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THE VALUE OF PEST INFORMATION IN A DYNAMIC SETTING: 

THE CASE OF WEED CONTROL 

Introduction 

Managing weeds poses an important ch~lenge to U.S. crop farmers. Weeds cause 

annual crop losses to U.S. corn and soybean producers valued in the billions of dollars 

(Chandler et al .). In response, farmers invest large sums to control weeds. Agricultural 

chemicals were the largest component of mean variable operating costs for U.S . soybean 

growers in 1990 ($20.48 per acre) and the second largest component for corn growers that 

year ($22.64 per acre) (USDA 199la and 199lb). Most of these expenses covered herbi-

cides. Additional costs were incurred for mechanical operations, including herbicide 

application and cultivation. 

The challenge of weed management reaches beyond financial costs to environmental 

-
ones. An estimated 46 million Americans drink water from groundwater supplies that may be 

contaminated by pesticides, which include insecticides, nematicides and fungicides, as well as 

herbicides (Nielsen and Lee). Growing evidence points to a link between herbicide use and 

cenain types of cancer among farm workers (Hoar et al ., Wigle et al .). Yet herbicide use is 

pervasive. On the U.S. corn·and soybean crops, herbicides accounted for roughly ten times 

as much active chemical ingredient as did insecticides and fungicides combined in 1990 

(USDA 199la). Fully 96% of U.S. com and soybean cropland was treated with herbicides in 

1988; this accounted for 81 % of all herbicides applied to U.S. crops that year (Osteen and 

Szmedra). 
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The high cost and potential health hazards of weed control give farmers ample reason 

to manage their control actions with care. One approach is to apply integrated pest 

management principles, scouting weed populations in .order to base the co·ntrol strategy on a 

prediction of likely value of yield loss. Bioeconomic models that support this approach are 

proliferating (Lybecker et al . 199lb; Mortensen and Coble; Swinton and King; Wilkerson et 

al.), and have become the subject of a U.S. Dep_artment of Agriculture regional research 

project (NC-202). These decision support models all require more information than current 

management approaches. Yet with the exception of Gillmeister et al . , no formal attempt has 

been made to estim~te the value of that information. · 

Results reported by King et al., Gillmeister et al., and Lybecker et al. (199la) suggest 

that recommendations based on weed population information help farmers reduce herbicide 

use while increasing net returns . However, these studies suffer from several weaknesses. 

First, all three ignore the timeliness of weed control. Second, the King et al . and Gillmeister 

et al. studies are confined to a narrow range of weeds and control methods. Third, risk 

enters only into the Gillmeister et al . article, and there it is restricted to uncertainty about the 

initial weed density. Finally, the Gillmeister et al . and Lybecker et al. studies ignore weed 

population dynamics across seasons. 

Timeliness, in particular, is critical to weed management. Weeds that emerge within 

the first four weeks after com or soybean planting have the potential to compete strongly for 

light, water and nutrients with the juvenile crop plants. Unless controlled early, before 

resources bee:ome limiting, the crop will suffer yield losses. But delayed planting, too,' 
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reduces potential yields, and early post-emergence weed control competes for field time with 

planting tasks. One way to mitigate the conflict is to kill weeds before they emerge. This 

limits control alternatives to herbicides, which may be incorporated into the soil before 

planting (pre-plant incorporated, or PPI) or else sprayed onto the surface of the soil at some 

point before the weeds emerge, possibly after planting (pre-emergent, or PRE). Since weeds 

are not visible when either of these actions is taken, the population can only be predicted from 

sampling the weed seed population in the soil or extrapolating from the previous year's 

observations. Once weeds emerge, post-emergent (POS1) weed management options include 

both herbicidal and mechanical controls. Since weeds are visible, information is available on 

the size and composition of the actual pest population to guide decision making. By this time, 

however, planting tasks compete for the farmer's attention during a critical period when 

available work time is limited by the risk of unsuitable weather. 

Pest management decisions are made in the presence of many sources of risk (Pannell 

1990). In addition to the uncertainties noted above regarding initial pest population 

(GiJlmeister et al.) and the number of workable field days, these include pest-free yield, crop 

price, pest control efficacy, pesticide damage to the crop, and a variety of factors influencing 

the rate of pest population growth. Only by taking these risky variables into account can the 

value of pest population information be properly evaluated. 

The value of information, such as information on pest populations, depends on its 

potential to induce a better management decision than that which would have been taken in its 

absence. Chavas and Pope have demonstrated that (accurate) costless information cannot 
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reduce net income. Information value may be calculated for a particular prediction or for the 

predictor itself, across a range of states of nature (Byerlee and Anderson) . Note that for 

certain states of nature, a given predictor. (such as a decision support model using appropriate 

information) may lead to sub-optimal outcomes in spite of the fact that on average outcomes 

are superior to those obtained without the predictor. The value of the predictor depends upon 

its performance over a range of states of nature. Of interest here is the predictor embodied in 

a bioeconomic management model that makes weed control recommendations. 

