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QUASI-OPTION VALUE 

I. Introduction 

In 1964 Burton Weisbrod introduced the concept of option value (OV). OV is an 
additional value, over and above the expected value of a goad's consumption, that is 
attached to maintaining a goad's future availability when faced with uncertainty about its 
future demand or supply. Research on OV has shown that it derives from risk aversion 
(see e.g. Graham; Bishop; Smith; Graham-Tomasi and Myers). Generally speaking, the 
OV literature addresses the correct measurement of welfare change under uncertainty, 
with alternative institutional structures for managing risk. 

In 1974, Arrow and Fisher forwarded a different approach to option value, 
derived under risk neutrality, and based on a dynamic formulation. Arrow and Fisher 
examined the effects of learning more over time about the uncertain benefits of 
preserving an area of wilderness land when its development would be irreversible. These 
authors demonstrated that, relative to a situation in which the decision-maker ignores 
opportunities for learning, an extra value is attached to preservation when it is realized 
that one may learn the true benefits of preservation. This extra value they called quasi
option value (QOV). 

In this Chapter, QOV will be investigated, and some of the literature in this area 
reviewed. Naturally, the basic insight that recognizing opportunities for learning may 
change decision criteria is applicable beyond the wildland development/preservation 
scenario investigated by Arrow and Fisher. Hence, levels of general capital investment 
may be altered in response to learning opportunities (Demers; Epstein, Bernanke; 
Cuk:ierman). Here, the natural resource connection will be stressed, but the literature is 
broader than the natural resource examples discussed. 

The basic results will establish conditions under which the prospect of receiving 
"better information" in the future, leads one to adopt "more flexible" decisions today. 
The intuitive reasoning is clear: if one is in an inflexible situation, so that any alterations 
of it are costly (or impossible), then one is less willing to respond to changes in beliefs 
induced by receipt of information. Hence, being in an inflexible position undermines the 
value of the information to be received. As the information to be receive·d improves, 
the ip.centive to remain flexible and take advantage of it increases. 

Clearly, the situation studied by Arrow and Fisher is a special case of this more 
general concern. Undertaking a completely irreversible action, such as the development 
of a wildland area, results in a more inflexible position than does leaving the area 
undeveloped today and having a choice of development or preservation tomorrow. And 
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receipt of perfect information about the true value of wilderness is an extreme version of 
obtaining "more information." 

A resource problem that illustrates most of the issues is the depletion of moist 
tropical rainforests. The resource stock has value both for its timber and the agricultural 
land (or other uses) it may be converted to, as well as for the ecosystem services it 
provides and the biodiversity it contains. The values of the goods and services provided 
by a tropical forest in its natural state are not well-known in comparison to our 
understanding of the value of harvested timber and agricultural products. The harvest of 
trees from such forests may result in destruction of the forests, or harvest may be done in 
a manner (e.g. using helicopters) which preserves much of the standing forest and its 
ability to provide ecological services. Through scientific research, we can come to learn 
more about the value of standing forest ecosystems. More informative research is based 
on larger sample sizes and better procedures. The basic idea of QOV, then, is that the 
mere prospect of improved research programs on the value of moist tropical forest 
ecosystems, even allowing for the possibility that they may find that such forests are less 
valuable than we now believe, should lead to greater conservation of such forests. 

II. A General Resource Decision Model 

As discussed above, the basic idea of QOV regards the relationship between 
information and choices that are costly to reverse. In this section we define these ideas 
in terms of a simple natural resource model with uncertainty. 

The Resource System 

Let the state of a resource system at time t be given by x1• This could be the 
amount of land area in an undeveloped state, or the amount of an exhaustible or 
renewable resource on hand. Let q1 be a control that is applied to the system by a 
decision-maker (DM). Examples are new development of land for roads, harvest of 
timber, or extraction of fossil fuels. The control is constrained to lie in a set Qt, which 
may depend on the state of the system. For example, you cannot extract more resource, 
or develop more wilderness, than you have. 

Uncertainty is represented by a random variables, taking values in the (time 
invariant) set S = {s1,. • .,s0 }. A realization of sat time t is s1• Important special cases are 
where: (i) there is just one true state of nature s0 in S, rather than a sequence of 
realizations, and (ii) the sequence of realizations st forms a Markov process. This 
uncertainty could arise in a number of ways, affecting the resource itself, or payoffs from 
its use, or both. Examples would be uncertainty about the demand for wilderness 
experiences, where s is a parameter of the demand system, or about the value of species 
in a forest for medicinal purposes, or about a threshold point in the growth function for 
a renewable resource below which the population is bound for extinction. We shall study 
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a model where either there is just one s1 or the sequence is i.i.d. Extension to a Markov 
process is straightforward. 

