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Abstract
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An Empirical Assessment of Multinomial Probit and
Logit Models for Recreation Demand

1 Introduction

The random utility model is widely used in contemporary travel cost studies of recre-
ation demand. Almost all random utility models in the recreation literature are specified
as multinomial logit or as nested logit. One reason for this is the ability of these mod-
els to incorporate a large number of substitutes without sacrificing ease of estimation.
Another strength of these models is that measuring the welfare effects of changes in site
characteristics is straightforward (Bishop and Heberlein 1979, Small and Rosen 1981,
Hanemann 1932, among others).

The independence of irrelevant alternatives (IIA) property of multinomial logit is
a well known and often cited drawback of the multinomial logit formulation of random
utility models (see for example Chapter 4 by Morey). With nested logit models, IIA
is partially relaxed. ! In many empirical studies, the generalization embodied in the
nested logit has been shown to be important (Morey, Rowe, and Watson 1993; Kling
and Herriges 1995; Hausman, Leonard, and McFadden 1995). As an alternative to the
logit model, the multinomial probit model can be used to provide a general correlation
pattern across choices without exhibiting the ITA property. This model has seen little
application in recreation demand because the probit model with more than four choices
was difficult to estimate prior to recent advances in econometric theory and computing
power.

This chapter empirically investigates the implications of error distributions which

relax ITA. The application is to Great Lake fishing site choices made by Michigan trout

!'Specifications such as the random parameter logit or random parameter probit can also relax IIA,
see Chapter 5 by Train or Chen and Cosslett (1996).



and salmon anglers. The underlying theoretical framework is the repeated random utility
model. The following repeated random utility models were estimated: (i) a simple
multinomial logit, (ii) a nested logit, (iii) a simple multinomial probit with independent
errors, and (iv) two multinomial probits with correlated errors. The probit models were
estimated using simulated maximum likelihood methods. The results demonstrate the
feasibility of estimating multinomial probits for the large choice sets encountered in
recreation demand analysis.

In the remaining sections of this chapter, the logit and probit models are spec-
ified and the estimation and identification of multinomial probit are also reviewed for
recreation demand. Next, by using a recreation fishing demand data set, the parameter
estimates are presented for each of the models. Predictions of fishing trips under baseline
site quality characteristics and under a range of changes in site quality characteristics
are compared across the models. Examining a range of changes in site quality allows the
changes in trip demand to be compared across model specifications at site level. Trip
predictions are also calculated for sites where quality was not changed so that the impli-
cations of IIA can be illustrated. In addition, welfare measures for the various changes

in site quality characteristics are calculated for each of the estimated models.

2 Multinomial Logit and Probit Models

Let the random utility of choosing alternative j be written as U; = z;8 + u;, where
r; are the explanatory variables for the utilities of alternatives j = 1,---,J. u; is the
random taste term, unobservable to the researcher. By the hypothesis of random utility
maximization, if j is chosen, it implies U; > U, for [ = l., -++,J. These inequalities are
used to specify the probability that each of the alternatives is chosen. The model for

the choice probabilities will follow from the distribution of the error terms u.




2.1 Multinomial Logit Models

If the u; are assumed to be i.i.d. with a type I extreme value (EV) distribution, then

the joint distribution of the errors is

J
Flu) = exp (— > exp(—uj)) ,
i=1
and the choice probabilities are given by

exp(z;B)
¥, exp(z;B)

From (1), it is clear that the probability ratio between choices j and k is independent of

(1) Pr(j) =

the utility functions other than that of alternatives j and &

Pr(;) _ exp(z;8)
Pr(k)  exp(zifB)

This is often referred to as the IIA property of the multinomial logit model (1).

