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An Empirical Assessment of Multinomial Probit and 
Logit Models for R ecreation D emand 

1 Introduction 

The random uti lity model is widely used in contemporary travel cost studies of recre-

ation demand. Almost all random utility models in the recreation literature are specified 

as multinomial logit or as nested logit . One reason for this is the ability of these mod-

els to incorporate a large number of substitutes without sacrificing ease of estimation. 

Another strength of these models is that measuring the welfare effects of changes in site 

characteristics is st raightforward (Bishop and Heberlein 1979 , Small and Rosen 1981, 

Hanemann 19"2. among others-). 

The independence of irrelevant alternatives (IIA) property of multinomial legit is 

a well known and often cited drawback of the multinomial logit formulation of random 

utility models (see for example Chapter 4 by Morey). With nested logit models, IIA 

is partially relaxed. 1 In many empirical studies, the generalization embodied in the 

nested logi t has been shown to be important (Morey, Rowe, and Watson 1993; Kling 

and Herriges 1995; Hausman, Leonard, and McFadden 1995). As an alternative to the 

logit model, the multinomial probit model can be used to provide a general correlation 

pattern across choices without exhibiting the IIA property. This model has seen little 

application in recreation demand because the probit model with more than four choices 

was difficult to estimate prior to recent advances in econometric theory and computing 

power. 

This chapter empirically investigates the implications of error distributions which 

relax IIA. The application is to Great Lake fishing site choices made by Michigan trout 

1Specifications such as the random parameter logit or random parameter probit can also rela.x IIA , 
see Chapter 5 by Train or Chen and Cosslett ( 1996). 
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and salmon anglers. The underlying theoretical framework is the repeated random utility 

model. The following repeated random utility models were estimated: (i) a simple 

multinomial logit, ( ii ) a nested logit , (iii) a simple multinomial probit with independent 

errors, and (iv) two multinomial probits with correlated errors. The probit models were 

estimated using simulated maximum likelihood methods. The results demonstrate the 

feasibility of estimating multinomial probits for the large choice sets encountered in 

recreation demand analysis. 

In the remaining sections of this chapter, the logit and probit models are spec­

ified and the estimation and identification of multinomial probit are also reviewed for 

recreation demand. Next. by using a recreation fishing demand data set, the parameter 

estimates are presented for each of the models. Predictions of fishing trips under baseline 

site quality characteristics and under a range of changes in site quality characteristics 

are compared across the models. Examining a range of changes in site quality allows the 

changes in trip demand to be compared across model specifications at site level. Trip 

predictions are also calculated for sites where quality was not changed so that the impli­

cations of IIA can be illustrated. In addition, welfare measures for the various changes 

in site quality characteristics are calculated for each of the estimated models. 

2 Multinomial Logit and Probit Models 

Let the random utility of choosing alternative j be written as U1 = Xj/3 + Uj, where 

x i are the explanatory variables fo r the utilities of alternatives j = l,· · · ,J. ui is the 

random taste term, unobservable to the researcher. By the hypothesis of random utility 

maximization , if j is chosen, it implies Ui ~ U1 for I = 1, · · · , J. These inequalities are 

used to specify the probability that each of the alternatives is chosen. The model for 

the choice probabilities will follow from the distribution of the error terms u. 
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2 .1 Multinomial Logit Models 

If the Uj are assumed to be i.i.d. with a type I extreme value (EV) distribution, then 

the joint distribution of the errors is 

F(u) =exp ( - t exp( - ui)) , 
;=l 

and the choice probabilities are given by 

( l) 

From (1), it is clear that the probability ratio between choices j and k is independent of 

the utility functions other than that of alternatives j and k 

Pr(j) 
Pr(k) 

exp(xi,B) 
exp(xk,B) · 

This is often referred to as the IIA property of the multinomial logit model (1). 

