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Analyzing firm response to risk using mean-variance models 

Lindon J. Robison and Steven D. Hanson 

Michigan State University, East Lansing, Michigan, USA 

Summary 

This paper suggests that future research will emphasize at least three areas. These include: more general 
relationships between indirect and direct outcome variables; more complex models with multiple risk 
responses and source of risk; and dominance analysis, the effect on risk efficiency of including additional risk 
instruments in the firm's portfolio. The paper then discusses the usefulness of expected utility (EU) models 
and mean-variance (EV) models in future risk research. Both models will continue to dominate risk analysis, 
but more complicated risk models will increasingly rely on EV models. 

1. Introduction 

The expected utility (EU) model is the most widely accepted indexing rule for ordering choices and doing 
comparative static analysis under risk. Schoemaker (1982) claims it has been the major decision making 
paradigm since World War II. Although several concerns and empirical contradictions have emerged to 
challenge the EU model, its dominant role as a theoretical tool for the analysis of the firm under risk 
continues. There are good reasons for EU's pre-eminent role in the analysis of risk. First, it can be derived 
from reasonable assumptions. Second, it has produced theoretical results that in most cases correspond with 
our intuition. And third, it leads to empirically useful ranking tools including stochastic dominance rules 
(Hadar & Russell, 1969; Hanoch & Levy, 1969; and Meyer, 1977). 

The most durable challenger to the EU model has been mean-variance (EV) or the equivalent mean
standard deviation (MS) model. The EV model is popular for many reasons including the following. First, 
under some conditions EV models can be shown to be consistent with EU models. Second, EV models have 
produced theoretical results that in most cases correspond with our intuition; namely, that risk averse decision 
makers prefer increased expected income and dislike increased variation of income (Hawawini, 1978). Third, 
EV theory leads to an empirically useful efficient EV set or frontier that can be generated by programming 
models and other maximization algorithms. Fourth, results derived using EV analysis can be described in 
two dimensional space that facilitate th~ communication of results. Fifth, compared to EU models, EV 
models often produce more tractable analytic results. And finally, EV sets permit us to perform dominance 
analysis; that is, we can examine under what conditions one set of risk instnunents is preferred to another set 
by all risk averse agents. 

Differences between the needs of decision makers and analysts have resulted in differentiated preferences 
for the EU and EV models. EV models are popular in schools of business and among financial market 
analysts. It is also popular among many applied researchers. On the other hand, the EU model is still used 
for most theoretical analysis by economists and many agricultural economists. Thus both EU and EV models 
have proven to be accepted tools of analysis, although EU appears to be most useful as a theoretical tool 
while EV appears more suited for applied analyses that focus on the identification of efficient sets. 

In what follows, we compare the usefulness of EV and EU models for ranking distributions and for 
theoretical analysis. Then we suggest three areas we expect future risk research to emphasize. We also 
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suggest how EV and EU models may contribute to progress in these three areas. The three areas of future 
risk research emphasis include the analysis of: ( 1) more complicated transformations between direct and 
indirect outcome variables; (2) more complicated decision environments with multiple sources of risk and 
choice variables that better match the real world conditions facing firms; and (3) dominance conditions 
analyzed from a theoretical perspective. 

l. Ranking empirical distributions using EV and EU models 

Consider first EV analysis as a decision theory tool that orders probability distributions into efficient and 
inefficient sets. Efficient sets are defined with reference to a particular class of decision makers and 
sometimes restricted to well defined probability distributions. If the well defined class of decision makers 
unanimously prefer distribution A to distribution B, then distribution A is an efficient choice and distribution 
B is inefficient. 

Risk averse EU decision makers facing normal distributions or distributions that differ by location and 
scale but otherwise are identically distributed will find their preferred choice in the efficient EV set. Risk 
averse EU decision makers will also find their preferred choice in the efficient EV set when there is only one 
risky investment to select that increases in variance and expected return. Under less restrictive conditions, 
risk averse EU decision makers will find their preferred choice in the second degree stochastic dominance 
(SSD) efficient sets. 