Previous studies of information value in agriculture have focused upon one or two 

stochastic variables with relatively few management options (Bosch and Eidman; Byerlee and 

Anderson; Chiao and Gillingham; Mjelde et al.). With the important exception of Mjelde et 

al., they have ignored the timeliness of information. In order to estimate information value in 

a realistic stochastic setting, this study incorporates numerous biological and climatic· random 

variables. Weed control strategies are developed from partially overlapping sets of individual 

control alternatives available at the PPl/PRE and POST decision nodes. In order to 

incorporate information value from the decisions on both whether to control and how to 

control, this study includes 5 - 8 control alternatives for com and 3 - 6 for soybean at each of 

the two weed control decision nodes. 

Information value can be measured against either a no-information scenario or a 

perfect-information scenario. The former is of practical usefulness to managers, but is 

subjective in that what an actor chooses to do in the absence of the predictor may vary 

considerably from one agent to another. The latter provides an unchanging standard against 
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which infonnation value can be judged; unfortunately, it does not measure the value that a 

decision-maker could expect to obtain by switching from his or her current strategy to one 

that uses ·the predictor. Most previous studies have estimated the value of information in 

agricultural production against a "perfect information" benchmark (Bosch and Eidman; 

Byerlee and Anderson; Chiao and Gillingham; Mjelde et al.). In order to provide a measure 

of potential gain over current practice, this study opts for a "no information" benchmark 

based on repeated use of the strategy which maximizes expected returns for a heavy initial 

weed infestation (assuming that weeds do not develop herbicide resistance). This represents a 

consistent strategy to insure adequate weed control in the absence of weed population 

information. Relying on a static profit-maximizing strategy represents a more internally 

consistent approach than relying on extension recommendations. 

The value of a predictor also depends on the decision-maker's attitude toward risk. 

The most broadly applicable results come from studies which use stochastic dominance to 

identify strategies that would be preferred by a general class of decision makers. Bid prices 

for stochastically dominant distributions have been used to calculate value of information 

(Schoney and McGuckin). While this approach covers a broad range of decision makers, the 

range of technologies that exhibit any form of stochastic dominance is often narrow. 

Sacrificing g~neralizability for discriminatory power, Bosch and Eidman estimated a money 

metric value of information using generalized stochastic dominance over a range of absolute 

risk aversion intervals. Others have obtained more narrowly applicable results by varying the 

degree of risk aversion for a single, specific utility function (Byerlee and Anderson, Mjelde et 
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al.) . This study takes the latter approach, calculating certainty equivalents of expected utility 

for a set of utility functions with constant absolute risk attitudes (CARA). 

In the paper, we develop a framework for measuring the value of information on 

weed populations. We use it to measure the value of differing levels of scouting information 

for a typical com-soybean farm in southwest Minnesota. In the sections that follow, we first 

present a simplified, dynamic representation of the weed management problem facing a farmer 

and show how the value of weed information can be measured in that context. We then 

describe a set of stochastic simulation experiments that measure the value of weed population 

information used in a bioeconomic weed management model. The value of weed information 

is examined under two scenarios for herbicide restrictions, as well as the status guo. In the 

concluding sections, we briefly discuss the cost of providing weed population information and 

the implications of these findings for future research . 

Theoretical framework 

Feder's model of pest management under uncertainty provides the basis for the 

approach taken here. The problem is to choose the pest control input that will maximize 

expected utility when the input acts only indirectly on crop yields, via a kill function which 

reduces the population of a yield-reducing pest. Departing from Feder for reasons of product 

liability and the availability of response information, it is assumed that feasible levels of the 

weed control input are not variable; rather, managers must apply a chemical treatment at the 
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recommended rate. For both chemical and mechanical weed control, the decision is thus a 

binary one: to control or not to control at the recommended rate. 1 

The Feder model is extended in three ways. First, multiple (weed) pests are intro-

duced having differing susceptibilities to the available controls . Second, multiple control 

measures enrich the decision from one of whether to control, to one of how to control. 

Finally, this model follows Taylor and Burt in explicitly recognizing the dynamic nature of 

the weed control problem by incuding seed bank equations for each weed species. 