To partially relax IIA by deriving a two-level nested logit, we can partition the 

set of alternatives into G groups as {lg} where l g is t he number of choices in group g 

for g = 1, · · ·, G. Assume that the vector of errors u is i.i.d. and has the following form 

of generalized EV distribu tion function , 

It can be shown that the corresponding choice probabilities are 

Pr(j) Pr(jle
9

) x Pr(g) 

exp(xi/3/ >.9 ) exp(>.g ! Vg) 
LieB

9 
exp(xi.B/ .Xg) x L,~= l exp(>.gIVg) 

(2) 
exp(xif3/>.g) 1 

exp(( l - >.g) I Vg) x r,;=1 exp(>.g I Vg)' 

where I Vg = ln(Ljea
9 

exp(xi.B/ >.g)). Similar to the multinomial logit model, it is easy 

to see that the probabili ty ratio of any two alternatives that are within the same group 
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g is still independent of t he utility functions of the other alternatives ( IIA holds within 

groups). What is different now is that the probability ratio between alternatives j and 

k that are not within the same group, say group g and group s, depends not only on 

the ut ility functions of alternatives j and k, but also on the group inclusive values ! Vg 

and I Vs . That is, 

Pr(j) exp(xi,B) exp((l - As) l'1s ) 
--= x . 
Pr(k) exp(xk,B) exp((l - A9)IVg) 

The probability ratio remains independent of all alternatives in groups other than g 

and s. Thus, the nested logit exhibits a property similar to IIA, which we will call 

independence of irrelevant groups ( IIG ). 

2.2 Mult inomial Probit Models 

One way to avoid the restricted substitution patterns embodied in models with IIA and 

IIG is to employ the normal distribution for the random terms , i.e., assume u ,...., N (O, Eu) 

with the density function 

where Eu is the covariance matrix. The resulting choice probability Pr(j) is 

Pr(j) 

(3) 

Unlike the logit models, the probability ratio between any two alternatives Pr(j)/ Pr( k) 

depends on utility functions of all alternatives regardless of the covariance structure in 

Eu· Thus, the IIA assumption is not maintained for the multinomial probi t model. This 

genera lization comes at the cost of having to evaluate the high dimension integrals in 

( 3 ). 
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Several simulators have been introduced recent ly to approximate multinomial 

probit choice probabilities through Monte Carlo simulations. We demonstrate the fea­

sibility of multinomial probit estimation using the smooth recursive simulator, often 

called the G HK simulator, independently introduced by Geweke ( 1991), Haji vassiliou 

and McFadden (1990), and Keane (1990). We use the GHK simulator because it is 

continuous in the parameter space /3 ® Eu· Based on the rooted mean squared error 

criterion, Hajivassiliou, McFadden, and Ruud (1992) show that the GHK simulator is 

unambiguously the most reliable method for simulating normal probabilities, compared 

to the twelve other simulators they considered. 

To estimate the probit models using simulated maximum likelihood est imation, 

the choice probabilities in the likelihood function are replaced by the simulated proba­

bilities from (3). The resulting likelihood function is then maximized so that estimation 

can be achieved by using conventional optimization packages. As the sample size and 

t he number of rep lications in the simulation of the choice probabilities increase, maxi-

m!zation of the simulated likelihood function yields parameter estimates that possess the 

asymptotic properties of conventional maximum likelihood estimates ( Gourieroux and 

Monfort, 199.3). Consequently, statistical inference based on these asymptotic properties 

can be implemented with simulated maximum likelihood estimates. 

2.3 The Empirical Comparisons and-The Probit Model Iden­
t ificat ion 

In this chapter , we take an empirical approach to compare the probit and logit models. 

The estimated models are assessed in terms of welfare measurement and trip predictions, 

which can highlight the role of IIA. The empirical comparison is motivated in part bi 

the difficulty of directly comparing the error distributions between the two models. For 

example, consider a logit model with 1=3. We can nest the first two alternatives into 

6 



one group and the third alternative into another group . A generalized extreme value 

dist ribution with this nesting st ructure is 

F(u) =exp {- (exp(-u.1/ >.) + exp(-u.2/ >.)).x - exp(-u.3 )} 

provided 0 < >. ::; 1. It is not clear which normal dist ribution matches th is generalized 

ext reme value distribution. 

Furthermore, in specifying the covariance matrix for the probit model, the nor­

malization reduces the covariance matrix dimension by one (Dansie 1985 or Bunch 1991). 