Inconsistencies between EV and SSD sets are not likely to occur in most empirically derived efficient sets. 
The reason is that Porter (1973) and others who derived SSD choices that were not EV efficient assumed that 
the distributions being chosen were the true distributions measured without error.2 Meyer & Rasche (1992) 
demonstrated that if estimation error is included, large amounts of data are required to find any statistically 
significant difference between EV and EU efficient sets. Thus, as long as we recognize that we rarely know 
distributions with certainty and lack large amounts of data for estimating the empirical distributions, there is 
little basis for distinguishing between EV and SSD efficient sets in empirical work. 

Stochastic dominance criteria derived from the EU model do have one important advantage over EV 
analysis in applied work. It is that efficient sets can be identified for more narrowly defined sets of decision 
makers using stochastic dominance. EV sets contain the efficient choices for all risk averters while EU 
efficient sets can be specified for any particular subset of decision makers, usually identified by their absolute 
risk aversion functions. While an efficient subset can be selected from an EV set, the class of decision 
makers for whom the subset is efficient is less clear unless the decision makers are all constant absolute risk 
averters. On the other hand, there is nothing to prevent one from applying stochastic dominance ranking 
techniques to EV sets. This approach would combine the efficient set selection techniques of EV analysis 
and the improved decision class identification techniques associated with stochastic dominance with respect 
to a function. 

3. Using EU and EV models to derive theoretical results 

Now consider EU and EV models as theoretical tools. Early efforts to demonstrate compatibility between 
EU and EV models relied on normality and constant absolute risk aversion (CARA) assumptions that led to 

2See also Levy & Markowitz (1979) & Tsiang (1972) for empirical comparisons between EU and EV 
models. 
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the linear EV objective function (Freund, 1956). 3 Additional support for the linear EV model was provided 
by Pratt's EV approximation of an EU model. Another EV model was obtained by demonstrating that a 
second order Taylor series approximates a von Neumann Morgenstern utility function as a quadratic function 
whose expected value contains the variance of the random variable as arguments. Neither the assumption of 
quadratic utility nor the assumption that distributions are nonnal have proven adequate to justify the use of 
EV models for theoretical use. Quadratic utility implies increasing absolute risk aversion (IARA) which is 
unrealistic under most conditions. Worse, quadratic utility functions allows for negative marginal utility. 
Finally, normality and CARA are also severely limiting assumptions if the goal is to derive theoretical results 
under more general conditions such as decreasing absolute risk aversion (DARA). 

To allow for DARA and IARA income effects using the EV model, Robison & Barry (1987) developed a 
nonlinear EV model. Choice variable solutions were obtained by maximizing a linear mean variance 
function at a slope where tangency occurred between the expected utility function and the EV set. They 
argued that maximizing a linear EV function would provide a solution identical to that obtained using EU 
analysis as long as all choices were contained in the EV set, a condition always satisfied for models 
containing a single choice variable. Having found the initial solutions using a linear EV model, Robison & 
Barry ( 1987) perfonned comparative static analysis. Substitution effects were measured as changes in the 
choice variables in response to parameter changes holding the slope coefficient constant. Income effects for 
DARA and IARA decision makers were measured as the changes in the choice variables in response to slope 
changes. In other words, parameter changes that changed expected income or variance were allowed to 
change the equilibrium slope on the EV frontier. 

More recent support for EV models was provided independently by Meyer (1987) and Sinn (1983). They 
showed that if risl-y choices differ only by location and scale then the EV set of choices or the mean standard 
deviation (MS) sets contained the expected utility choices for von Neumann Morgenstern utility maximizers. 
Meyer went on to show that comparative static results could be obtained for DARA and IARA decision 
makers that were consistent with the slope conditions earlier derived by Robison & Barry (1987) and Cass & 
Stiglitz (1972). Since these results are generally well known and available elsewhere we will not dwell 
further on how EV models can be used for comparative static analysis. 

4. Conflicts in theoretical results derived using EU and EV models 

When the choice variable(s) analyzed theoretically are not location scale, inconsistencies between EU and 
EV models results are possible. Two classes of inconsistencies are possible. The first class of inconsistency 
is that identified by Rothschild & Stiglitz ( 1971 ). They pointed out that in a multi variable portfolio model 
the EV model produced definitive results when none such could be generated using EU analysis. This is 
because the relationship between probability density functions is more narrowly constrained in an EV model. 
The second class of conflicts between EV and EU models are those in which definitive results are derived 
using both models that are inconsistent. 