This analysis defines expected utility over the present value of cumulative end:period 

net income (CNly). For the risk-neutral case, the model can be stated, 

~ P{t,' -D(w,")}-ch, -c0 

max CNI = L.J 
T t•O (1 + r)' 

h 

subject to the equations of motion, 

w,4 = [1 - k(h)]w, 

· s, = s(s,_1, w,. w,") 

(1) 

(2) 

(3) 

(4) 

where t is a time subscript, Yo is weed-free crop yield, P is product price, D( •) is the yield 

loss or damage function, h is a binary weed treatment variable equal to hr (the recommended 

treatment rate) or zero, c is unit cost of weed control, C0 is fixed and variable costs unrelated 

to weed control, and r is the discount rate. The density of weeds at harvest that survive to 
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compete with the crop, wh, in equation (2) is the product of w is the density of weeds that 

erperge, and one minus k(h) E [0,1] , the proportion of weeds killed by treatment h. It is 

assumed that damage increases with weed density, so D'(wh) > 0. The germination function 

in (3) relates the current weed density to the previous seed bank, with w'(St.1) > 0 assumed. 

The seed bank function in (4), s( • ), associates end of season weed seed bank density (sJ with 

seed bank density in the previous season, (Si-1) , seed loss due to cumulative weed seedling 

germination during the season (wJ, and seed production by weeds surviving to reproduce 

(wi:). It is assumed that s'(st_1) > 0, s'(wJ < 0, and s' (wi:) > 0. 

In the static, risk-neutral model with a single pest, the derived decision rule is to 

control weeds if the expected value of yield saved exceeds the cost of control (Auld et al .; 

Cousens 1987). Since yield is a function of damage induced by pest density, there is 

implicitly a threshold density on which this decision hinges. The seed bank element makes 

the threshold a dynamic one. By differenting equation (1) with respect to the arguments of 

the seed bank equation, it can be seen that the dynamic threshold occurs at a lower weed 

density than the static one, since CNIT is decreasing in the weed seed bank (sJ and weeds at 

harvest (wi:) in any time period. The effect is greatest in early periods because increases in 

the weed seed bank cause increased weed populations and yield losses of longer duration. 

Under the assumption that intertemporal risk preference is entirely captured by the 

discount rate, the expected utility of a given distribution of expected CNI's can be calculated 

for hypothetical CARA decision makers (Pratt; Arrow). Denoting these utility functions over 

cumulative net income as u(CNI), the certainty equivalent of outcomes on CNI, CNI"', is 
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In E(-u(CNl)] 
for l > 0 

). 

CNI,c • E[CNI] for l = 0 (5) 
In E[u(CNl)] for ). < 0 

). 

where E is the expectations operator (Robison and Barry, p. 38). 

The bioeconomic weed management model 

The theoretical model in equations (1-4) was implemented using the WEEDSIM 

bioeconomic model. Described more thoroughly in Swinton and King, WEEDSIM evaluates 

all combinations of PPl/PRE and POST weed control treatments in its database to recommend 

the initial treatment of the sequence which maximizes expected cumulative net income over a 

two-year planning horizon. The model is driven by weed population information in the form 

of 1) weed seed density estimates (Si.1) , for PPI and PRE weed control treatments , or 2) 

emerged weed density (wJ for POST weed control. 

The two-year time horizon provides a first approximation to the less tractable problem 

of identifying an infinite horizon optimal control. A dynamic programming model to do the 

latter would have to limit the permissable number of weed species and would require a highly 

simplified discrete rendering Of the seed bank state variable for each species . As discussed 

above, differentiation of the seed bank variable suggests that an infinite time horizon would be 

characterized by a lower weed density control threshold and higher estimates of weed 

information value, compared with the two-year time horizon. 
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The value of weed population information is estimated using a whole-farm simulation 

model called WF ARM (Swinton and King), illustrated in Figure 1. WF ARM models imple

mentation of the WEEDSIM recommendations in a context of limited land, machinery, and 

labor resources. Workable field days depend upon weather, soil type, and machinery 

specifications. Limits on their availability can reduce crop yields in two ways . Failure to 

complete planting in a timely fashion leads to decreases in potential yield. Failure to control 

weeds on time can allow some weeds to grow beyond the stage at which they can be 

controlled by the recommended treatment, requiring· a revised (and ex ame suboptimal) POST 

treatment. The overlap between the optimal periods for soybean planting and post-emergent 

weed control in com tends to result in yield loss due to one or the other of these processes . 

WFARM simulates stochastic biological and climatic processes (Figure 1), leading to 

random net returns to any given management strategy. In addition to the yield function in 

brackets in (1) and equations (2-4) for each weed species, it includes equations for weed 

growth during the weeks following planting (a simple quadratic function of days ~fter 

planting). This allows WFARM to capture the reduced susceptibility of some weeds to 

certain herbicides once past the seedling stage. 

Three methods are employed to incorporate stochasticity into the WF ARM model. 

First, additiv_e pseudo-random disturbance terms are simulated from the empirical distributions 

used to estimate the WEEDSIM· and WF ARM equations. For example, the crop yield and 

weed seed production equations use deterministic coefficients with empirically distributed 

additive errors. Second, pseudo-random multivariate normal disturbances are added to 
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parameters . The weed growth equations take the form Y = (fJ + E) X + u, where E is 

distributed multivariate normal (0, E ) and u is an empirically distributed, heteroscedastic 

additive disturbance term. Third, historical data are incorporated into suitable equations. 