There could exist multiple covariance matrices that correspond to the same underlying 

preference. To see this point, let the covariance matrix of the three a lternative probit 

model be 

( 
a? :y :~~ ) 

O"~ 

\' -
-'u -

The normalization of the utility function Ui = x i f3 + u.i based on, say, choice 3 yields 

u; = xjf3 + u.; with x; = Xj - X3 and u.; = Uj - U 3 for j = 1 and 2. The covariance 

matrix for u · is 

The 

probit model can only be identified if either one of the /3's or one of the a·'s is preset to 

a constant . If we fix o-~2 , there are only two identifiable parameters out of the six in E., 

with 

(4) E., = i 
( 

<T2 ~13 ) 
0"23 
- 2 
<T33 

where ai and ui are to be estimated, 0-12 , 0-13 , 0-23, and a~ are some fixed cons tants 

required by the identification conditions. Thus, 0-;1 's and <Tij 's, are inter-dependent, and 

the estimates of {j's also depend on 0-;j 's. In the empirical examples that follow , we will 
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also illustrate how different 0-i/s will lead to different parameter estimates by estimating 

correlated probit models using distinct rescaling assumptions. 

3 The Models, Data, and Estimation Results 

We model the fishing choices of Michigan anglers for trips targeting Great Lakes trout 

and salmon. The fishing sites are defined by the stretch of Great Lakes shoreline within 

each of Michigan's coastal counties. In all, there are 41 counties that support salmon 

and trout fishing on the Great Lakes. When the stay-home alternative is included, the 

choice set can be as large as 42 alternatives per choice occasion. Before we discuss the 

data set and the model estimation resu lts, we will first specify the covariance matrices 

of the probit models for recreation fishing demand in Michigan. 

3.1 Covariance Matrices of The Probit Model for R ecr eation 
D e mand 

While the dimension of the covariance matrix for our empirical examples can be as large 

as 42 ( J + l), computational and data limitations mean that we can not recover every 

element in the matrix even after imposing the normalization and rescaling conditions. 

One approach is to impose restrictions on the covariance matrix based on researchers' 

judgments about the relative similarity and difference between alternatives. For example, 

in a repeated random utility model of recreation demand, one might believe that the 

variance of the random term for the stay-home alternative is different from the variance 

of the random terms for the fishing sites. In this case, one can adopt the following block 

structure for the covariance matrix 

a~ O"o <To <Tdh 

aJ <To <Tdh 

Eu= 
0"2 

d O"dh 

a~ 
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There are only four different parameters u~, uL u0 , and <7dh in this matrix. If we normalize 

against the stay-home choice h, the resulting ]-dimensional matrix fo r u · = u - uh is 

If we pre-fix u~ in Eu· to a constan t due to the rescaling condition, there is only one 

parameter to be estimated in Eu· One of { u~ , ui, <70 , <7dh } can be estimated by pre­

fixing the rest. For example, we can elect to estimate <7J by pre-fixing ul = chh, u0 = c 0 , 

and <7dh = cdh 

Alternatively, we can elect to estimate ul by pre-fixing <7J = cd , <70 = c 0 , and <7dh = cdh 

Cd Co Co Cdh 

Cd Co Cdh 

(6) '\' 
-Ju,= 

Cd Cdh 

ui 

In t he empirical application, we will estimate two correlated probit models using (5) 

and (6), and consider different cons tants for cd, c:, Cdh , and c hh to illustrate how the 

parameter estimates change with the covariance mat rix specification. 

3 .2 Data Sets 

The behavioral data comes from a 1994 survey of recreational fishing in Michigan that 

was conducted at Michigan State University. See the report by Hoehn, Tomasi, Lupi, 

and Chen ( 1996) for details. From the Michigan data, we selected individuals with at 

least one single-day trip targeting Great Lakes trout and salmon during the 1994 open 
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cations. The log likelihood value for the 1-Probit is -1504.54. The independent probit 

model fits the data better than the independent logit model. 

C-Probit(5) is specified by using (5), and er~ is identified. by fixing Co = 0.1, 

cdh = 0 , and c1i1i = l. Alternatively, estimation of C-Probit(6) is based on (6), and ui is 

identified by fixing Cdd = 3, c0 = 2, and Cdh = 0. As expected, the log likelihood values 

for the both correlated probit models are the same, -1443.95, and provide significantly 

· better fits than the 1-Probit model. 

The coefficient estimates of the two probit models are different due to the arbi-

trary selection of the values for the constants for the identification conditions. However, 

if the coefficients are di\·ided by the trip cost coefficient , they are virtually the same. 

for each of the models. Table 2 presents the standardized coefficients of site quality, the 

site quality coefficient di\·ided by the negative of the trip cost coefficient. The sum in 

the final column is the sum of the standardized site quality coefficients for each model. 