Consider the importance of the two classes of possible conflicts produced using EV and EU models. The 
first class of conflicts should not be considered a shortcoming of EV analysis. This is because the EV model 
provides information about conditions in which EV and EU consistency cannot be rejected empirically. For 
example, portfolios of stocks that Meyer & Rasche (1992) showed were EV efficient can be analyzed 

3This linear function also solves for solutions on the EV efficient set linking the theoretical model to its 
empirical counterpart. 
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theoretically using EV analysis and produce theoretical results that have proven to be useful. But no such 
results for portfolio models of multiple random variables have been derived using EU models. 

1be second class of possible conflicts between EV and EU models is more serious than the first. This class 
of conflicts, however, is likely limited because definitive results from EU models in more complicated risk 
settings are possible only in narrowly defined risk settings. To illustrate, to find definitive results using an 
EU model, Lapan & Moschini (1994) specified random variables whose means were independent of their 
variances. The second class conflict is removed when the independent assumption is removed. Thus, class 
two. conflicts are likely limited because of the difficulty of obtaining definitive results for increases in risk in 
more complicated models using EU analysis (Meyer & Ormiston, 1985). In contrast, definitive results for 
increases in risk in EV models are common. 

It is not correct to assert that conflicts between EV and EU models all result from the absence of higher 
moments of the distributions in EV models. EV and EU models will rank even significantly skewed 
distributions consistently as long as location and scale conditions are satisfied. And even when location and 
conditions are not satisfied, consistency between EV and EU models may still be obtained because changes in 
skewness most often changes the means and variances as well in ways that leave ranking between the two 
models consistent. 

The trade-off between EV and EU models for theoretical analysis should be clear. The preference for EU 
models is because of its rigorous deductive underpinnings. However, definitive results using EU models will 
likely be limited unless the generality of the random variables considered are significantly restricted. 

The justification for nonlinear EV analysis is that it produces results consistent with EU models when 
location scale conditions are met and approximates EU results when location scale are not met. The accuracy 
of the approximation of the non linear EV model to EU model results when location scale are not satisfied has 
not been carefully examined. The advantage of EV models is that they can often derive definitive results in 
complex risk models that cannot be produced using EU models. Since definitive EU results are extremely 
difficult to obtain in more complicated risk models, researchers have often turned to the EV framework to 
obtain results. Examples include Chavas & Pope ( 1982), Sarassoro & Leuthold (1991 ), Coyle ( 1992), and 
Robison & Barry (1987). The EV framework has proved useful for more complicated risk problems 
precisely because it ignores higher moments and specifies relationships between random variables with their 
covariances. 

Thus the decision to use EU or EV analysis is not a right or wrong choice. It is a trade-off between the 
stronger axiomatic foundations of the EU model versus improved ability of EV models to analyze 
theoretically more complex risk problems. The use of these two models will depend on are the requirements 
of risk research in the future. 

5. Future areas of emphasis for firm level risk analysis 

In our view, there appear three areas in which risk analysis for the firm can be extended theoretically.• We 
introduce and illustrate these three areas in the remainder of this paper. The first area will consider more 
realistic relationships between indirect and direct outcome variables. The second area will build models with 

•we recognize, of course, that theoretical work must needs be followed by appropriate empirical testing. But 
this later subject must await later discussions. 
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more than one choice and stochastic variables. And the third area will focus on what we call dominance 
analysis. All three area have one common element; significant progress will likely require the increased use 
of EV models. Results could, of course, be obtained using nwnerical analysis in an EU framework, but the 
generalization of these results would be limited. 

6. Indirect and direct outcome relationships 

Von Neumann Morgenstern utility functions are defined over direct outcome variables. Most often the 
direct outcome variable is final or end of period wealth. Indirect outcome variables such as income contribute 
to the value of the direct outcome variable but are not themselves the argwnent of expected utility functions. 
Most of what we know theoretically about the firm's response to risk has been deduced under a very 
restrictive asswnption about the relationship between direct and indirect outcome variables (Robison & Lev, 
1986). The most common asswnption is that stochastic wealth, w-(w,oJ, is related to nonstochastic initial 
wealth w0 plus stochastic income y-(j,o) : 

(l) 

where the distribution of y depends on the choice variable a. 