Historical field time, weather, and weed-free yield data from southwestern Minnesota in 1974-

90 are used to capture year-to-year variation. The stochastic weed emergence equations are a 

hybrid, composed of Forcella's annual temperatur~ependent predicted emergence plus a 

heteroscedastic disturbance term. Some herbicides are not effective after weed seedlings 

exceed several inches in height. When tardy timing makes a recommended treatment 

infeasible, the WEEDSIM module re-evaluates the feasible treatments to identify a revised 

best alternative. Rainfall makes the efficacy of unincorporated PRE herbicide treatment 

stochastic, since it is effective only if a minimum of one-half inch of rain falls in the 

following week. 

Scouting of weed seed and seedling density is assumed to yield perfect knowledge of 

the underlying populations. While on the surface this seems an unrealistic assumption, it is 

made in order not to exaggerate the already substantial random variability in the stochastic 

model. The pseudo-random errors generated for the stochastic simulation model already 

implicitly reflect the sampling error associated with weed seed and seedling density data from 

Forcella and Lindstrom that were used to estimate model parameters. 

The stochastic, whole-farm model allows evaluation of weed management strategies 

' 

based on three levels of weed population information. The "high information" case includes 

scouting of both weed seeds (prior to time of application of soil-applied herbicides) and weed 
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seedlings (prior to application of post-emergence control measures). The model makes all 

weed control recommendations. The "POST information" relies on the best fixed soil-applied 

weed control for heavy weed pressure, using scouting information on post-emergence weed 

seedling density for POST weed control. Finally, the "no information" case follows the best 

fixed strategy for weed control assuming high initial weed pressure. The information levels 

applied here correspond to the flexible, mixed, and fixed weed control strategies evaluated by 

King et al . and Lybecker et al . (1991a). 

Under these three weed information scenarios, the certainty equivalent of expected 

utility, CNI .. , is calculated for four hypothetical CARA decision makers having risk aversion 

coefficients of -.0001, 0, .0001 and .001. These correspond to the range CARA coefficients 

on annual farm income reported in Raskin and Cochran's review of studies of elicited risk 

aversion. 

Simulation Experiment Design 

The specific objectives of the stochastic simulation experiments conducted with 

WF ARM were to test the null hypotheses: 

H 1: EU (CNI) with weed information = EU (CNI) without weed information, and 

H2: Amount of chemical use (pounds of active ingredient per acre, lb ai/ac) with 

weed information = amount of chemical use without weed information. 

These were to be evaluated for the three levels of information, HIGH, POST and NONE. In 

the event that H 1 was rejected, a secondary objective was to estimate the differenceS ~ 
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certainty equivalents of CNI between information levels as a rough measure of potential 

willingness to pay for weed population information. 

The resource endowment of the base case farm used in simulations is presented in 

Table 1. It is a 480-acre cash grain farm located in southwestern Minnesota, divided into six 

80-acre fields. Two fields each are devoted to continuous com, rotational com and rotational 

soybean, all farmed using conventional tillage. During the planting and weed control season 

(April - June) the farm has two full time tractor operators available for field operations seven 

days per week, ten hours per day. The farm has two tractors capable of doing field work 

(160 and 120 horsepower). The machinery complement used in the simulation includes a 28-

foot field cultivator, a 30-foot sprayer, an 8-row planter, an 8-row cultivator, and a 16-foot 

rotary hoe. Other machinery used for plowing and harvest operations is omitted, as it is not 

used in operations associated with weed control. Rates of field coverage and associated costs 

per acre for use of this equipment were obtained from Fuller et al . 

Weed species and density are the crucial variables in the weed management model. 

Observed densities in the field vary immensely. The initial weed seed densities used in the 

sirµulations are shown in Table 2. They represent approximate bottom and top quartiles of a 

1985-86 data set from Morris-, Minnesota reported in Forcella and Lindstrom. For combined 

green and yellow foxtails, common lambsquarters and redroot pigweed, the "low" initial weed 

seed populations are 175, 25, and 50 seeds per square meter (m2). The "high" initial 

populations are ten times that high. 
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For the simulations where no weed population information was used, recommen

dations were those which optimized a deterministic model with "high" initial weed density. 

Those recommendations were (1) for continuous corn, cyanazine pre-plant incorporated (PPI) 

followed by atrazine and oil post-emergence, 2) for com in rotation with soybean, alachlor 

PPI followed by cyanazine post-emergence, and 3) for soybean, trifluralin PPI followed by 

rotary hoe. For simulations where POST information was used, the "no information" PPI 

recommendations were implemented for pre-emergence weed control. 