Table 2: Catch Rate Coefficients / Trip Cost Coefficient 

Models Chinook Coho Lake Rainbow Sum 

salmon salmon trout trout 
C-Probit(5) 6 .769 2.533 0.831 16.132 26.265 
C-Probit(6) 6.769 2.533 0.831 16.132 26.265 
I-Probit 3.809 3.151 1.389 10.126 18.475 
N-Logit 6.434 2.903 0.098 14.600 24.035 
I-Logit 1.976 2.963 0.965 8.463 14.365 

From the last column of the table, we see that_ the two correlated. probit models are 

identical to each other. The nested legit model is also similar to the correlated models. 

The independent models appear to be different. However, one should keep it in mind 

that the welfare measurements are function of both the error structure (the probabilities) 

and the standardized coefficients (Small and Rosen 1981) . In the next section, we will 

empirically assess the welfare measurements for these models using some policies. 
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4 The Model Assessment Using Policies 

This section addresses the empirical importance of the distributional assumptions on 

each model's trip predictions and benefit estimations. In order to illustrate the perfor­

mance of each model, we examine policy scenarios ranging from site closure to drastic 

improvements in site quality. Specifically, we change site quality at Muskegon county 

(site i) by multiplying the catch rates at the site by {0.5, 1, 1.5, 2, 2.5, 3}. Muskegon 

county is centrally located on Lake Michigan. In addition, we close site i . We examine 

the IIA/ IIG properties by estimating the choice probabilities to Oceana county (site j) 

and Ottawa county (site k), the two counties that are adjacent to site i. The predicted 

t rips to each of these sites and the total trip participation will be compared. Welfare 

measurements are also compared across the models for both the site quali ty change 

po licy and the site closure policy. 

To examine the IIA/ IIG restri ction, the probability ratios of site j and site k are 

calculated. We only calculated these ratios for individuals with all three sites ( i , j , and 

k ) in their feasible choice set , about one third (n · =33) of the individuals. This was done 

since IIA for theses sites is only relevant if all three sites are in the choice set. In Table 

3 , the ratios are presented for each of the models and for each of the policies. For the 

independent logit model, the ratio remains constant for each individual with a mean of 

10 .96 for all policies due to the IIA assumption. For the nested logit model, the mean 

ratio is 30.52 since IIA is maintained within the group of fishing sites. The site closure 

policy and the site quality change policy yield the identical ratios for the logit models. 

On the other hand, the probit models don't exhibit the algebraic property of IIA/ IIG. 

For the probit models, we do not have closed form solut ions for the choice probabilities 

so the ratios are simulated using 1,000 replications. 

Table 3: Mean Probability Ratios n
1
• L,~~ 1 (Prj/Pri) 
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Models close i 0.5q; q; l..5q; 2q; 2.5q; 3q; 
C-Probit(5) 11 84.4 7 1214.42 1262.38 1501.90 225 1.86 4204 .71 9272.98 
C-Probit(6) 1184.87 1214.83 1262.81 1502.41 2252.67 4206.34 9276.94 
I-Probit 53 .24 56.31 56.55 57.14 48.36 60.60 64.27 
N-Logit 30.52 30.52 30.52 30.52 30.52 30.52 30.52 
I-Logit 10.96 10.96 10.96 10.96 10.96 10 .96 10.96 

As expected , the ratios of the probit models change as the quality at site i changes from 

the modest to the drastic , including the site closure. This is especially clear for the two 

correlated probi t models , which are substantially larger than the independent probit 

or logit models. The large ratios for the correlated probit are due to the substantial 

,·ariat ions in the predicted probabilities to sites j and k across individuals, as compared 

to the other models. As an example. suppose that the predicted probabi li ty to site j , k 

is 0.0001 , 0.1 for individual A, and 0.1 , 0.0001 for ind i,·idual B, respectively. For each 

individual , the sum of the predicted probabilities to both sites are the same 0.1001. 

However, the mean ratio is (0.0001/0.1 + 0.1/0.0001)/2 = 500.0005. As the quality 

at site i increases, the trips to both site j and site k decrease disproport ionally. The 

independent probit model does not show the same level of change as the correlated 

probit models. Although algebraically the ratios across the policy spectrum don't ha~e 

to remain constant for the independent probit either. 