The solution for the choice variables in ( 1) can be found by maximizing the linear mean variance function 
equal to the sum w CE of expected wealth, w 0 + j/( ex), less the variance of income, o: weighted by the EV slope 
coefficient ')J2: 

- .A z 
Max W CE = WO + y (a) - -CJ (ex) 

a 2 Y 
(2) 

This simplified relationship between income and wealth suggests that if the choice variables only effect y, 
then the first order conditions contain only derivatives associated with y and o:. Thus from an analytic 
perspective, little is gained by including explicitly the initial wealth variable in the model unless it somehow 
constrains the choice variables affecting a . However, in many analyses, even this weak link between y and 
w0 described in (1) is ignored. 

In the early development of risk models, ignoring the link between initial wealth Wo and y may be excused. 
After all, the attention needed to be focused on the effects of particular risk instrwnents. Further progress in 
understanding the effects of risk instruments now requires that we test our risk instrwnents under more real 
world conditions. That is, we need to test the robustness of our models when more realistic assumptions are 
made about the relationships between direct and indirect outcome variables. So we next describe models that 
increase in realism and complexity in their relationships between indirect and direct outcome variables 
beginning with Sandmo' s model of the firm facing output price risk. 

6.1. The Sandmo model: w = j 

Consider Sandmo's production model in which the stochastic element is output price p-(p,o) . The 
relationship between end-of-period wealth w and income earned during the period y is simply w = y. The 
EV or in this case the MS set is easily found. From the stochastic expression for income y, we write the 
equation: 
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j = pq-C(q)-B (3) 

In Sandmo's model described in (3), C(q) is the cost function for producing output q such 
thatC1(q),C 11(q)>O, C(O) = 0, and Bis fixed or time costs. For a particular choice of q, ji is a linear 
function of the stochastic variable p, satisfying location scale conditions. 

0 
p 

-[B+C(q)] 

Figure 1. The Relationship Between ji and p in the Sandmo 
Model 

Expressions for y and oy in the Sandmo model are: 

y = pq- C(q) - B 

and: 

Solving for q in the expression for oy and substituting the result into the expression for y produces the MS 
frontier equal to: 

__ O (OJ y = p-1.. -C -;j - B 
op P 

(4) 

The MS graph of the basic Sandmo model is in Figure 2. 
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Figure 2. The MS Frontier for the Sandmo Model 

6.2. Sandmo with transactions costs 

Consider the following relationship between jiand initial wealth w0 in which a transactions cost ~ is 
incurred if the realized stochastic price is less than p(wo) . Stochastic income y can be written as: 

_ _ {ftq - C(q) - B - t, 
y - ftq - C(q) - B 

ft < Po<wo> 
ft :1: Po<wo> 

(5) 

In this model, in contrast to the earlier models, income ji is not linear in ft . The kinked linear relationship 
is described in Figure 3. 



0 
p 

Figure 3. A Jump Relationship Between y and Stochastic 
Prices ft 
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Let the probability distribution function and cumulative density function for ft be d F(jf) and F(fi) 
respectively. Then, y and oy are equal to: 

y = jiq - C(q) - B - oF(po) 

where: 

Po 

Pi = f ftdF(p} 

The first term on the right of o~ equals that portion of the variance contributed by ft . The second tenn to 
the right of o: is the variance associated with the transactions cost o and the third tenn to the right of o; is 
the covariance between ft and t>. This problem is a good example how changes in skewness caused by 
transactions costs change the variance as well. 

Obviously, transactions costs increase the variance of the original Sandmo model. Transactions costs may 
occur because unfavorable price outcomes require firm restructuring by liquidating assets. Or, it may require 
downsizing with severance costs associated with terminated employees. Or, it may require borrowings with 
its attendant sacrifices of time and application fees. Whatever the source, it seems reasonable to assume that 
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firms may face the possibility of liquidation fees that are related to its fmancial wealth. Thus: p0 = p0(wJ 
and dp/dw0<0. 

Even though this model is no longer linear in p and thus violates location-scale assumptions, still all EU 
maximizing choices are on an EV frontier. s Thus any given EU solution for q can be found by specifying the 
appropriate slope )J2 and by maximizing the certainty equivalent expression equal to: 

- i.. 2 
YcE = Y - l CJY (6) 

where optimal q • must satisfy: 

p - C / ( q } - i.. { q • CJ~ + {) [ft F(p0) - p 1] } =0 

Increased risk costs associated with & and lower expected returns caused the MS frontier for the 
transactions cost model to lie below the original Sandmo model. Moreover, the tradeotT between expected 
return is less because of increased risk costs, thus lowering optimal q for most risk averse decision makers. 
Expected profit maximizing q, however, occurs for the same q in both the Sandmo and the transactions cost 
model but for different variances of income. All of these results easily obtained in the EV model would be 
much more difficult to deduce in the EU model. 