Stochastic Simulation Results 

The ranking of information from greatest (seed and seedling counts) to least (no weed 

information) correlates perfectly with annualized net income. This is true for both low and 

high initial weed seed pressures (Table 3). Moreover, the distributions of annualized· net 

income under the high and intermediate information strategies dominate the no information 

distribution by first degree stochastic dominance under high initial weed pressure and second

degree stochastic dominance under low initial weed pressure. 

The hypothesis that strategies using and ignoring weed population information yield 

equal annualized net income Cffypothesis Hl ), is evaluated against the alternative hypothesis 

that using weed information gives higher net income. Two sets of one-tailed, paired diffe

rence t-tests are presented in Table 4. In one set of tests, POST-only seedling count 

information is compared with no information. Under both initial weed pressures, the 

hypothesis can be rejected in a three-way comparison with 99% confidence (the one-tailed 
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t(19; .01/3) = t(19;.002) critical value is 3.88).2 In the other set of tests, the annualized net 

income with high information is compared to that with POST-only information. The 

hypothesis of equal returns can be rejected with 95% confidence for low initial weed pressure, 

but only with 80% confidence with high initial weed pressure. The total value of information 

is highest when initial weed pressure is high. The significant value of information 

encountered here is consistent with the findings of Bosch and Eidman, Byerlee and Anderson, 

Gillmeister et al. and King et al . 

The mean herbicide loads in Table 5 do not offer the same consistent ranking. Hypo

thesis H2, that the same level of herbicide is applied regardless of information level, is 

evaluated against the alternative hypothesis that the level of herbicide applied is not the same. 

The null hypothesis is soundly rejected in the two-tailed, paired difference t-tests presented in 

Table 6 . Only for rotational soybean were chemical loads unchanged between high and POST 

information levels. While chemical load differs across information levels in all the corn 

cases, more information does not necessarily lead to lower chemical use, contrary to the 

findings of King et al. and Lybecker et al . (1991a). Weed population information often leads 

to the selection of different weed control treatments, but these may either exceed or fall below 

the quantity of chemical in the no information case. Compared to no information, high infor

mation leads _to significantly lower herbicide load for both corn rotations, but not for soybean. 

Compared to POST information; high information leads to significantly lower herbicide loads 

on continuous corn and rotational corn with low initial weed pressure, but not on rotational 

corn with high initial weed pressure. Compared with no information, POST weed seedling 
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counts lead to herbicide loads that are lower in corn (both rotations) and higher in soybean. 

In general , herbicide load· increases are smaller in magnitude than herbicide load decreases . 

The value of information is linked to the decision maker's attitude toward risk 

(Byerlee and Anderson). The value of weed population information is highest when weed 

pressure is high, as shown in Table 7. This runs counter to what would be expected if the 

key decision was whether or not to control. In that case the most valuable information would 

be that which implies that no control is needed. It appears, however, that the key decision is 

how to control , rather than whether to control. When weed pressure is high, sub-optimal 

rules of thumb have more serious repercussions than when it is low. Similar results have 

been obtained by Wiles et al. 

The value of weed population information increases with risk aversion when initial 

weed pressure is high and decreases with risk aversion when it is low. This result comes 

from the fact that weed population information increases net return variance (risk} when weed 

pressure is low, but decreases it when weed pressure is high (Table 3). When weed pressure 

is low, an information-based flexible strategy occasionally calls for no control , which causes a 

sharp drop in net returns and boosts variance. When weed pressure is high, an information

based strategy is prone to tailor the control more precisely to the nature of the weed problem 

than a fixed strategy, thereby reducing net return variance. 

In a recent literature review, Pannell (1991) observes that increased pest control· does 

not necessarily reduce net return risk, since the effect of pest control on risk depends upon the 

source of risk. He finds that for convex yield functions, such as the hyperbolic one used 
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here, uncertainty about weed density, yield loss per weed , and weed control efficacy may be 

expected to reduce income rislc. By contrast, uncertainty about weed-free crop yield or 

product price may be expected to increase it. This is partly confirmed in a recent empirical 

study by Deen et al. Rislc in the present study comes from various sources having conflicting 

effects. Previous pest management research has not addressed uncertainty about field time or 

pest reproduction. The results presented here highlight the fact that with mixed sources of 

risk, the value of information need not vary systematically with the level of information. 

The estimated value of weed population information ranges from $2.87 per ac~e for 

the strong risk ave~r facing low initial weed pressure to $25.94 per acre for the strong rislc 

averter confronting high initial weed pressure (Table 7). These values are for post-emergence 

weed seedling counts ("low" information). This range includes the $25/acre estimated value 

of information for post-emergent cocklebur control in soybeans at low weed densities found 

by Deen et al . The supplementary value of seed counts can be estimated as the difference 

between the value of "high" information and that of the "low" (POST) information alone. To 

decision makers with the four specified utility functions, it would be worth up to $2.07 per 

acre more to obtain seed bank estimates. For the most risk-averse decision maker, however, 

the low information case was·actually preferable to the high one, as it provides prophylactic 

pre-emergent weed control that is not subject to the uncertainty of soil seed sampling. The 

commercial viability of seed counts from soil sample is marginal from these results. 
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Effect of Herbicide Bans 

Rising public concern about the presence of atrazine in groundwater has led the U.S. 