To partially relax I[A by deriving a two-level nested logit, we can partition the
set of alternatives into G groups as {J,} where J; is the number of choices in group g
for g =1,---,G. Assume that the vector of errors u is i.i.d. and has the following form

of generalized EV distribution function,

F(u) = exp {-— S (z exp(—u,-,/kg)) } .
g=1 \JEB, ~

[t can be shown that the corresponding choice probabilities are

Pr(j) = Pr(ils,) x Pr(g)

exp(z;8/A;) & exp(AgI'V)
Z;‘eB, exp(z;B/Ag) Zf:x exp(AgIV;)
@) _ exp(z;B/A,) 1

X ;
exp((1 — Ay)IV;) E?:l exp(AgIV;)
where IV, = In(T;¢p, exp(z;8/A,;)). Similar to the multinomial logit model, it is easy

to see that the probability ratio of any two alternatives that are within the same group
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g is still independent of the utility functions of the other alternatives (IIA holds within
groups). What is different now is that the probability ratio between alternatives j and
k that are not within the same group, say group g and group s, depends not only on

the utility functions of alternatives j and k, but also on the group inclusive values IV,

and I'V,. That 1s,

Prij) _ exp(z;8) _ expl(1 = A)IVi)
Pr(k)  exp(zif) exp((1 —A)IV,)

The probability ratio remains independent of all alternatives in groups other than g
and s. Thus, the nested logit exhibits a property similar to IIA, which we will call

independence of irrelevant groups (IIG).

2.2 Multinomial Probit Models

One way to avoid the restricted substitution patterns embodied in models with IIA and
I1G is to employ the normal distribution for the random terms, i.e., assume u ~ N(0,Z,)

with the density function

flu) = ——— exp(~5u'S:"u)

NN

where I, is the covariance matrix. The resulting choice probability Pr(j) is

: s (z;—1)B+uy, (z;=z)B8+y,
Pr(j) = [ du; [ dug e [T dug e f(uny e uls,)
(3) = [ Bl - z)B+u;, ¥ 1# j)du,

Unlike the logit models, the probability ratio between any two alternatives Pr(j)/Pr(k)
depends on utility functions of all alternatives regardless of the covariance structure in

L.. Thus, the [IA assumption is not maintained for the multinomial probit model. This

generalization comes at the cost of having to evaluate the high dimension integrals in

(3).



Several simulators have been introduced recently to approximate multinomial
probit choice probabilities through Monte Carlo simulations. We demonstrate the fea-
sibility of multinomial probit estimation using the smooth recursive simulator, often
called the GHK simulator, independently introduced by Geweke (1991), Hajivassiliou
and McFadden (1990), and Keane (1990). We use the GHK simulator because it is
continuous in the parameter space 8 ® L,. Based on the rooted mean squared error
criterion, Hajivassiliou, McFadden, and Ruud (1992) show that the GHK simulator is
unambiguously the most reliable method for simulating normal probabilities, compared
to the twelve other simulators they considered.

To estimate the probit models using simulated maximum likelihood estimation,
the choice probabilities in the likelihood function are replaced by the simulated proba-
bilities from (3). The resulting likelihood function is then maximized so that estimation
can be achieved by using conventional optimization packages. As the sample size and
the number of replications in the simulation of the choice probabilities increase, maxi-
mization of the simulated likelihood function yields parameter estimates that possess the
asymptotic properties of conventional maximum likelihood estimates (Gourieroux and
Monfort, 1993). Consequently, statistical inference based on these asymptotic properties

can be implemented with simulated maximum likelihood estimates.

2.3 The Empirical Comparisons and The Probit Model Iden-
tification

In this chapter, we take an empirical approach to compare the probit and logit models.
The estimated models are assessed in terms of welfare measurement and trip predictions,
which can highlight the role of I[IA. The empirical comparison is motivated in part by’

the difficulty of directly comparing the error distributions between the two models. For

example, consider a logit model with J=3. We can nest the first two alternatives into




one group and the third alternative into another group. A generalized extreme value

distribution with this nesting structure is

F(u) = exp {— (exp(—u1/)) + exp(—uz/A))* — exp(—u3)}

provided 0 < A < 1. It is not clear which normal distribution matches this generalized
extreme value distribution.