If the system is in state x1, control q1 is applied, and s1 arises, then the system 
moves to a new state Xi+i according to the transition equation 

(1) 

Payoffs to the DM depend on where the system is, what is done to it, and the 
realization of s. Letting z1 = (x1,q11s1), payoffs take the additively separable, discounted 
form 

(2) 

where a = 1/(1 + r) is a discount factor. Here, we will assume that this general payoff 
function takes the particular form 

(3) 

Thus, the benefits are given by the uncertain value of the resource stock, the uncertain 
value of the cumulative extraction, and the value of current extraction. In the case of 
forests, w(.) is the value of the standing trees, v(.) is the value of the land freed-up from 
forests for alternative uses such as pasture, and [p-c] is the net value of todays harvested 
material. In the case of fossil fuels, w(.) may be zero, while v(.) represents uncertain 
environmental effects, such as global warming, stemming from burning such fuels. In the 
case of a renewable resource, such as harvest of whales, v(.) may be zero, while w(.) 
represents non-use values attached to these creatures. 

The decision-maker's problem is to maximize the expected present value of 
payoffs, based on ones information about s. 

Beliefs and Information 

The DM's beliefs at time t about the random event are summarized by a 
probability mass function :rr1 = (:rr1 w .. :rr01), where :rrit is the probability that the realized 
event at tis si. The DM knows that she will receive information over time which can be 
used to revise her beliefs. The most common representation of this idea is that the DM 
can observe a "signal" in the form of a random variable y11 sometimes called the outcome 
of an "experiment," which is correlated with s1+i· Let Y1 be a set of signals or messages 
that the DM could receive, where Y1 = {y11, ••• ,ym 1}. 

' ' 

If the DM's current beliefs about the random event are :rr11 and the message 
received is Yi,t' then the DM's new beliefs are given by the transformation 
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(4) 

The DM faces a sequence of experimental outcomes. Let {Y} 1 denote the 
sequence of experiments and associated probabilities the DM faces from date t onward. 
Note that in much of the literature on sequential experimentation (see e.g. DeGroot) it 
is supposed that there is one control decision to be made after observing the outcomes 
of a sequence of experiments, where the number of observations to be made, as well as 
the experiments to be conducted, are choices. Here, a control decision is made each 
period, and the sequence of experiments is exogenous. 

An important case is when B(.) is the map implied by Bayes Rule. To develop 
this little further, let {3', be the matrix of joint probabilities, with typical element {Jij' i.e. 
this is the probability that Sr+i = si,t+I and y1 = Yj,t· The likelihood matrix of conditional 
probabilities is £\ 1 = [01ii] = Prob(y1 =yi,1ls1+1 =si,i+il· Thus, o gives the probability of 
observing a particular signal y, given that the true state to arise is s. Let the 0 1 be the 
posterior probabilities, the matrix of probabilities on s, conditional on having observed a 
particular y. A typical element of E>1 is 0\i = Piob(s1+1 =si,t+io/1 =yj,t). Having observed 
the signal Yi,tt the conditional distribution on next period's random event is given by the 
jth column of 0 1

• Finally, let J..1 be the predictive distribution of y1, i.e. the marginal 
distribution regarding which message will be received, given current beliefs. 

Then the linkage between the experiment and the random event is summarized by 
the following relationships (dropping the time notation): 

(5) ). . = L · f3.. = L · 1C·O .. 
J I IJ I I JI 

{3 .. = a .. J.. . 
IJ IJ J' 

Thus, the map B(.) when the DM is using Bayes Rule is 

(6) 

If there is just one true state of nature s (rather than a sequence of realizations), or if 
the draws s1 are independent and identically distributed, then the transformation B(.) 
does not itself depend on time when Bayes Rule is being used. In these situations the 
sequence of beliefs {1C1} 1 has the Markov property. That is, all that matters to the 
revision of beliefs is the current state of beliefs 1C1, and not the whole history. In the 
case of a sequence of i.i.d. realizations s1, the sequence of beliefs also is i.i.d. 

The Decision Problem 

The DM maximizes the expected present value of payoffs, subject to the transition 
equation on the resource state, as well as the transition equation on beliefs. Let the 
state of the system be (x"1C1) = Z1• The system evolves according to (1) and (5). The 
DM solves 
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(7) P: Maxq E L 1 a
1 u(x.,qvs1) 

s.t. X.+1 = g(x1,q1,s1) 
.7r1+1 = B(.nvYj,t•t) 
qt f o.(x1) 
Xo = x0 

( = 1); .n0, {Y}0 given. 

It is important to note that the experiment here is exogenous to the DM. There is no 
choice among experiments to be made, and, in particular, the information to be received 
does not depend on the control chosen. We will comment on this below. 

At each date, the DM chooses the control q as a function of the current state 
(x.,.n1); this function is called a plan. Given a plan q(Z), the expected discounted payoffs 

are 

where Z 1 evolves according to (1) and (6) and the expectation is relative to the 
information the DM expects to receive via the experiments. 

The problem is to find the best plan from the set of all feasible plans. A plan is 
feasible if it specifies a control that lies in Q1 for all t. Thus, letting F be the set of all 
feasible plans, the problem is to find 

(9) V(:xo,.n0;{Y}0 ) = supq(Z) EE J(q(Z)). 

Under some technical conditions, the optimal plan can be characterized using 
dynamic programming methods. A full treatment of these issues are beyond the scope of 
this chapter (see, e.g. Blume et al., Blackwell (1965), and Maitra). We assume here that 
the problem is stationary, so that B(.) does not depend on time. The constraint set Q1 is 
given by a fixed function of the state, i.e. Q1 = Q(x1) . It further is assumed that Q(x) 
satisfies the following condition: 

In the resource context, such a condition would be satisfied, if Q(x) = [O,x] (e.g. you 
can't extract more of a resource than you have). Finally, we assume that, for each s, the 
transition equation is twice differentiable and concave in (x,q), and the reward function 
is twice differentiable and strictly concave in (x,q). 