Environmental Protection Agency to examine closely whether or not to reregister it for use on 

com. A broader issue is whether to ban the entire family of triazine herbicides, of which 

atrazine is a member. Given that atrazine offers the least expensive broad-spectrum weed 

control, the WEEOSIM model recommends its use under a wide range of weed infestations in 

continuous com. Consequently, a ban on its use could be expected to affect the value of 

weed population information utilized in a bioeconomic weed management model. In the 

atrazine ban scenario, the "no information" recommendation for all com called for cyanazine 

PPI and 2,4-0 POST. In the triazine ban scenario, the "no information" recommendation for 

all com called for alachlor PPI followed by 2,4-0 POST. The bans did not change the base 

recommendation for soybean of trifluralin PPI followed by rotary hoe. 

The effect on value of weed population information resulting from bans on atrazine or 

the triazine family (including atrazine) is presented in Table 8. A ban on atrazine sharply 

reduces the value of weed information at all levels of risk: aversion except the highest. The 

reduced value of information for the moderate to neutral risk attitudes come about because 

mean annualized net farm income for the "no information" case rises while it changes little 

for the POST and high information scenarios. This incongruous outcome results from two 

factors. First, stochastic field time tends to make the atrazine and oil POST treatment 

infeasible on at least one field, requiring a revised POST control decision. Since the PPI/PRE 

control was chosen conditional upon atrazine POST, the PPI/PRE choice is not necessarily the 
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best one for the revised POST treatment. Second, over the six year simulation, repeated use 

of the "no information" cyanazine - 2,4-D treatment reduces lambsquarters and pigweed 

populations below the levels achieved by cyanazine - atrazine in the base scenario without 

herbicide restrictions. This suggests that cyanazine and 2,4-D might have been a preferred 

treatment pair given a longer planning horizon than two years. The increased information 

value for the highly risk averse case results from the sharp increase in the variance of 

annualized net farm income in the "no information" case compared with slight reductions in 

the corresponding variances of the POST and high information cases. 

A ban on all the three triazines in the model (atrazine, cyanazine, and metribuzin) 

results in a decrease in value of weed information across the board, relative to the atrazine 

case. Again, the mean and standard deviation of annualized net farm income in the "no 

information" case increase slightly (due to better pigweed control), while the means for the 

information-using strategies decrease. The decreased value of weed information is directly 

attributable to the reduction in control alternatives, reducing the number of instances in which 

information will lead to a different decision than that which would have been taken otherwise. 

Cost of Weed Population Information 

The evidence that weed population information may have significant value invites 

examination of the likely costs of obtaining the information required. for a model such as 

WEEDSIM. The costs of information are divided between those involved in obtaining weed 

population estimates and those of using the predictor embodied in the recommendations 
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model. If the model is provided free of cost by the public sector, then the value of the model 

to a decision maker with a specified utility function is equal to the difference between the 

calculated value of information and the private cost of obtaining weed population data. 

A thorough cost analysis would be a valuable extension of this research. One 

approach would be to calculate the cost of obtaining weed population information based upon 

statistical sampling theory (see, e.g., Wilson et al.). For a normal probability distribution, 

the statistical formula for minimum sampling intensity depends on 1) the maximum tolerable 

error, 2) the desired likelihood that a parameter estimate falls within the associated confidence 

interval, and 3) a, a prior estimate of the population standard deviation, .q (Snedecor and 

Cochran, p. 58-59). If 1) and 2) are held constant across weed species, multiple species 

sampling intensity is determined by the species with the largest a. Assuming that weed 

scouting exhibits constant costs, the cost of attaining a desired sampling intensity can be 

calculated by multiplying the required n~mber of samples by the expected cost per sample. A 

more empirically based approach would be to survey the fee structures of crop consultants 

who offer scouting services for emerged weeds and for soil samples (since weed seed scouting 

services are not commercialized at present). 

A rough estimate of weed seed sampling cost to obtain results within 50% of the 

mean 80% of the time comes to $ 0.30 to$ 1.00 per acre for pooled estimates of 80-acre 

fields . For weed seedling counts, the estimated cost is approximately half of this (Swinton). 

Informal conversation with a crop consultant places a considerably higher cost on weed 
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seedling counts, on the order of$ 1.15 per acre. This suggests that in practice, higher 

confidence estimates than those hypothesized may be required. 