6.3. Sandmo with limited liabilities 

Consider a model in which losses of the finn are limited according to the specification below: 

w = _ = {p0(wJq - C(q) - B 
y pq -C(q)-B 

P ~ Po(wJ 
P ~ Po(wJ 

(7) 

The motivation for this model is that institutionally imposed safeguards may limit the actual loss incurred 
by a firm. Bankruptcy laws may protect finns against losses beyond minimum levels as well as do 
unemployment insurance. Thus realistic examples of the limited liabilities model exist. 

As in the transactions cost model, y is no longer linear in the random variable p, but all choices remain on 
the EV frontier. The relationship between y and ft is described in Figure 4. 

5lt can be shown that because the indirect outcome variable does satisfy location-scale, the analysis can be 
made consistent with EU through the appropriate transfonnation of the utility function in final outcome space 
(Robison, 1994). 
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y 

01--~~~-+---~~~~---

p 
Poq-C(q)-B 

Figure 4. Limited Liabilities Depending on W0 

The expected value and variance of y in the limited liabilities model are equal to: 

Y = (P0 F(po)+p2)q- C(q)-B 

where: 

p2 = f pdF(p) 

Po 

and: 

where: 
... 

a; = f (ft-p2)2 dF(p) 

Po 

Again, all choices of q are on the EV frontier. Thus the linear EV model can be made consistent with any 
EU model results. And again as in the transaction costs, any changes in the skewness also affects the 
variance. 
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6.4. Sandmo with background risk 

Background risk reflects an investment environment in which the firm begins the decision making period 
with some resources committed to a risky investment. For example, asswne that the firm has committed 
resources that return a stochastic return of w 0 . This model, Sandmo' s with backgrowid risk, is represented in 
equation (10). 

(8) 

The question to be answered is how do these pre-existing and fixed commitments change the investment 
decision compared to the earlier Sandmo model? To answer this question and others we find the expected 
value and variance of ending wealth described next: 

w =w0 +pq-C(q)-B 

a
2 

=a
2 +q 2a

2 +2qpa a w w0 p p w0 

where w0-(w0,aw) and the covariance between stochastic committed investments and stochastic income 
from production is 

0
2qpa aw . The effect ofbackgrowid risk depends on its correlation with other stochastic 

investments and may o/ may not increase q. The analysis can be easily completed using the nonlinear EV 
model. 

7. Dominance analysis and more complicated risk models 

An advantage of the EV model for theoretical analysis is that it permits the analysis to occur in two 
separate spaces. The analysis can occur in the utility space confined by available choices on the EV set or the 
discussion can focus on the EV set and how it is changed by altering parameters in the existing model or by 
adding risk instruments. This later approach considers what we refer to as dominance analysis. Dominance 
analysis defined here is finding the conditions wider which the addition of a new risk instrument produces a 
new EV set that is preferred by risk averse agents to the EV set previously available. This topic appears to us 
particularly relevant for the analysis of the firm facing risk because so many practical questions involve 
choices between risk instruments. 

Dominance analysis requires that we identify risk instruments as efficient or inefficient. Efficient risk 
instruments permit the following. Beginning at an existing level of expected return and variance, the 
addition of an efficient risk instrument allows to move to a more efficient EV location not on the original EV 
frontier. The improvement permitted by adding an efficient risk instruments is described in Figure 5.6 

60f course, the risk instrument may exhibit both risk efficiency and inefficiency depending on the value of 
other parameters and variables in the model. 
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Figure 5. Class I and Il Risk Efficient Instruments 
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Efficient risk instruments are of two classes described in Figure 5. Class one instruments allow us to move 
to EV locations with increased means and/or reduced variances. Class two efficient risk instruments allow us 
to move to EV locations in spaces Ila and lib which increase (decrease) in mean and variance a rate greater 
than (less than) possible with the existing EV set. Risk instruments that fail to qualify as class one or class 
two efficient risk instruments are inefficient risk instruments. To describe precisely the conditions required 
for first class risk efficiency assume the original relationship between final wealth w and initial wealth w 0 to 
be: 

(9) 

where the choice variable a and initial wealth w0 affect the distribution of stochastic income. 

