming is used to characterize duality relations, and value function restrictions are comparable 

to those used in much existing empirical work assuming deterministic state variable paths. We also 

allow for a shift in rental rates during capital expansion and contraction phases which introduces an 

asymmetry into the investment decision rules generated by the model. The resulting model is 

amenable to econometric estimation . 
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ENDNOTES 

1. Standard regularity conditions on F(·) are: (a) Fis continuous and twice differentiable; (b) F 

is strictly increasing in Y and strictly decreasing in X. K, and the absolute value of/; and ( c) 

Fis convex in I and X 

2. Analogous conditions for the deterministic case with µ (Z) = 0 are given in Epstein and 

Denny (1983). Here we derive the conditions allowing for stochastic transition equations and 

µ(Z) ~ 0 . 

3. Because we have assumed a single variable input which is defined as the numeraire then it's 

decision rule in actually calculated by solving the HJB equation (5) for X, simplifying, and 

collecting terms. 
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APPENDIX 

Proof of the Proposition 

We need to show that each tenn in (B.3) is convex in I and concave in (W, Q). Convexity in 

I is immediate from condition (b) of the proposition. Furthennore, the first term, rJ, is concave in 

(W, Q) by condition (a) of the proposition; and the third and fourth terms, -'V rl(I - oK) 

and - 0.5 [vec~J) ]1[vec(~)] , are both linear and concave in (W, Q) by conditions (b) and (c) of the 

proposition. Turning to the second term, - 'V 2J µ (Z) , we note from conditions (a) and ( c) of the 

proposition that 'V 2J is non-negative and quadratic while 'V~J is negative semidefinite; and from 

condition (d) that µ is non-increasing and convex. These conditions are sufficient to ensure 

that - V'2Jµ (Z) is concave in (W, Q). 
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