Furthermore, in specifying the covariance matrix for the probit model, the nor-
malization reduces the covariance matrix dimension by one (Dansie 1985 or Bunch 1991).
There could exist multiple covariance matrices that correspond to the same underlying

preference. To see this point, let the covariance matrix of the three alternative probit

model be )
gy T2 013
E“ - O'g J23
a3

The normalization of the utility function U; = z;8 + u; based on, say, choice 3 yields

U; = z;B + uj with 2} = z; — z3 and u} = u; —ug for j = 1 and 2. The covariance

]
-'2 -
v, =[ % Y1
u - 0,52

= 0} + 07 — 2043, and 0}, = 0} — 013 — 023 + 712. The

matrix for u” is

with O'Iz = U? + 0’% = 20’13, O';z

probit model can only be identified if either one of the 8’s or one of the o"’s is preset to
a constant. If we fix o],, there are only two identifiable parameters out of the six in X,
with
012 013
(4) z;m . 0’% 623

T3
where o} and ¢} are to be estimated, 5,2, 713, 023, and 72, are some fixed constants

required by the identification conditions. Thus, &;;’s and oy;’s, are inter-dependent, and

the estimates of B’s also depend on &;;’s. In the empirical examples that follow, we will
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also illustrate how different &;;’s will lead to different parameter estimates by estimating

correlated probit models using distinct rescaling assumptions.

3 The Models, Data, and Estimation Results

We model the fishing choices of Michigan anglers for trips targeting Great Lakes trout
and salmon. The fishing sites are defined by the stretch of Great Lakes shoreline within
each of Michigan’s coastal counties. In all, there are 41 counties that support salmon
and trout fishing on the Great Lakes. When the stay-home alternative is included, the
choice set can be as large as 42 alternatives per choice occasion. Before we discuss the
data set and the model estimation results, we will first specify the covariance matrices

of the probit models for recreation fishing demand in Michigan.

3.1 Covariance Matrices of The Probit Model for Recreation
Demand

While the dimension of the covariance matrix for our empirical examples can be as large
as 42 (J+1), computational and data limitations mean that we can not recover every
element in the matrix even after imposing the normalization and rescaling conditions.
One approach is to impose restrictions on the covariance matrix based on researchers’
judgments about the relative similarity and difference between alternatives. For example,
in a repeated random utility model of recreation aemand, one might believe that the
variance of the random term for the stay-home alternative is different from the variance

of the random terms for the fishing sites. In this case, one can adopt the following block

structure for the covariance matrix

04 O, °°° 0O, Udn
2
gqg To UTdh
.
_Ju_
2
i



There are only four different parameters 3, 0%, ,, and g4 in this matrix. If we normalize

against the stay-home choice A, the resulting J-dimensional matrix for u® = u — uy is

2 - &
O'd 0'02 0'0
g4 a,

crf
If we pre-fix o7 in I, to a constant due to the rescaling condition, there is only one
parameter to be estimated in £,. One of { o2, o}, 0., 0an } can be estimated by pre-
fixing the rest. For example, we can elect to estimate o2 by pre-fixing 0} = ¢hn, 0o = Co,

and ogn = C4n

Oy C - Cs Cdn
]
gq - G Cdh
3 . =
(3) Cu=
2
Ty Cdk
Chh

Alternatively, we can elect to estimate o? by pre-fixing o] = ¢4, 05 = C,, and ggx = Can
R DY P g 04

€4 C " Co Cdh
Cd -+ Co Cdi
(6) Tu =
Cd Cdh
oi

In the empirical application, we will estimate two correlated probit models using (5)
and (6), and consider different constants for cg, co-, can, and cup to illustrate how the

parameter estimates change with the covariance matrix specification.

3.2 Data Sets

The behavioral data comes from a 1994 survey of recreational fishing in Michigan that
was conducted at Michigan State University. See the report by Hoehn, Tomasi, Lupi,
and Chen (1996) for details. From the Michigan data, we selected individuals with at

least one single-day trip targeting Great Lakes trout and salmon during the 1994 open
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cations. The log likelihood value for the I-Probit is -1504.54. The independent probit
model fits the data better than the independent logit model.

C-Probit(5) is specified by using (5), and o is identified by fixing ¢, = 0.1,
can = 0, and cx = 1. Alternatively, estimation of C-Probit(6) is based on (6), and o} is
identified by fixing c4a = 3, ¢, = 2, and cz» = 0. As expected, the log likelihood values
for the both correlated probit models are the same, -1443.95, and provide significantly
- better fits than the [-Probit model.