Now suppose there exists another risk instrument that could be added to the model. This second instrument 
that produces stochastic income is represented as i(P;w0)-(Z,oz; P> where P is a vector of choice variables 
associated with the new risk instrument. Furthermore, let the correlation between y and i be p . Then the 
new risk instrument is efficient if the following two conditions are satisfied where strict inequality holds in 
one of the two equations: 

(10) 

If strict inequality holds in the second requirement then it follows that the correlation coefficient must be 
negative and less than the negative ratio of the variance of the new risk instrument to twice the variance of the 
old risk instrument. This relationship is described in the equation below. The implication of this second 
condition is that the variance of the new instrument can be larger than the variance of the old instrument and 
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still qualify as risk efficient. But only negatively correlated instruments can qualify as first class efficient risk 
instruments. 

Now having identified requirements for first risk efficient instruments, we intend to demonstrate how risk 
instruments can be tested for efficiency. It is, of course, obvious, that dominance analysis requires more 
complicated risk models be considered. Thus our dominance analysis combines two of the new areas of 
analysis into one model: including more than one risk instrument in dominance analysis. 

7.1. Sandmo plus hedging: w = j 

(J 

p<--z 
2ay 

(11) 

Consider again the Sandmo model with a new risk instrument included. The risk instrument considered 
first is hedging with a futures contract. Hedging allows the firm to exchange an uncertain spot price j5 for a 
certain future pri~pf". As long as Pi~-P. selling futures satisfies the conditions required for first class risk 
efficiency. If p1<p then negative hedging (speculation) increases return at a faster rate than income earned 
without hedging and may satisfy the conditions required for second class risk efficiency. 

Let the amount of q hedged be h. Then, hedged income can be expressed as: 

y = pq +(p1 -ft)h-C(q)-B (12) 

Assume for the moment that the futures market is unbiased so that p 1= p so that the first condition for first 
class risk efficiency is satisfied with equality. Then consider how hedging has altered the variance. The 
variance of the hedged income can be expressed as: 

(13) 

The first term on the right hand side of the equation is the variance of unhedged production. The second 
term is the variance associated with the hedge. The third term with its implied correlation coefficient of 
negative one is the covariance. As long as lhl<2q the second condition for first class risk efficiency is 
satisfied and hedging is a first class risk efficient instrument. 7 

7The properties of the hedged Sandmo model are well known (Meyer & Robison, 1988; Feder, Just, & 
Schmitz, 1980; Holthausen, 1979). Output is chosen independent of risk. If the futures price equals the 
expected value of the spot price the amount hedged equals the amount produced. If the futures price exceeds 
the expected value of the spot price, then the amount hedged exceeds the amount produced. 
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The hedging model is an important prototype. It introduces into the risk model a risk reducing input; that 
is, increasing h reduces o:. Other examples of risk reducing variables are the purchase of insurance, 
investing in information, investing in kill functions that reduce a pest or capital investment that moderates the 
effects of drought, floods, and frost. 

7.2. Hedging with limited liabilities 

An important contribution of dominance analysis is that it focuses on the wtlque risk environment of the 
firm. Recognizing the wtlqueness of the risk environment facing each firm leads to the recognition that a 
particular risk instrument such as hedging added to the firm's portfolio will produce differential effects 
depending on the firm' s wtlque risk environment. To illustrate, suppose that the firm has its liabilities 
associated with unfavorable prices limited to p(wo) . This limitation might result from government policies or 
the firm 's adoption of other risk strategies. We want to know if the hedging results are robust; that is, we 
want to know if hedging is an efficient risk instrument when the firm's liabilities are limited. 