By well-known results (e.g. Blume et al.) we know that the DM's maximization 
problem has a solution q(Z), and that the solution is unique. Also, V(Z0;{Y}0 ), the 
optimized objective function, is differentiable, concave in x, and satisfies the recursive 
relationship 
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(11) V(Z,;{Y}i ) = maxq{E1[u(x1,q(Z1),s1) + 

aV(g(x1,q(Z1),s1),B(.n"y1);{Y}1+ 1 )]lqEQ(x,)}, 

where the expectation is with respect to the DM's current information. 

The timing of the observation of the experiment relative to the choice of q and 
realization of s is important. It is assumed that the DM enters each period in state z,, 
i.e. with Xi on hand and with current beliefs about s of .n,. Then, she must choose 
current action q. Based on the current resource state and the action q, the resource 
moves to a new state x1+1, perhaps stochastically. The DM also observes the outcome of 
the experiment Y1, and revises her beliefs about next period's random events, according 
to the map B(.n"y,). 

Being more explicit about the expectations operator, (11) can be written as 

Of course, ~k .nk,tojk is just J..j,t> the probability that one observes signal yj and time t. 

Our task now is to make explicit what is meant by an "irreversibility effect" such 
that receiving better information induces one to take more flexible positions. 

Information 

We wish to compare the resource decisions that get made when the DM is to 
receive information over time from one set of signals to those decisions that are made 
when improved information is available. There are a number of ways that the idea of 
improved information has been represented in the literature. Not necessarily referring to 
the above decision problem, let W(x,q,si) be the payoffs from taking action q when the 
true state is si and the resource is in state x. If the DM has just received the message yj, 
which arrives with (predictive) probability J..i, she uses the posterior probabilities 0ij in 
assessing the chance that si will arise. Let Y and Y' denote two different message 
systems, with corresponding probabilities (l,8) and (l',8'). We have the following 

Df: The message system Y is more valuable than the message system Y' 
(written Y ~v Y') if 

Thus, we have that Y ~v Y' if a maximizing decision-maker attains higher expected 
payoffs observing signals from Y than she does observing signals from Y'. This holds 
regardless of the risk preferences embodied in W(.). 
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This definition is equivalent to another, which proves to be extremely useful 
analytically. Let &m = {(~ 1, ... ,~m)l~i~O,Li~i= 1}, i.e. &mis the set of m-dimensional 
probability vectors.Let <I>(~) be any convex function defined on &m. We have 

Df: Y is more informative than Y' (written Y ~1 Y') if 

The following Lemma shows the usefulness of the definition of "more informative." 

Lemma 1: Y ~1 Y' - Y ~v Y'. 

Thus, more informative message systems are more valuable. Lemma 1 was proved by 
Bohenblust et al. (see also Marschak and Miyasawa, Theorem 12.1).1 

These approaches say that, when one has access to better information, then one's 
initial beliefs are subject to greater revision. Similarly, one can show that if one's initial 
beliefs are more uncertain then the same information will lead to greater revision of the 
initial beliefs. Thus, Jones and Ostroy prefer to use the terminology "greater variability 
of beliefs" rather than "improvement in information." 

The above definitions are stated as if there is only a single observation on the 
experiment. But our general decision problem above involves multiple time periods. 
The first definition of "more valuable" experiments in (12) is obtained by replacing W by 
V appropriately. Hence, we have 

1 Another definition of informativeness of experiments was provided by Blackwell 
(1951). Let M be a matrix M with non-negative elements, and columns that sum to 1. 
Then we have that Y is sufficient for the experiment Y'if there is a matrix M such that 
0' = M0 and .i.. = M.i..'. It was proven by Blackwell that sufficient experiments are more 
informative in the above sense. The result says that, if we can get to the experiment Y' 
by talcing the experiment Y and subject it to the noise induced by M, then Y is more 
informative than Y', and also more valuable. 

A final approach to comparing information is to use partitions of the event space 
S. This is employed by Freixas and Laffont. Recall that a partition Y of a set S is a 
collection of subsets {Sk} such that Sk n Sz = 0 for all k and z, and U Sk = S. Suppose 
that the information to be received is that the true state lies in one element of a 
partition of S. Clearly, if one information structure is represented by one partition !F, 
and a second by another Y which is finer than Y (in the sense that any element of Y is 
contained in one element of !F), then the finer partition provides better information. It 
was shown by Green and Stokey that finer partitions represent sufficient experiments. 
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Df: {Y}i ~ {Y'}1 if 
(15) V(Z1; {Y}i) 2: V(Z1; {Y'}i). 

This definition can be written more suggestively by noting that 

V(Z1;{Yh ) = maxqE<J(x) {~:i n i,t u(x0 q,si,1) + 

(16) a p::i i..j,t maxq'E<J(g(x,q,s)) [:~::keki u(g(x1,q,si,1),q',sk,t+t ) + 

a l:i l:k ot+\ nk,1+1 V(g(g(xvq,si,t),q' ,sk,1+1),B(B(n1,Yj,1),Ym,t+1);{Y}1+2 )]} }. 