The coefficient estimates of the two probit models are different due to the arbi-
trary selection of the values for the constants for the identification conditions. However,
if the coefficients are divided by the trip cost coefficient, they are virtually the same.
For each of the models, Table 2 presents the standardized coefficients of site quality, the
site quality coefficient divided by the negative of the trip cost coefficient. The sum in

the final column is the sum of the standardized site quality coefficients for each model.

Table 2: Catch Rate Coefficients / Trip Cost Coeflicient

Models Chinook Coho Lake Rainbow Sum
salmon  salmon trout trout

C-Probit(5) 6.769  2.533  0.831 16.132  26.265

C-Probit(6) 6.769 2.533 0.831 16.132 26.265

I-Probit 3.809 3.151 1.389 10.126 18.475

N-Logit 6.434 2.903 0.098 14.600 24.035

I-Logit 1.976 2.963 0.965 8.463 14.365

From the last column of the table, we see that the two correlated probit models are
identical to each other. The nested logit model is also similar to the correlated models.
The independent models appear to be different. However, one should keep it in mind
that the welfare measurements are function of both the error structure (the probabilities)
and the standardized coefficients (Small and Rosen 1981). In the next section, we will

empirically assess the welfare measurements for these models using some policies.




4 The Model Assessment Using Policies

This section addresses the empirical importance of the distributional assumptions on
each model’s trip predictions and benefit estimations. In order to illustrate the perfor-
mance of each model, we examine policy scenarios ranging from site closure to drastic
improvements in site quality. Specifically, we change site quality at Muskegon county
(site i) by multiplying the catch rates at the site by {0.5, 1, 1.5, 2, 2.5, 3}. Muskegon
county is centrally located on Lake Michigan. In addition, we close site :. We examine
the IIA/IIG properties by estimating the choice probabilities to Oceana county (site j)
and Ottawa county (site k), the two counties that are adjacent to site 1. The predicted
trips to each of these sites and the total trip participation will be compared. Welfare
measurements are also compared across the models for both the site quality change
policy and the site closure policy.

To examine the IIA/IIG restriction, the probability ratios of site j and site k are
calculated. We only calculated these ratios for individuals with all three sites (z, j, and
k) in their feasible choice set, about one third (n*=33) of the individuals. This was done
since IIA for theses sites is only relevant if all three sites are in the choice set. In Table
3, the ratios are presented for each of the models and for each of the policies. For the
independent logit model, the ratio remains constant for each individual with a mean of
10.96 for all policies due to the IIA assumption. Foﬁr the nested logit model, the mean
ratio is 30.52 since [IA is maintained within the group of fishing sites. The site closure
policy and the site quality change policy yield the identical ratios for the logit models.
On the other hand, the probit models don’t exhibit the algebraic property of ITA/IIG.
For the probit models, we do not have closed form solutions for the choice probabilities

so the ratios are simulated using 1,000 replications.
Table 3: Mean Probability Ratios X i, (Prt/Pr})
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Models close 1 0.5q; qi 1.5¢; 2¢; 2.5¢; 3q:
C-Probit(5) 1184.47 121442 1262.38 1501.90 2251.86 4204.71 9272.98
C-Probit(6) 1184.87 1214.83 1262.81 1502.41 2252.67 4206.34 9276.94

[-Probit 53.24 56.31 56.55 57.14 48.36 60.60 64.27
N-Logit 30.52 30.52 30.52 30.52 30.52 30.52 30.52
[-Logit 10.96 10.96 10.96 10.96 10.96 10.96 10.96

As expected, the ratios of the probit models change as the quality at site ¢ changes from
the modest to the drastic, including the site closure. This is especially clear for the two
correlated probit models, which are substantially larger than the independent probit
or logit models. The large ratios for the correlated probit are due to the substantial
variations in the predicted probabilities to sites 7 and k across individuals, as compared
to the other models. As an example. suppose that the predicted probability to site j, k
is 0.0001, 0.1 for individual A, and 0.1, 0.0001 for individual B, respectively. For each
individual, the sum of the predicted probabilities to both sites are the same 0.1001.
However, the mean ratio is (0.0001/0.1 + 0.1/0.0001)/2 = 500.0005. As the quality
at site z increases, the trips to both site;j and site k decrease disproportionally. The
independent probit model does not show the same level of change as the correlated
probit models. Although algebraically the ratios across the policy spectrum don’t haye
to remain constant for the independent probit either.