The predicted trips to all sites, as well as a subset of the sites, are presented in 

Table 4. At the participation level, the baseline predicted total trips per individual are 

basically the same for the five models (the firs t fi ve rows of column q; in Table 4) . At the 

site level, the correlated probit models and the nested logit model are similar to each 

other, though different from the independent probit and logit models (the q; column 

and the remaining rows). When the policy change moves away from the baseline, the 

differences between models become more pronounced . As the quality at site i increases, 

the independent probit model predicts the largest total trip increase. which is due to 1) 
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the large increase of trips to s ite i and 2) the sluggish decrease of trips to other sites, 

such as sites j and k. The pattern of sluggish decreases is even more evidenced in the 

independent logit model in t hat it has both the least amount of t ri p increase to site i 

and the least amount of trip decrease to sites j and k. Thus, from the site substitution 

perspect ive, t he independent logit model is least flexible due to IIA. 

Table 4: The Es timated Trips Per Indi\·idual 

Models close qi 0.5qi qi l.5qi 2qi 2.5qi 3qi 
Total C- Probit(.5 ) 3 .57 3 .58 3.60 3.66 3.80 4.03 4.34 
tri ps C- Probit (6) 3 .57 3.58 3.60 3.66 3.80 4.03 4.34 

[-P robit 3.45 3.52 3.61 3.79 4.11 4.62 5.40 
~-Logit :3.60 3.60 3.61 3.64 :3 .69 3.78 3.89 
I-Logit :3 .-!3 3.54 3.61 :3.74 :3. 94 4.26 4.73 

Trips C- Probit(.5) 0 0.06 0 .21 0.55 l.OS 1. 71 2.30 
to C- Probit(6) 0 0.06 0.21 0 .55 1.08 1. 70 2 .29 
site i [-Prob it 0 0. 11 0.23 0.46 0.86 1.51 2.41 

N-Loait 
0 0 0.05 0.20 0.50 0.95 1.44 1.84 

I-Logit 0 0.11 0.20 0 .34 0.56 0.91 1.43 
Trips C-P robit (5) 0 .14 0 .13 0.10 0.05 0.02 0 0 
to C-P robi t{6) 0.14 0. 13 0.10 0.05 0.02 0 0 
site j I-Probit 0 .17 0. 16 0.15 0. 14 0.13 0.11 0.08 

N-Logit 0 .14 0 .12 0.09 0.04 0.01 0 0 
I-Legit 0 .15 0 .15 0.15 0.14 0.14 0.13 0.1 2 

T rips C-Probit(5) 0 .12 0.11 0.09 0.07 0.04 0.01 0 
to C-Probit(6 ) 0.12 0.11 0.09 0.07 0.04 0.01 0 
site k 1-Probit 0.16 0.16 0.15 0 .15 0.14 0.12 0 .10 

N- Logit 0.10 0.09 0 .07 0.05 0.03 0.01 0 
1-Logit 0.16 0.16 0 .15 0 .15 0.15 0 .14 0.14 

Furthermore, the nes ted logit model h as the smallest increase in the total trips, 

in part because the est imated inclusive va lue coefficient is very small (>. = 0.04) . If we 

look a t the site level, it also becomes clear that as the qua lity at s ite i increases, both the 

correlated probit models and the nested logit mo del yield basically the same level of trip 

reduc tion to the substitute s ites j a nd k. But the correlated probit models yield a much 

larger trip increase to site i than t he nes ted logit mode l. (Th is pattern is similar to the 
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independent probit v.s. independent legit.) For example, for the 3q; policy when the 

trips to sites j and k are about zero, the difference in total trips between the correlated 

prob it and the nested legit ( 4.34-3 .89) is almost entirely due to the trip difference at 

site i between the two models (2.30-1.84) or (2.29-1.84 due to the rounding). Thus, the 

correlated pro bit models are more sensitive to the policy change with a larger net trip 

increase than the nested legi t model. 