The definition of "more informative" in (13) does not need to be altered at all, if it is 
understood that <I> is defined on a vector given by sequences { eij,t} 1• 

More informative experiments lead to increases in the value function for the 
optimization program. The difference between the value function for the improved 
information structure and the value function for the base information structure equals 
the expected value of information (VOi) in the improved information. Thus, we offer 

Df: The VOi for structure {Yh relative to that of structure {Y'h is 
VOI(Y,Y') = V(Z1;{Y}1) - V(Z1;{Y'}1) . 

The result on the VOi is recorded in 

Theorem 1: If Y ~ 1 Y'. the VOl(Y.Y') 2: 0. 
Proof: This follows immediately from Lemma 1 applied to (16). • 

Examples of "more informative" experiments readily can be provided in particular 
resource situations. Thus, if we have a wilderness area, then travel cost or contingent 
valuation studies of the area's value could be based on larger sample sizes. Or, the value 
of biodiversity could be assessed using a clinical trial of a plant's usefulness as a drug, 
rather than using laboratory rats, etc. 

Flexibility and Irreversibility 

The previous section set forth relationships among information structures. In this 
section we set forth relationships between choices regarding the extent to which they are 
flexible, and preserving of future options. 

One way to do this (Freixas and Laffont) is to consider the size of the constraint 
set one faces in the next period as it depends on current choices. Consider two 
decisions, q and q'. In terms of our above model we have 
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Df: q is more options-preserving than q' (q c0 q') if 
Q(g(x,q,s)) ~ Q(g(x,q',s)) for every x and s. 

Jones and Ostroy focus on the costs of getting from one position to another. They 
decompose u(x,q,s) into a payoff from being in situation x and a switching cost to get 
from Xi to xt+l• C(x0 JCi+ 1,s1) .

2 Jones and Ostroy say that position x is more flexible than 
position x' (x er x') if the set of new positions reachable at a given cost from x is bigger 
than the set reachable from x' at that cost. Formally, define 

Then we have 

Df: (x er x') if G(Xi,S1,k) ~ G(x' vSvk), for all s,k. 

The definition here is based on positions of the resource state x, rather than on choices 
q. This can be translated into a definition for q by applying the ordering er to positions 
reached from q, i.e. by a new ordering cp defined by 

Df: q cp q' - g(Xi,q,s1) er g(Xi,q',s1) for all x,s. 

It obviously is the case that, as long as the utility function is decomposable as specified 
above, then the two definitions of flexibility of choices, c0 and cp are equivalent. 

A special case of the idea of flexibility is perfect irreversibility, a case with which 
most of the literature is concerned. A perfectly irreversible position is one from which 
nothing can happen except movement to a new time period. That is, no control can be 
applied which would move the resource system except to where it would move by itself. 
Thus, we have 

Df. A position xi is irreversible if, xi1+1 = g(xi, q ,s) for all q in Q(xi ). 

Note that this does not necessarily mean that next period's state must bear any particular 
relationship to this period's state, but it does mean that there is nothing that the DM can 
do to alter the evolution of the resource state. 

2In terms of our model, this is defined as follows. For any given state and realization 
of the random event, by our previous assumptions there is a unique control required to 
move the system to a given new state Xi+i· This control is q(Xi+i;Xi,S1), defined implicitly 
by g(Xi,q(Xi+1;x1,s1),s1) = Xi+i· Suppose that the utility u(x,q,s) takes the separable form 

u(x,q,s) = u(l-x,s) + w(x,s) + [p-c]q. 
Then 
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Note that there is some reversibility in the case of renewable resources, so we do 
not require strictly irreversible processes in the above definition. Naturally, in the case 
of exhaustible resources, where g(x,q,s) = x-q and Q(x) = [0,x], any extraction is 
absolutely irreversible. In the case of forests or wilderness, we may allow some 
"reversion to the wild" in G(.), or we allow the growth of renewable resources. In these 
cases, irreversibility is captured by a constraint q ~ 0, so that the resource stock cannot 
be augmented faster than its natural rate of regeneration. 

The above definitions regarding flexibility were stated as if they pertained to a 
two-period model; i.e. they applied to a single control decision at one point in time. 
However, our basic decision model outlined earlier is a multi-time model. Thus, the 
above definitions need to be extended to include whole sequences of choices. The most 
obvious extension is: 

Df: The sequence { q1} 1 ~o { q/ } if q1 ~o q/ for all t. 

Thus, one sequence is more options preserving than another if each if its elements is 
more options preserving. 

III. Irreversibility Effects and Quasi-Option Values 

We now are in a position to state the central results of this literature. These are 
obtained by applying the above definitions of orderings on information and flexibility of 
positions (or special cases of them) to the general decision problem stated earlier (or 
special cases of it). 

Some writers in this area study what we call the "irreversibility effect." This is a 
relationship between better information and the flexibility of initial positions. 
Establishing the existence of an irreversibility effect requires establishing that an 
ordering on information induces an ordering on flexibility. This is the approach taken by 
Freixas and Laffont, and by Jones and Ostroy, among others. In this sense, there is no 
"quasi-option value" derived explicitly. Formally stated, we have 

Df: The irreversibility effect (IE) holds if {Y}1 ~1 {Y'}1 - {q1} 1 ~P {q/}. 