Figure 6 illustrates how the effectiveness of a hedge is altered by the changed risk environment. Earlier, 
hedging could completely eliminate the firm's risk. And if the futures price was unbiased, the firm would 
desire a hedge equal to its production. Now, as can be seen from Figure 6, no single futures hedge can 
eliminate risk. Furthermore, the expected output price is no longer the expected spot price because of the 
limited liability. Therefore, an unbiased futures price is less than the expected value of the firm's returns 
from production. Thus, limited liabilities has the effect of converting a class one instrument to a class two 
instrument. As a result, a hedge equal to production levels will no longer eliminate risk. Clearly, the optimal 
hedge will be quite different than those derived in earlier studies. 

y -pq 

p(wo) 
o ~~~~~-.L-~~~""-~~~ 

p 

Figure 6. Hedging Sandmo with Limited Liabilities 
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7.3. Options and limited liabilities 

In the case of a truncated output price, futures were no longer able to provide a perfect hedge because they 
were linear in the cash price (see Figure 6). Now consider the role of options when the producer faces limited 
liability. For simplicity assume there is no basis risk, basis is zero, and the producer's minimum cash price 
is p(w ~. The producer can use a call option to manage risk which has a payout of: 

P ~ Po(wo) 
ps Po(wo) 

(14) 

Assume the cost of the option is r and is assumed to be unbiased in the sense that r = E(ii) . Now the 
producer's profit function becomes: 

y = pq -C(q)-B+z(r-ii) (15) 

where z is the number of call options (sold is positive) held by the hedger. Stochastic income in (15) can be 
rewritten as follows: 

• {p(w0)q - C(q) - B + zr 
Y = pq - C(q)-B+z[r-p+p(w

0
)] 

p s p(w0) 

p ~ p(wo) 
(16) 

Because the options are priced at their expected value, adding options to the portfolio has no impact on the 
expected profit level. However, since they reduce variance they are a class one risk instrument. Choosing to 
sell q call options (z=q), riskless profits become: 

y = [p(wo)+r]q-C(q)-B (17) 

The variance of profit has been eliminated while the expected profit is unaffected. The call option has 
provided a perfect hedge when the producer faces the truncated cash price. 8 

8. Summary and conclusions 

This paper has suggested three areas of future research emphasis. First, we expect future research will 
analyze more general relationships between indirect and direct outcome variables. Relationships between 
indirect and direct outcome variables examined in the past have often been linear. But institutions that limit 
liabilities, create transactions costs, provide various kinds of insurance and options, and facilitate shared risk 
arrangements may all produce nonlinear relationships between direct and indirect outcome variables. Second, 

8See Lapan, Moschini, & Hanson ( 1991) for a discussion of a model with combined production, hedging, and 
options. 
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we expect future risk research to explain the results of increasingly complex nwnerical models and 
simulations. Thus, risk models will be required to include multiple choice variables and sources of risk. And 
third, we expect future risk research to consider dominance analysis. This analysis will ask what 
combinations of risk instruments are efficient. In EU, this analysis would require nwnerical simulations and 
the applications of stochastic dominance rules. EV analysis allows us to approach the problem more 
generally. This is because the EV set is efficient for risk averse decision makers and relationships between 
risk instruments can be used to evaluate their efficiency. 

We expect that progress in all three areas of future research will make increased use of EV models. The 
reason is that the analysis of increases in risk are not easily analyzed in the EU model unless severe 
limitations are placed on the variables considered. 

Many questions must still be answered about the plausibility of the implicit assumptions about preferences 
in EV models before EV models are generally accepted as a theory tool. The analogy between results 
obtained using the nonlinear EV model and those obtained in the EV model when location scale conditions 
hold is the following. In econometrics certain properties of models are obtained that depend on large 
samples. Yet there are models that need analyzing even when large samples are not available. The best that 
can be done in such circwnstances is to infer from the large sample properties to the models that are 
estimated with small samples. We find ourselves in a similar circumstance in our application of the EV 
model. We have properties that are developed under location scale. We infer these same properties even 
when location scale conditions do not hold in our use of the nonlinear EV model. 

So future risk research will require trade-offs. Some important work remains to be done using models that 
are EV and EU consistent. This work can proceed using EU or EV models and obtain consistent results. 
Work in the three areas discussed in this paper, however, will likely require models that are not location 
scale. We expect only limited progress using EU models to solve more complicated models and even this 
progress may often require restrictions on choice and random variables that limit the usefulness of the results. 
On the other hand, progress is much more likely using EV models. But EV models do not yet have the strong 
axiomatic basis of EU models leaving us less certain about the usefulness of the results. Perhaps this tradeofI 
between EV and EU models suggests still a fourth area of future research: empirical and theoretical testing of 
conditions required for consistency between EV and EU models. 
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