Table 5: The Welfare Measurements Per Indi \·idual 2 

Models close q; 0.5q; q; l.5qi 2qi 2.5q; 3q; 
C-Probit(5) -1.65 -1 .32 0 3.92 12.65 27.91 49.81 
C-Probit(6) -1.60 -1.29 0 3.96 12. 71 27.89 49.67 
I-Probi t -1.83 -1.06 0 2.23 6.51 l -t.31 27.46 
i\- Logi t -1.-!7 -1. 16 0 3.37 10.59 22.69 39.37 
I-Lorrit 

0 
- l . .j.j -0.66 0 1.13 3.04 6.19 11.22 

There are also some interesting difference across the models in terms of welfare 

measurements. Although the correlated probit models are ranked third in total trip 

change, the welfare gains are the largest as the quality at site i increases, followed 

by the nested logit model, the independent probit model , and the independent logit 

model with roughly 82%, 54%, 25%, respectively, of the values of the correlated probit 

models . While the independent logit model yields the largest trip change, the welfare 

gain appears to be the smallest for the site quality _improvement due to, again , the IIA 

restriction and the small standardized site quality coefficients for the 1-Logit (Table 2). 

For the policies involving changes in site quality, the differences in the welfare 

measures minor the differences in the estimated standardized site quality coefficients 

(c. f. , the last column Table 2) with substantial variability across the models. However, 

of all the policies considered, the welfare measures for the site closure policy exhibi t 

the least variability across models. T his may be because the site closure policy can be 

2The welfare measures for the probit models were simulated using 1000 replications and following 
the procedu re descri bed in C hen and C-0ss lett ( 1996). 
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viewed as raising the trip cost of site i to oo , which dominates the other terms associated 

with the site quality coefficients in the utility function. As a result, the welfare measures 

for the site closure policy depend more on the probabilities and less on the standardized 

site quality coefficients , as compared with the site quality policies. 

5 Some Remarks 

As illustrated in the preceding tables, the two correlated probit models with different 

covariance matrices yield different coefficient estimates for /3's and E. However, if the 

coefficient estimates of 3 are divided by the trip cost coefficient, they are virtually the 

same. Furthermore. the trip predictions. welfare measurements , and the log likelihood 

\·alues a re the same as well (with some minor \·ariat ion d ue to t he simulatio ns) . This 

illustrates that for any gi\·en covariance structure, how one chooses to pa rameterize the 

elements of the covariance matrix will affect the coefficient estimates , but it should not be 

important as the two correlated probit models identify the same underlying preference. 

Interestingly, even though the nested logit suffers from IIA / IIG, the nested logit 

model fits the data set bet ter than the other models considered in this chapter. Of course, 

both the nested logit and correlated probit fit the data significantly better than their 

counterparts with independent errors . This reinforces the importance of distinguishing 

between diverse alternatives (stay-home versus fishing sites) when selecting an error 

s tructure for a model. In terms of the IIA property, the results showed that the correlated 

probit exhibited site substitution patterns that were in some cases dramatically different 

than the patterns of the other models . As might be anticipated from the independence 

of the errors, the probability ratios for the I-Probit model didn't change as much as with 

the correlated probit models - despite the fact that the I-Probit does not algebraically 

exhibit the IIA property. 

Of course , the results presented here are based on models with re latively simple 
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nesting and covariance structures. More complicated nest ing structures could be com­

pared to probits with more complicated covariance structures. With the nested logits one 

needs to be concerned about whether or not the estimated ). lies within the unit interval 

for the global consistency with the hypothesis of random utility maximization or close to 

it for local consistency (:\ikFadden 1977, Kling and Herriges 1995). These concerns are 

only expected to be heightened as the nesting structure increases in complexity. On the 

other hand, with multinomial probits of comparable complexity, consistency with ran­

dom utility maximization is maintained since the covariance matrix needs to be positive 

definite for the probit model to be estimated. 

The baseline predict ions of the total trips per individual are basically the same for 

the fh·e models, regardless of whether one model fits the data set better than the others. 

The model differences are revealed as the policy scenarios move away from the baseline. 

At the site level , the independent probit model shows more interaction across sites than 

the independent logit model which is least flexible. The nested logit model shows a more 

rapid change in trips to sites i , j , and k than the independent logit model due to the 

two-level nest. The correlated probit models appear to be the most sensitive to the site 

quality improvement , showing a rapid trip increase at the policy site and a rapid trip 

decrease at the other sites. If we measure the modePs flexibility of site substitution using 

two components 1) the trip increase at the policy-site and 2) the trip decrease at the 

other sites, the correlated probit models can be ranked as the most flexible, followed by 

the independent probit model or the nested logit model. The independent logit model 

is clearly the least . 