Another approach is to derive values, the QOVs, as a sequence of taxes which 
would induce a DM who "ignores the improved information" to choose the same control 
as that used by a DM who builds the receipt of better information into the decision 
problem (Arrow and Fisher). But what does it mean to ignore information? And what 
kinds of taxes should one consider? 

Naturally, there is an intimate tie between the existence of an irreversibility effect 
and the sign of the appropriately defined tax on controls. For example, suppose that the 
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IE implies that less of the resource is extracted at some date. Then, a tax could be 
placed on extraction such that a DM facing worse information would use the same 
control as a DM obtaining the improved information. Thus, if the IE exists, the 
associated QOV, conceived of as a tax on the control, is positive. 

Still another approach identifies the QOV as an expected value of information 
(VOi), rather than as a tax on development (Conrad; Hanemann). This VOi approach 
looks at the benefits realized from incorporating information instead of ignoring it. In 
some circumstances the VOi equals the QOV given by a tax on the control; for example, 
if Q(x) = {0,x}. However, in other cases of relevance (e.g. Q = [O,x]), this equivalence 
does not hold (see Hanemann). Here, because of its close relationship to the IE, we 
submit the appropriate concept of QOV is the tax on the control. 

Finally, some authors (e.g. Cukierman) have restricted their attention to a 
situation where a given decision will be implemented , and the issue is how much 
information to obtain before doing this, where information is accumulated through time. 
This is more in line with the literature on sequential experimentation (e.g. DeGroot), 
and will not be discussed further here. 

In most of the literature on the irreversibility effect and QOV, it is supposed that 
there are just two time periods, and that either one receives perfect information, or no 
information at all. It further is supposed that the decision space is Q = {O,x} or, 
equivalently, a linear benefit function is imposed with Q = [O,x], in which case either q is 
set equal to zero or all of the available resource is extracted. This allows sharper results 
(Hanemann), but we take the more general approach of allowing continuous choices with 
non-linear payoffs. 

In this Chapter, we will examine two resource problems. The first, which we shall 
call Case E, represents exhaustible resource extraction. The extraction of fossil fuels, 
and irreversible land development examples are in this class. The transition equation in 
Case Eis g(x,q,s) = x - q. The second case is called Case R, for renewable resource 
extraction. The transition equation in this instance is g(x,q,s) = F(x) - q, where F(x) = 
x + G(x), and G is the growth function for the resource. Of course, Case R becomes 
Case E when G(x) = 0 for all x. In both of these cases we suppose that Q(Xi) = [O.JCt). 
Note that uncertainty has been expunged from the transition equation for the resource 
stock, thereby limiting somewhat the scope of our analysis here. 

It is straightforward to show that for either of these cases, smaller extractions are 
more options preserving. We state this as 

Lemma 3: In either Case E or Case R. {q1l1~1'} if q1~/ for all t. 

Of course, in the case of renewable resources, this cannot be an "if and only if' 
statement. This lemma does not characterize all the interesting issues. For example let 
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G be concave, first rising and then falling. Let xm be the maximum sustained yield 
(MSY) biomass level, and take { q} 1 to be a constant equal to the maximum sustainable 
harvest, qm = G(xm). Consider some alternative {q'}1 set equal to a constant level of 
harvest q' < qm and associated steady-state stock x' on the upward-sloping portion of 
the growth function. Relative to q', a larger stock can be obtained, and a more flexible 
position reached, via the control sequence composed of q, = 0 until x1 = xm, and q1 = qm 
thereafter. So the reverse implication of Lemma 3 does not hold. Moreover, this 
example shows that with multiple time periods and renewable resources, determining the 
more flexible positions will require some work (see Fisher and Hanemann (1985) for an 
investigation along these lines). 

Unless the general decision model is restricted further, the irreversibility effect 
does not hold and the QOV can be positive or negative. This is, in some ways, rather 
surprising, since it makes intuitive sense that the prospect of learning more should lead 
one to adopt more flexible positions. After all, information is valuable; if one is in an 
inflexible position, one cannot make use of the information to revise one's actions, and 
the benefit of learning is foregone. What is required to demonstrate the irreversibility 
effect is that the gain in the value of information from taking a more flexible position 
outweighs the opportunity costs of this position. 

We assume that the utility function takes the form in (3), i.e. that 

u(x,q,s) = w(x,s) + v(l-x,s) + [p-c]q, 

where u(.) and v (.) are concave in their first argument for each s. Holding the resource 
stock may involve maintenance costs implicit in w. In some papers (e.g. Epstein, 
Graham-Tomasi, Freixas and Laffont) it is supposed that utility is a function of stocks of 
developed and undeveloped resource alone, with no benefits and/or costs of current 
development. 

The first order necessary condition for a maximum of (16) is 

(17) [p - c] + a Lj Lk .nk,10
1ik[a V(Z1+1 )/ax1+1)[og(x1,q(Z),si,t)/oq] ~ 0 if q(Z) ~ 0 

= 0 if q(Z) > 0 
Condition (17) generalizes, by incorporating uncertainty and receipt of information, the 
usual discrete-time version of the renewable resource problem. 