The predicted trips to all sites, as well as a subset of the sites, are presented in
Table 4. At the participation level, the baseline predicted total trips per individual are
basically the same for the five models (the first five rows of column g¢; in Table 4). At the
site level, the correlated probit models and the nested logit model are similar to each
other, though different from the independent probit and logit models (the ¢; column
and the remaining rows). When the policy change moves away from the baseline, the
differences between models become more pronounced. As the quality at site ¢ increases,

the independent probit model predicts the largest total trip increase. which is due to 1)
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the large increase of trips to site : and 2) the sluggish decrease of trips to other sites,
such as sites j and k. The pattern of sluggish decreases is even more evidenced in the
independent logit model in that it has both the least amount of trip increase to site :
and the least amount of trip decrease to sites j and k. Thus, from the site substitution

perspective, the independent logit model is least flexible due to IIA.

Table 4: The Estimated Trips Per Individual

Models close g; 0.5¢; ¢ 1.5¢; 2¢; 25¢; 3gi
Total C-Probit(5) 3.57 358 360 366 3.80 4.03 4.34
trips  C-Probit(6) 3.57 3.58 360 366 380 4.03 4.34

[-Probit 345 3.52 361 3.79 411 4.62 540
N-Logit 360 3.60 361 364 3.69 3.78 3.89
[-Logit 343 3.54 361 3.74 391 426 4.73

Trips C-Probit(3) 0 0.06 0.21 055 1.08 1.71 230
to C-Probit(6) 0 0.06 0.21 0.35 1.08 1.70 2.29
sitez [-Probit 0 0.11 0.23 046 086 1.51 24l
N-Logit 0 0.05 0.20 050 095 1.44 1.84
[-Logit 0 0.11 020 0.34 0.56 091 143

Trips C-Probit(5)  0.14 0.13 0.0 005 002 0 0
to  C-Probit(6)  0.14 0.13 010 005 002 0 0

site j  I-Probit 0.17 0.16 015 0.14 0.3 0.1 0.08
N-Logit 0.14 0.12 009 004 001 0 0
I-Logit 0.15 0.15 0.15 0.14 0.14 013 0.12

Trips C-Probit(3) 0.12 0.11 0.09 0.07 0.04 001 O
to C-Probit(6) 0.12 0.11 0.09 0.07 0.04 0.01 0

site k [-Probit 0.16 0.16 0.15 0.15 0.14 0.12 0.10
N-Logit 0.10 0.09 0.07 0.05 003 001 O
I-Logit 0.16 0.16 0.15 0.15 0.15 0.14 0.14

Furthermore, the nested logit model has the smallest increase in the total trips,
in part because the estimated inclusive value coefficient is very small (A = 0.04). If we
look at the site level, it also becomes clear that as the quality at site 7 increases, both the
correlated probit models and the nested logit model yield basically the same level of trip
reduction to the substitute sites j and k. But the correlated probit models yield a much

larger trip increase to site ¢ than the nested logit model. (This pattern is similar to the

-
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independent probit v.s. independent logit.) For example, for the 3¢; policy when the
trips to sites j and k are about zero, the difference in total trips between the correlated
probit and the nested logit (4.34-3.89) is almost entirely due to the trip difference at
site i between the two models (2.30-1.84) or (2.29-1.84 due to the rounding). Thus, the
correlated probit models are more sensitive to the policy change with a larger net trip

increase than the nested logit model.

Table 5: The Welfare Measurements Per Individual ?