The results have demonstrated the model 1s error distribution has significant im­

pacts on the modePs coefficient estimates and the policy analysis. For a given policy, the 

welfare measurement of one model could be 25% of the other, and the trip prediction 

of one model could be 72% of the other. Thus, the parametric dist ribution assumpt ion 
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deserves further research . 
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Appendix 

Independent Logit Model: I-Legit (LL = -1521.38) 3 

Parameters Estimates Est./ -/31 t-Stat. 

/31 cost/ 100 -3.600 -1.000 -20.354 

/32 chinook 7.114 1.976 2.670 

/33 coho 10.667 2.963 2.772 

/34 lake 3.474 0.965 2.159 

/35 rainbow 30.468 8.463 4.089 

/36 tpdy 25.862 7.184 17.519 

{3; region1 0.284 0.079 0.715 

/3s region2 0.357 0.099 2.323 

{39 ln(age) -2 .920 -0.811 -14.117 

/31o ln( edu) -5.508 -1.530 -12.684 

.B 11 gender -1.904 -0.529 -8.642 

!\ested Legit t-.lodel: l ·-Legit (LL = -1420.97) 

Parameters Estimates Est./-/31 t-Stat. 

/31 cost/ 100 -5 .292 -1.000 -17.446 

/32 chinook 34.047 6.434 6.814 

/33 coho 15.362 2.903 2.255 

/34 la ke 0.517 0.098 0.093 

/35 rainbow 77.253 14.600 6.520 

/3s tpdy 4.225 0.798 2.470 

{3; region1 1.306 0.248 3.437 

/3s region2 0.744 0.141 5.211 
{39 ln( age) -0.002 -0.000 -0.009 

/310 ln( edu) -0.502 -.0.112 -1.386 

/311 gender -0.812 -0.153 -3.684 
,\ 0.041 0.008 0.957 

3 tpdy is a dummy variable! equaling 1 if a trip was taken during the choice o ccasion, 0 otherwise. 
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[ndependent Probit Model: I-Probit , R=400 (LL= -1504.54) 

Parameters Esti mates Est./-/31 t-Stat . 

/31 cost/ 100 -1. 7 49 -1.000 -20.181 

/32 chinook 6.660 3.809 4.632 

{33 coho 5.510 3.151 4.632 

/34 lake 2.429 1.389 2.393 

/35 rainbow 17.708 10.126 4.427 

/36 tpdy 13.978 7.993 17.136 

/31 r egion1 0.172 0.098 0.819 

/3s region2 0.190 0.109 2.069 

{39 In( age) -1.522 -0.870 -12 .717 

/31o In( edu) -2.662 -1.522 -11.601 

/311 gender -1.006 -0.575 -7 .863 

Correlated Probit ~fodel: C-Probit(5) with R = 400, 

c,, = 0.1. cdh = 0. and chh = 1. (LL = -1443.95) 

Parameters Estimates Est./- /31 t-Stat. 

/31 cost/ 100 -0.237 -1.000 -2.003 

/32 chinook 1.602 6.769 1.978 

{33 coho 0.600 2.533 1.378 

/34 lake 0.197 0.831 0.748 

f35 rainbou: 3.819 16.132 2.037 

f3s tpdy 3.386 14.304 3.347 

{37 region1 0.628 2.655 3.740 

/3s region2 0.366 1.545 4.852 

{39 ln( age) -0.148 -0 .627 -1.129 

/310 ln( edu) -0.485 -2.048 -1.987 

/311 gender -0.485 --2.051 -4.098 

(jd 0.327 1.379 31.298 
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Correlated Probit Model: C-Probit(6) with R = 400, 

Cdd = 3, C0 = 2, and Cdh = 0 (LL= -1443.95) 

Parameters Estimates Est./-/31 t-Stat. 

/31 cost/100 -2.903 -1.000 -18.055 

/32 chinook 19.648 6.769 7.528 

{33 coho 7.352 2.533 1.861 

/34 lake 2.412 0.831 0.873 

/3s rainbow 46.829 16.132 6.622 

/3s tpdy 41.518 14.303 3.289 

/31 region 1 7.705 2.654 1.584 

/3s region2 4.483 1.544 1.619 

f3g ln( age) -1.820 -0.627 -1.723 

/310 ln( edu) ·-5.946 -2.048 -2.947 

/31 1 gender -.5.952 -2.050 -2.317 

a h 11.780 4.403 1.929 

22 



References 

Bishop, Richard and T. Heberlein. "Measuring Values of Extra Market Goods: Are 

Indirect Measures Biased?." American Journal of Agricultural Economics, Vol. 