At these costs, sampling weed seedlings appears highly feasible, while sampling weed 

seeds does not. By extension, the ex ante value of the model as a decision aid - net of 

private information acquisition costs - is significantly positive for post-emergence weed 

management. The growing popularity of HERB (Wilkerson et al.), a static bioeconomic 

model for POST weed management, bears this out. Improvements in predictive models and 

sampling methods could conceivably reduce uncertainty surrounding weed population forecasts 

to the level where expected net benefits from weed seed information also become positive. 

Conclusion 

The experimental framework based on stochastic simulation that is used to undertake 

this inquiry can be adapted to measure the value of other lcinds of biological scouting 

information. The whole-farm nature of the model captures interactions among risk-inducing 

management factors more effectively than do models which examine one source of random 

variability at a time (e.g., Pannell 1990). This model also permits evaluation of weed 

management recommendations in a dynamic setting. As such, this simulation approach is 

suited to measuring returns to information on other types of pest populations. 

The key finding of this study is that information-based weed management can 

significantly improve expected earnings over those from following a fixed decision rule. 

While a careful cost analysis is needed, indicative figures suggest that information-based post-
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emergent weed control in com and soybean is quite remunerative. However, analysis of 

potential herbicide bans indicates that the value of weed information declines with the number 

of cost-effective control alternatives. In many-but not all-cases, information-based weed 

management also reduces herbicide load in the environment. However, this result is an 

artifact of the benchmark weed control practice rather than an implication of information

based management. 

For farm managers, the significant value of pest population information is important 

for two reasons. First, it offers an opportunity to improve net returns by using more . 

information as an i~put. Second, it illustrates how imperfect management information-may 

lead to privately suboptimal decisions. Since increased information may reduce the use of 

agricultural chemicals by the private utility-maximizing manager, information deficiency 

constitutes an alternative to the economic externality explanation of environmental 

contamination. The imperfect information diagnosis suggests untested policy alternatives such 

as pest information subsidies as a means to achieve the twin social objectives of reduced 

chemical use and increased producer income. 
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Table 1. 

Characteristic 

Labor 

Workers 

Max. days per week: 

Max. hours/day 

Land 

Field size 

Continuous com 

Rotation com 

Rotation soybean 

Machinery 

2 tractors 

Field cultivator 

Planter (8 row) 

Sprayer 

Cultivator (8 row) 

Rotary hoe 

28 

Characteristics of the base case farm used in simulation. 

" .· 

Unit 

number 

number 

number 

acres 

proportion 

proportion 

proportion 

horsepower 

feet 

rows 

feet 

feet 

feet 

Amount 

2 

7 

10 

80 

113 

1/3 

1/3 

120,160 

28 

8 

30 

30 

16 
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Table 2: Levels of experimental factors employed in stochastic simulation. 

Experimental factor Unit Low Medium High 

Initial weed seeds 

Foxtails seeds/ml 175 1750 

Lambs quarters seeds/ml 25 250 

Pigweed seeds/ml 50 500 

Information on weed sample none1 seedlingsl seeds & 

population counts seedlings 

1 Strategies are, for continuous com, cyanazine PPI and atrazine and oil POST; for rotation 

com, alachlor PPI and cyanazine POST; for soybean, trifluralin PPI and rotary hoe POST. 

l POST strategy from model; PPl/PRE same as above. 
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Table 3.: Mean annualized net farm income by information level for a 480-acre farm: 

stochastic simulation of 6-year periods under 20 states of nature. 

Information Level 

Initial weed No Seedling counts Seed and seedling 
seed density and information counts 
croEEin~ unit 

Low Initial Weeds 

Fann 5,809 9,766 10,014 
(7,034)1 (8,896) (8,827) 

Continuous Com -2, 112 -464 -325 
(4,002) (4,426) (4,492) 

Rotational Com -1,517 -272 -28 
(3,253) (3,662) (3,693) 

Rotational Soy 9,438 10,501 10,458 
(3,331) (3,098) (3,060) 

High Initial Weeds 

Farm -14,549 -4,021 -3 ,751 
(8,066) (7,437) (7,587) 

Continuous Com -7,041 -4,284 -4,251 
(4,542) (3 ,728) (3,771) 

Rotational Com -9,369 -4,888 -4,626 
(3,855) (2,812) (2,928) 

Rotational Soy . 1,862 5,150 5, 127 
(3,937) (3,093) (3, 125) 

1 Standard deviations in parentheses 
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Table 4 .: Paired difference t-tests of annualized income over 20 states of nature: Gains in 

annualized net farm income due to high and POST information. 