Models close ¢; 0.3¢; ¢q 1.5¢; 2¢; 2.5¢; 3q
C-Probit(3) -1.65 -1.32 0 3.92 12,65 27.91 49.81
C-Probit(6) -1.60 -1.29 0 3.96 12.71 27.89 49.67
[-Probit -1.83 -1.06 0 223 6.51 1431 27.46
N-Logit -1.47 -1.16 0 3.37 10.59 22.69 39.37
[-Logit -1.35 -066 0 1.13 3.04 6.19 11.22

There are also some interesting difference across the models in terms of welfare
measurements. Although the correlated probit models are ranked third in total trip
change, the welfare gains are the largest as the quality at site i increases, followed
by the nested logit model, the independent probit model, and the independent logit
model with roughly 82%, 54%, 25%, respectively, of the values of the correlated probit
models. While the independent logit model yields the largest trip change, the welfare
gain appears to be the smallest for the site quality improvement due to, again, the IIA
restriction and the small standardized site quality coefficients for the I-Logit (Table 2).

For the policies involving changes in site quality, the differences in the welfare
measures minor the differences in the estimated standardized site quality coefficients
(c.f., the last column Table 2) with substantial variability across the models. However,
of all the policies considered, the welfare measures for the site closure policy exhibit

the least variability across models. This may be because the site closure policy can be

*The welfare measures for the probit models were simulated using 1000 replications and following
the procedure described in Chen and Cosslett (1996).
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viewed as raising the trip cost of site ¢ to oo, which dominates the other terms associated
with the site quality coefficients in the utility function. As a result, the welfare measures
for the site closure policy depend more on the probabilities and less on the standardized

site quality coefficients, as compared with the site quality policies.

5 Some Remarks

As illustrated in the preceding tables, the two correlated probit models with different
covariance matrices yield different coefficient estimates for 8’s and ¥. However, if the
coefficient estimates of 3 are divided by the trip cost coefficient, they are virtually the
same. Furthermore, the trip predictions, welfare measurements, and the log likelihood
values are the same as well (with some minor variation due to the simulations). This
illustrates that for any given covariance structure, how one chooses to parameterize the
elements of the covariance matrix will affect the coefficient estimates, but it should not be
important as the two correlated probit models identify the same underlying preference.

Interestingly, even though the nested logit suffers from IIA/IIG, the nested logit
model fits the data set better than the other models considered in this chapter. Of course,
both the nested logit and correlated probit fit the data significantly better than their
counterparts with independent errors. This reinforces the importance of distinguishing
between diverse alternatives (stay-home versus fishing sites) when selecting an error
structure for a model. In terms of the [IA property, the results showed that the correlated
probit exhibited site substitution patterns that were in some cases dramatically different
than the patterns of the other models. As might be anticipated from the independence
of the errors, the probability ratios for the [-Probit model didn’t change as much as with
the correlated probit models - despite the fact that the I-Probit does not algebraically
exhibit the ITA property.

Of course, the results presented here are based on models with relatively simple
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nesting and covariance structures. More complicated nesting structures could be com-
pared to probits with more complicated covariance structures. With the nested logits one
needs to be concerned about whether or not the estimated A lies within the unit interval
for the global consistency with the hypothesis of random utility maximization or close to
it for local consistency (McFadden 1977, Kling and Herriges 1995). These concerns are
only expected to be heightened as the nesting structure increases in complexity. On the
other hand, with multinomial probits of comparable complexity, consistency with ran-
dom utility maximization is maintained since the covariance matrix needs to be positive
definite for the probit model to be estimated.

The baseline predictions of the total trips per individual are basically the same for
the five models, regardless of whether one model fits the data set better than the others.
The model differences are revealed as the policy scenarios move away from.the baseline.
At the site level, the independent probit model shows more interaction across sites than
the independent logit model which is least flexible. The nested logit model shows a more
rapid change in trips to sites ¢z, j, and & than the independent logit model due to the
two-level nest. The correlated probit models appear to be the most sensitive to the site
quality improvement, showing a rapid trip increase at the policy site and a rapid trip
decrease at the other sites. If we measure the model’s flexibility of site substitution using
two components 1) the trip increase at the policy-site and 2) the trip decrease at the
other sites, the correlated probit models can be ranked as the most flexible, followed by
the independent probit model or the nested logit model. The independent logit model
1s clearly the least.