In either Case R or E, ag(x1,q(Z),si 1)/aq = -1. Thus, 
I 

(18) [p - c] = a L; Lk .nk,10
1;Ja V(x + F(x) - q(x1,.n1),.n1+1 )/ax1+1l 

[p - c] s a L; Lk .nk,10
1;i[a V(x + F(x) - q(x1,.n1),.n1+1 )/~+ 11 
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Hence, if the expected marginal shadow value of the resource stock exceeds the value of 
a unit of extracted stock, then extraction will be zero. However, if extraction is to be 
positive, it is carried out to the point which balances the current marginal gains from 
extraction and the expected shadow value of the resource in situ. Naturally, if the 
problem were reversible, so that the resource stock could actively be augmented (i.e. q 
could be negative), then (18) would hold as an equality for all t. It is the second line of 
(18) where irreversibility is realized. 

We see immediately that if the term on the RHS of (18) is convex in :rct+t• then an 
improvement in information leads to increases in flexibility by reducing the current 
extraction of the resource. This is so by Lemmas 1 and 2, and the assumed concavity of 
wand v in their arguments. We state this as 

Theorem 2: If payoffs are concave in x for all (x.s) and a V(Z1+1J&i+1-1s 
convex in :rc1+1 • then the irreversibility effect holds. i.e. an improvement in 
information leads to an increase in flexibility. 
Proof: If the value function is convex in :re for given x, an improvement in 
information increases the RHS of (18), by Lemma 1. In order to maintain 
the equality in (18), by the concavity of V(.) in x, ~+1 must increase, 
requiring a decrease in q(Zi). This corresponds to an increase in flexibility, 
according to Lemma 2. • 

This is an application of Epstein's Theorem 1 to a multi-time resource extraction 
problem. It also is a reformulation of the result in Freixas and Laffont. They show that 
if the derivative with respect to the state variable of the expected value of information 
(conditional on the choices with inferior information), is positive, then the irreversibility 
effect holds in their model. But this will hold if the expected shadow value function is 
convex in beliefs. The result extends both of these papers to include net values for 
current extraction. 

To define the QOV and its relationship to the irreversibility effect, suppose that a 
DM operates using information system {Y'}1 and ignores the availability of an improved 
information system {Y0

} 1• In order to induce the same choice of extraction, a unit tax 
can be placed on extraction. The appropriate tax is the expected shadow value of the 
resource with the improved information, less its expected value with the inferior 
information. That is, we have the definition 

Df: Suppose that{Y0 }i ~1 {Y'}1 • Then 

(19) QOV( {Y0},{Y'}) = a I:i I:k :rc\10°1iJa V(x + F(x) - q(x1,:rc°1),:rc°1+1 )/&ct+1] -

a I:i I:k :re' k,10' 1ii[a V(x + F(x) - q(x1,:rc'1),:rc'1+1 )/&c,+ 11 . 
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Thus, the QOV equals the difference between two shadow prices of the stock. It is not 
given by a value of information, which is the difference between to value functions. An 
immediate corollary to Theorem 2 is that, under the stipulated conditions, an 
improvement in information leads to a positive QOV. Formally, we have, 

Corollary: Under the conditions of Theorem 2. OOV ~ 0. 

The trick, of course, is to determine conditions under which the derivative of the 
value function with respect to the state variable is convex in beliefs. We show that, 
under the conditions stipulated so far, the expected shadow value of the stock is in fact a 
convex function of beliefs in Case E and Case R .. 

Theorem 3: For Case E or Case R. the expected shadow value of the 
stock. E{aV(x . .7r:{Y})/&c}. is convex in .7l'. 

Proof: See the Appendix. 

In the proof it is revealed that the result depends on information which might provide 
both "good" and "bad" news. That is, if all the information that one might receive leads 
to an expected shadow value of the stock which exceeds the current value of extraction, 
then a positive level of extraction is undertaken under all beliefs. In this case the news 
is good in the sense that it is not discovered that past extraction was excessive. Then, 
improved information has no effect, the irreversibility effect does not hold, and the QOV 
is zero. Similarly, if all the information leads to bad news, so that the constraint always 
is binding, then the IE does not hold, and QOV is zero. Only if some messages lead to 
good news and some to bad does the prospect of improved information imply an 
increase in flexibility and a positive QOV.3 

Bemanke/Graham-Tomasi Quasi-Option Value 

As discussed briefly above, different authors treat the scenario of ignoring the 
improved information differently. Bernanke assumed that the ignorance case involves 
maximizing each period's payoffs separately, in a sequence of myopic optimization 
problems. Thus, each period, the DM who ignores information solves 

3 A different question is the effect of an increase in the riskiness of the decision 
environment, holding fixed the information to be received. Rothschild and Stiglitz have 
shown that if a distribution of a random variable is subjected to a mean-preserving 
spread, then the expected value of any convex function of the random variable increases. 

It is the curvature of the shadow value function in s that is important to 
determining the impact of an increase in risk. This is not the same as curvature in 
beliefs, so the above proof in Theorem 3 implies nothing about increases in risk. See 
Epstein for further results in this vein. 
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maxq E {[p-c]q + a[w(g(x,q),s) +v(l-g(x,q),s)]} s.t. q c Q(x). 