HIGH over POST POST over NO 

Initial Weed Mean Standard t Mean Standard t 

Densi.ty Differ- Deviation Statistic Differ- Deviation Statistic1 

ence ence 

Low 339 474 3.19 3,957 4, 141 4.27 

High 271 586 2.06 10,527 6,669 7.06 

1 One-tailed critical values with 19 degrees of freedom for joint, three-way comparisons are as 

follows: t(.20) = 1.73, t(.05) = 3.17, t(.01) = 3.88. 



32 

Table 5.: Mean annual herbicide load (pounds of active ingredient per acre) by information 

level for a 480-acre farm : Stochastic simulation of 6-year periods under 20 states of nature. 

Information Level 

Initial weed No Seedling counts Seed and seedling 

seed density and information counts 

cropping unit · 

Low Initial Weem 

Continous Com 4.35 3.68 2.94 

Rotational Com 4.18 3.17 3.05 

Rotational Soy 0.75 0.79 0.79 

High Initial W eem 

Continuous Com 4.35 3.85 3.58 

Rotational Com 4.18 3.12 3.50 

Rotational Soy 0.75 0.78 0.78 



33 

Table 6 .: Paired difference t-tests of herbicide load over 20 states of nature: Change in load 

due to high and POST weed population infonnation. 

Change in herbicide load from lllGH information Change from POST info. 

Over POST Information Over NO information Over NO information 

Initial Weed Mean Standard Mean Standard Mean Standard 

Density Differ- Devi a- Statistic Differ- Devia- Statistic Differ- Devia- Statistic 

ence ti on ence tioo ence ti on 

Low initial weeck - lb ai/acre - - lb ai/acre - - lb ai/acre -

Cont. Com -0.74 0.26 -12.55 -1.41 0.37 -16.83 -0.67 0.21 -14.01 

Rotn. Com -0.12 0.25 -2.13 -1.12 0.22 -22.56 -1.00 0.09 -48.68 

Rotn. soybean -0.01 0.02 -1.46 0.26 0.36 3.22 0.04 0.04 4.41 

High initial weeck 

Cont. Corn -0.27 0.19 -6.14 -0.77 0.27 -12.57 -0.50 0.19 -12.05 

Rotn. Com 0.38 0.28 6.01 -0.67 -0.22 -13.77 -1.05 0.09 -53.89 

Rotn. soybean -0.00 0.01 -1.26 0.03 0.02 6.41 0.03 0.02 6.51 

'Two-tailed critical values with 19 dearees of freedom for joint, three-way comparisons are as follows: 

t(.10) = 1.73, t(.05) = 2.86, t( .01) = 3.88. 
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Table 7. : Calculated value of weed population information per acre for a 480-acre 

com-soybean farm under four expected utility functions. 

Coefficient of absolute risk aversion 

Experimental Factor -.0001 0 .0001 .001 

- - - - - - - - $ equivalent - - - - - - - -

Low initial weeds 

High information 11.42 8.95 6.22 4.94 

Low information 10.80 8.24 5.34 2.87 

High initial weeds 

High information 19.37 22.50 21.86 25.89 

Low information 18.69 21 .93 21.57 25.94 

Difference between high and low inf onnation 

Low initial weeds 0.62 0.71 0.88 2.07 

High initial weeds 0.68 0.56 0.29 -0.05 



35 

Table 8. : Effect of bans ·on atrazine and all triazines on the calculated value of weed 

population information per acre for a 480-acre com-soybean farm, by level of risk 

aversion. 

Coefficient of absolute risk aversion 

Experimental Factor -.0001 0 .0001 .001 

- - - - - - - - $ equivalent - - - - - - - -

A TRAZINE BAN 

Low initial weeds 

High information 5.46. 5.21 5.63 15.10 

Low information 3.24 3.68 3.38 3.64 

High initial weeds 

High information 8.32 10.17 14.34 33.44 

Low information 7.88 10.98 16.26 31.31 

TRIAZINES BAN 

Low initial weeds 

High information 3.11 2.31 2.28 10.96 

Low information 1.77 1.80 0.65 -1 .98 

High initial weeds 

High information 2.25 3.99 9.70 31.39 

Low information 3.12 6.25 13.04 30.24 
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Figure 1: Stochastic WF ARM flow chart. 
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ENDNOTES 

1. This approach runs counter to the marginalist recommendations of Pannell ( 1990) and 

Headley. However, Deen et al . have demonstrated empirically that a marginal herbicide 

application rule may have little value compared to a threshold rule at recommended rates. 

The reduced reliability of herbicide efficacy at "Sub-label rates combined with farmers' loss of 

manufacrurers' guarantees constitute substantial associated costs. 

2. By the Bonferroni inequality, a simultaneous three-way confidence interval of ?5% 

can be constructed by insuring that the individual component intervals have confidence 

coefficients (1 - .05/3) = 98.3% (Mendenhall et al.). Hence individual 99% confidence 

intervals insure a joint 95% interval. Similarly, individual 99.8% intervals insure a joint 99% 

interval. 