61(5):926-30, 1979. 

Bunch, David S. "Estimability in the Multinomial Probi t Model." Transportation Re­

search - B, Vol. 2.SB(l):l-12, 1991. 

Chen , Heng Z. and Stephen R. Cosslett. "Environmental Quality Preference and Ben­

efit Estimation in Multinomial Probit Models: A Simulation Approach." Draft 

manuscript. Department of Agricultural Economics, Michigan State University. 

1996. 

Dansie. B. R. "Parameter Estimability in the Multinomial Probit Model." Transporta­

tion Research - B, Vol. 19B(6):526-28, 1985. 

Geweke, John F. "Efficient Simulation From the Multivariate Normal and Student-t 

Distributions Subject to Linear Constraints. " Computer Science and Statistics: 

Proceedings of the Twenty-Third Symposium on the Interface. Alexandria, VA: 

American Statistical Association, 1991. 

Gourieroux, Christian , and Alain Monfort. "Simulation-Based Inference, A Survey With 

Special Reference to Panel Data Models ." Journal of Econometrics, Vol. 59, 1993. 

Hajivassiliou. Vassilis, and Daniel McFadden. "The Method of Simulated Scores for 

the Estimation of LDV Models with an Application to External Debt Crises." 

Cowles F'ounQ.ation Discussion Paper No. 967 , 1990. 

23 



Haji vassi liou, Vassilis , Daniel McFadden, and Paul Ruud. "Simulation of Multivariate 

Normal Orthant Probabilities: Theoretical and Computational Results." Cowles 

Foundation Discussion Paper No.1021, 1992. 

Hanemann, W. Michael. "Applied Welfare Analysis with Qualitative Response Models." 

Working Paper No. 241. California Agricultural Experimental Station, Giannini 

Foundation of Agricultural Economics, University of Californ ia, Berkeley, 1982. 

Hausman, Jerry A. , Gregory K. Leonard, and Daniel McFadden. "A Utility-Consistent , 

Combined Discrete Choice and Count Data Model: Assessing Recreational Use 

Losses Due to l\atural Resource Damage." Journal of Public Economics, Vol. 

-56: 1-:JO. 199-5. 

Hoehn. P. John. Theodore Tomasi, Frank Lupi , and Heng Z. Chen . "An Economic for 

Valuing Recreational Angling Resources in Michigan." P roject report , Depart­

ment of Agricultural Economics , Michigan State University. December, 1996. 

Jones. Carol A . and Yusen D. Sung. "Valuation of Environmental Quality at Michi­

gan Recreational Fishing Sites: Methodological Issues and Policy Applications." 

Project report, EPA Contract No. 81624 7-01-2, September, 1993. 

Keane, Michael P. "Four Essays in Empirical Macro and Labor Economics." Ph.D. 

Dissertation. Brown University, 1990. 

Kling , Cathy L. and Joseph A. Herriges "An Empirical Investigation of the Consis­

tency of Nested Logit Models with Utility Maximization." American Journal of 

Agricultural Economics, Vol. 77(4):875-84, 1995. 

McFadden , Daniel. "Modeling the Choice of Residential Location in Studies in Re­

gional Science and Urban Economics", ed. by Ake Andersson and Walter Isa rd , 

1977. 

24 



McFadden , Daniel. "Econometric Models of Probabilistic Choice, in Structural Anal­

ysis of Discrete Choice Data with Econometric Applications", ed. by Charles F. 

Manski and Daniel McFadden. MIT Press, 1981. 

McFadden, Daniel. "A Method of Simulated Moments for Estimation of Discrete Re­

sponse Models without Numerical Integration." Econometrica, Vol. 58(5):995-

1026, 1989. 

Morey, Edward R., Robert D. Rowe, and Michael Watson. "A Repeated Nested-Logi t 

Model of Atlantic Salmon Fishing." American Journal of Agricultural Economics, 

Vol. 15(3):578-92. August , 1993. 

Small , I~enneth A. and Harvey Rosen. "Applied Welfare Economics With Discrete Choice 

Models." Econometrica, Vol. 49(1):105-130, January, 1981. 

2.5 