The results have demonstrated the model’s error distribution has significant im-
pacts on the model’s coefficient estimates and the policy analysis. For a given policy, the
welfare measurement of one model could be 25% of the other, and the trip prediction

of one model could be 72% of the other. Thus, the parametric distribution assumption

18




deserves further research.
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Appendix

Independent Logit Model: I-Logit (LL = -1521.38) *

Parameters Estimates Est./ —f; t-Stat.

B, cost/100 -3.600 -1.000 -20.354
B3, chinook 7.114 1.976 2.670
B3 coho 10.667 2.963 2.772
By lake 3474 0.963 2.159
Bs rainbow 30.468 8.463 4.089
Bs tpdy 25.862 7.184 17.519
B; region, 0.284 0.079 0.715
Bs region, 0.357 0.099 2.323
Bs In(age) -2.920 -0.811 -14.117
Bio In(edu) -5.508 -1.530 -12.684
Gy, gender -1.904 -0.529  -8.642

Nested Logit Model: N-Logit (LL = -1420.97)

Parameters Estimates Est./—f; t-Stat.

B; cost/100 -5.292 -1.000 -17.446
32 chinook 34.047 6.434 6.814
4 coho 15.362 2.903 2.255
By lake 0.517 0.098 0.093
B; rainbow 77.253 14.600 6.520
Bs tpdy 4.225 0.798  2.470
- region, 1.306 0.248  3.437
Bs region, 0.744 0.141 5.211
Bs In(age) -0.002 -0.000 -0.009
Bro In(edu) -0.502 -0.112  -1.386
b1 gender -0.812 -0.153 -3.684
A 0.041 0.008 0.957

3tpdy is a dummy variable equaling 1 if a trip was taken during the choice occasion, 0 otherwise.
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[ndependent Probit Model: I-Probit, =400 (LL = -1504.54)

Parameters Estimates Est./—f t-Stat.
By cost/100 -1.749 -1.000 -20.181
By chinook 6.660 3.809 4.632
B5 coho 5:510 3.151 4.632
By lake 2.429 1.389  2.393
Bs rainbow 17.708 10.126 4.427
Bs tpdy 13.978 7.993 17.136
(- region, 0.172 0.098 0.819
Bs region, 0.190 0.109 2.069
Bs In(age) -1.522 -0.870 -12.717
Bio In(edu) -2.662 -1.522 -11.601
B gender -1.006 -0.575 -7.863

Correlated Probit Model: C-Probit(5) with R.= 400,

C, = 0.1, Cdh = 0. and Chh — )s (LL = -'].44395)

Parameters Estimates Est./—f8; t-Stat.
By cost /100 -0.237 -1.000 -2.003
B2 chinook 1.602 6.769 1.978
B3+ coho 0.600 2533 1378
By lake 0.197 0.831 0.748
35 rainbow 3.819 16.132  2.037
Bs tpdy 3.386 14.304  3.347
8- region, 0.628 2655 3.740
fs region, 0.366 1.545  4.852
Bg In(age) -0.148 -0.627 -1.129
Bio ln(edu) -0.485 -2.048 -1.987
B gender -0.485 -2.051 -4.098
o4 0.327 1.379 31.298




Correlated Probit Model: C-Probit(6) with R = 400,
Cdd = 3, Cy = ?_, and Cdh = 0 (LL = -1443.95)

Parameters Estimates Est./—p; t-Stat.

B, cost/100 -2.903 -1.000 -18.055
B, chinook 19.648 6.769 7.528
B3 coho 1392 2.533 1.861
B4 lake 2.412 0.831 0.873
Bs rainbow 46.829 16.132 6.622
Bs tpdy 41.518 14.303 3.289
B; region, 7.705 2.654 1.584
Bs region, 4.483 1.544 1.619
Bs In(age) -1.820 -0.627  -1.723
Bio In(edu) -5.946 -2.048  -2.947
B, gender -5.952 -2.050 -2.317
Oh 12.780 4.403 1.929

8]
SV
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