Imposing the separable utility function as in (3), we see that the solution to this problem 
is characterized by the condition 

Thus, the DM in this version sets the discounted expected net marginal benefits of 
increasing the resource stock (by decreasing q) equal to the net benefits foregone from 
the decrease in q. 

Suppose that the improved information scenario involves applying condition (19). 
To deduce the QOV we need an expression for av /ax. Using the envelope theorem, we 
find that 

(21) av(Z,)/ax = Li .ni,t [0w(x1,si,1)/ax - av(l-Xi,si,1)/ax ] + 

((1 + G' (x))/(1 + r)] Lj Lk .nk,10
1ji[ aV(Z1+1)/ ax). 

Combining this with (20) we can see that the QOV for this comparison is 

This is proportional to the term on the RHS of (19). Bernanke QOV is positive. 

Why would a DM ignore the future and act myopically as Bernanke supposes? In 
an independent derivation of the same result as Bernanke's, Graham-Tomasi considered 
a model of wilderness development in which new development is costless and confers no 
direct benefit. Then, if one is not considering the receipt of information, the optimal 
dynamic policy is to behave myopically. That is, assume no revision of beliefs, so that a 
dynamic optimization problem is solved, but using .n, = .n0 for all t. We have Xi = 1 -
Lsst q, and U = u(Lsst q,, 1 - Ls st q1,s1). It is easy to show that the optimal policy is { q} 1 

= (qm,o,o, ... ), where qm solves u1 - u2 = 0, where ui is the derivative of u with respect to 
its ith argument. This is the equivalent of the Bernanke approach in this model. Then, 
introducing information leads to setting u1 - u2 = QOV, defined as above. Graham
Tomasi shows that, in this model, the shadow price function is convex in beliefs. Thus, 
the IE holds and QOV is positive. 

IV. Discussion 

There are variety of ways that QOV has been discussed. Originally, the 
motivation was that decision-makers, such as government agencies, appeared to ignore 
possibilities for learning in their natural resource decisions. Cost-benefit analysts 
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typically employ simplified procedures when uncertainty is present, and use current 
information to replace random variables by their means or to compute expected future 
benefits and costs. A concern then arises that such incomplete decision rules lead to 
decisions biased in a particular direction. The demonstration that QOV is positive 
implies that typical benefit-cost decision rules are biased in favor of irreversible 
investments. 

This Chapter bas applied these ideas to a more general set of concerns. This 
more general framework reveals the wide applicability of the notion of QOV. It seems 
that the concept is fundamental to problems of resource use. The difficulty, of course, 
lies in empirical treatments which might establish the magnitude of the bias in particular 
situations. In fact, few such empirical applications of the ideas have been attempted (see 
Fisher and Hanemann (1986) for one effort. 

There are three extensions of the above analysis that warrant discussion. First, 
the approach removed uncertainty from the transition equation. Some of the arguments 
of environmentalists pertain to the difficulty of undertaking decisions when the laws 
governing ecosystem function are poorly understood. The model above can handle some 
of these concerns. For example, we should not be cavalier about substitution of capital 
for resources, since we know little about which are the necessary resources. This 
introduces uncertainty into the demand for the resource stock, as above. However, there 
needs to be uncertainty in the transition equation to handle problems of hysteresis and 
uncertain thresholds below which extinction occurs. 

Second, the basic arguments could be applied to more general-equilibrium, 
macro-oriented concerns. Adding capital to the model would allow this. It would be 
reasonable, then, to introduce uncertainty in the production function relating capital to 
resource stocks of various kinds. The value function would play the role of an 
appropriate national income equation, and the shadow prices appropriately would 
consider uncertainty. Thus, national income accounts augmented to include resources 
should employ shadow values which include recognition of uncertainty as well as 
opportunities for learning. 

Finally, the information structure here was taken as exogenous. But the amount 
to be learned obviously depends on research expenditures, taken out of current output. 
Moreover, as Miller and Lad pointed out, the amount learned may depend on extraction 
decisions themselves. Thus, with oil exploration in wilderness, to learn more about the 
oil stock requires some development of wilderness. In this case, the QOV results 
derived above are undermined. However, in many circumstances, learning wil1 increase 
with conservation, which will only serve to reinforce the irreversibility effect. Perhaps 
more importantly, the amount to be learned via research effort should be made 
endogenous. 
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APPENDIX 

Here, we prove Theorem 3, which states that the value function is convex in 
beliefs. First, we consider a finite-horizon problem and show that each value function is 
convex using an induction argument. Then, we use a result that the infinite-horizon 
value function retains the features of the finite horizon value function in the limit as the 
time-horizon becomes arbitrarily long. The proof is based on one by Demers. 

Step 1. Consider a finite time horizon version of the above problem P, with end
date T. Let VN(Zr-N) be the value function with N dates remaining. Define an operator 
r(V(x,n)) = maxq~o Li ni{w(x,si) + v(l-x,s) + [p-c]q + aLjLk c5jknk V(x+ F(x)-q,B(n,yj)). 
If C(S) is the space of bounded, continuous functions V:S--+R, with S compact, previous 
assumptions ensure that r:C(S)-C(S). Give C(S) the sup norm, under which C(S) is a 
complete metric space. Then r satisfies the properties of a contraction mapping on a 
complete metric space, due to arguments in Blackwell (1965). Every contraction map on 
a complete metric space has a unique fixed point (Rudin). Thus, the equation rV = V 
has a unique solution, which is the infinite-horizon value function for P. Moreover, 
letting r be the application of r m times, llr"1V0 -VII goes to zero uniformly (since it is 
convergence in the sup norm) as m goes to infinity, for any initial V0

• Concavity and 
differentiability are established by Blume et al. 

Let VN(x,n) = rvN-1(x,n). Since yN is differentiable and converges to v 
uniformly. Assuming that avN(x,n)/ax converges, it does so uniformly to aV(x,n)/ax 
(Rudin). Since the limit of a sequence of convex functions is convex, it suffices to show 
that aVN(x,n)/ax is convex inn for every N. 

Step 2. We need to show that VN(x,n)/ax is convex. Pick two beliefs, n° and n1, 
and let 1(-' = µ 1'C

0 + (1-µ) n1, forµ f [0,1). Thus, we need to show that 

From equation (21), 

(A2) aVN(x,#)/ax = Li #i,i (aw(xt>si,1)/c1x - c3v(l-xt>si,1)/c1x ] + 

[(1 + G' (x)/(1 + r)) Lj Lk 1(-' k,1c51ji[ ayN-1(x + G(x)-q(x,1(-'), 1(-'1+ 1)/ ax). 

Since Yo = Q, aV1(x,#)/ax is linear in 1C and hence convex. Using an induction 
argument, we know that av1 /ax is convex in n, and will assume that 
av2 I ax,aV3 I ax,. . .,avN-l I ax are all convex in n; we shall then show that avN I ax is 
convex in n. 

Use 1(-' = µ 1C° + (1-µ) n 1 in the first summation in A(2), and add and subtract 

µ[(1 + G'(x)/(1 +r)] Li Lk n\1c51ji[avN-1(x + G(x)-q(x,n°), 7C°1+ 1)/ax) and 

(1-µ) [(1 + G' (x)/(1 + r)) Lj Lk 7C\,10
1ji[ ayN-1(x + G(x)-q(x,n1

), 7C
1
1+1)/ ax). 
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This yields 

(A3) aVN(x,#)/CJx. = µaVN(x,n°)/CJx. + (1-µ)aVN(x,n1)/CJx. + 

[(1 + G'(x)/(1 + r)] l:j l:k #k,10
1jJaVN-1(x+G(x)-q(x,#), 1'1'1+1)/CJx.] -

µ[(1 + G' (x)/(1 + r)] l:j l:k .7t° k,10
1jJ ayN·1(x + G(x)-q(x,n°), n°1+ 1)/ CJx.] -

µ[(l+G'(x)/(l+r)] l:j l:kn\10
1jJavN-1(x+G(x)-q(x,n1

), n\+ 1)/ CJx.] . 

Thus, we need to show that the sum of the last three lines is non-positive. Divide 
through these terms by (1 + G')/(1 + r) . Then the terms are related to the first order 
conditions for a maximizing choice of q in (18). We must consider whether the 
alternative beliefs #, n°, and n1, lead to corner solutions or interior solutions. We shall 
consider the alternatives in turn. 

A) Suppose first that the three beliefs all lead to interior solutions. By the first 
order condition for q, the first term is (p-c), while the second and third terms are µ(p-c) 
and (1-µ)(p-c). Thus, the sum of these is zero. In this case, the expected shadow value 
of the resource is linear in beliefs and it does not respond to improvements in 
information. Then too, neither does extraction respond to improvements in information, 
so there is no irreversibility effect and QOV is zero. 

B) Suppose that all three beliefs lead to a corner solution. We cannot say what 
happens to the expected shadow value of the resource, since it generally will be non
linear inn. But, since all three extractions are zero, there is no irreversibility effect, and 
QOV again is zero. 

C) Suppose now, without loss of generality that 1C° leads to an interior solution, 
while n1 leads to a corner solution. We must consider two further cases regarding#: 
C(i) # leads to an interior solution, and C(ii) # leads to a corner solution. 

In case C(i), we have that the second line in A3 equals (p-c), and the third equals 
µ(p-c) . Since n 1 leads to a corner solution the fourth line does not fall short of (1-µ)(p
c), as shown in (18). Assume that it exceeds it. Then in case C(i), the sum of these 
terms is negative, and the expected shadow price is convex. 

For Case C(ii), the second line exceeds (p-c), the third line equals µ(p-c), while 
the fourth line exceeds (1-µ)(p-c) . We use the induction assumption that avN·1;ax is 
convex in n. Taking the summation term by term, and dividing through by #, the sum of 
these three lines would be non-positive if all these derivatives were evaluated at the 
s~e stock, namely, with q = 0. However, .setting ~ ~ 0 in the third line i~ A3 ~creases 
this term above even more, by the concavity of V ·1 m x. Hence, by the mduct10n 
hypothesis, the sum of these three lines is negative and the expected shadow price is 
convex. • 
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